Search results for: artificial stock market
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5900

Search results for: artificial stock market

4220 Introduction of Artificial Intelligence for Estimating Fractal Dimension and Its Applications in the Medical Field

Authors: Zerroug Abdelhamid, Danielle Chassoux

Abstract:

Various models are given to simulate homogeneous or heterogeneous cancerous tumors and extract in each case the boundary. The fractal dimension is then estimated by least squares method and compared to some previous methods.

Keywords: simulation, cancerous tumor, Markov fields, fractal dimension, extraction, recovering

Procedia PDF Downloads 365
4219 Product Features Extraction from Opinions According to Time

Authors: Kamal Amarouche, Houda Benbrahim, Ismail Kassou

Abstract:

Nowadays, e-commerce shopping websites have experienced noticeable growth. These websites have gained consumers’ trust. After purchasing a product, many consumers share comments where opinions are usually embedded about the given product. Research on the automatic management of opinions that gives suggestions to potential consumers and portrays an image of the product to manufactures has been growing recently. After launching the product in the market, the reviews generated around it do not usually contain helpful information or generic opinions about this product (e.g. telephone: great phone...); in the sense that the product is still in the launching phase in the market. Within time, the product becomes old. Therefore, consumers perceive the advantages/ disadvantages about each specific product feature. Therefore, they will generate comments that contain their sentiments about these features. In this paper, we present an unsupervised method to extract different product features hidden in the opinions which influence its purchase, and that combines Time Weighting (TW) which depends on the time opinions were expressed with Term Frequency-Inverse Document Frequency (TF-IDF). We conduct several experiments using two different datasets about cell phones and hotels. The results show the effectiveness of our automatic feature extraction, as well as its domain independent characteristic.

Keywords: opinion mining, product feature extraction, sentiment analysis, SentiWordNet

Procedia PDF Downloads 410
4218 Inclusive, Just and Effective Transition: Comparing Market-Based and Redistributive Approaches to Sustainability

Authors: Karen Bell

Abstract:

While there is broad agreement among governments and civil society globally about the need to develop more sustainable societies, the best way to achieve this is still contested. In particular, there are differences regarding whether to continue to implement market-based approaches or to move to alternative redistributive-based approaches. In this paper, ‘Green Economy’ and ‘Living Well’ strategies are compared as examples of these two different strategies for achieving social, ecological and economic sustainability. The paper is based on a 3-year ESRC funded project on transitions to sustainability which examines the implementation of the ‘Green Economy’ paradigm in South Korea and the 'Living Well' paradigm in Bolivia. As well as outlining and analysing secondary data, the paper also draws on over 100 interviews with a range of local stakeholders in these countries carried out by the author between and including 2016 and 2018. The work indicates that the Living Well paradigm seems to better integrate social, ecological and economic concerns and may better deliver sustainability in the time frame necessary than the dominant Green Economy paradigm. This seems to be primarily because Living Well emphasises redistribution to reduce inequality and ensure human needs are met; living in harmony with nature, taking into account natural limits and cycles; respecting traditional values and practices where these support sustainability and human well-being; sovereignty and local control of natural resources; and participative decision-making, based on grassroots community organising. It is, therefore, argued that to achieve inclusive, just and effective transitions to sustainability we should aim to foster equality, respect planetary limits, build on local traditions, bring resources into public ownership and enhance participatory democracy. This will require a radically different approach to that offered within the market-based agenda currently dominating global sustainability debates and activities.

Keywords: environmental transition, green economy, inclusive sustainability, living well, sustainable transition

Procedia PDF Downloads 134
4217 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor

Authors: Hao Yan, Xiaobing Zhang

Abstract:

The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.

Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model

Procedia PDF Downloads 90
4216 Deep Reinforcement Learning Model for Autonomous Driving

Authors: Boumaraf Malak

Abstract:

The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions.

Keywords: deep reinforcement learning, autonomous driving, deep deterministic policy gradient, deep Q-learning

Procedia PDF Downloads 85
4215 Investments in Petroleum Industry Abnormally Normal: A Case Study Based on Petroleum and Natural Gas Companies in India

Authors: Radhika Ramanchi

Abstract:

The oil market during 2014-2015 in India with large price fluctuations is very confusing to individual investor. The drop in oil prices supported stocks of some oil marketing companies (OMCs) like Bharat Petroleum Corporation, Hindustan Petroleum Corporation (HPCL) and Indian Oil Corporation etc their shares rose 84.74%, 128.63% and 59.16%, respectively. Lower oil prices, and lower current account, a smaller subsidy burden are the reasons for outperformance. On the other hand, lower crude prices giving downward pressure on upstream companies like Oil and Natural Gas Corp. Ltd (ONGC) and Reliance Petroleum (RIL) Oil India Ltd (OIL). Not having clarity on a subsidy sharing mechanism is the reason for downward trend on these stocks. Shares of ONGC and RIL have underperformed so far in 2015. When the oil price fall profits of the companies will effect, generate less money and may cut their dividends in Long run. In this situation this paper objective is to study investment strategies in oil marketing companies, by applying CAPM and Security Market Line.

Keywords: petrol industry, price fluctuations, sharp single index model, SML, Markowitz model

Procedia PDF Downloads 223
4214 The Impact of University League Tables on the Development of Non-Elite Universities. A Case Study of England

Authors: Lois Cheung

Abstract:

This article examines the impact of League Tables on non-elite universities in the English higher education system. The purpose of this study is to explore the use of rankings in strategic planning by low-ranked universities in this highly competitive higher education market. A sample of non-elite universities was selected for a content analysis based on the measures used by The Guardian rankings. Interestingly, these universities care about their rankings within a single national system. The content analysis appears to be an effective approach to investigating the presence of such influences. It is particularly noteworthy that all sampled universities use these measure terminologies in their strategic plans, missions and news coverage on their institutional web-pages. This analysis may be an example of the key challenges that many low-ranking universities in England are probably facing in the highly competitive and diversified higher education market. These universities use rankings to communicate with their stakeholders, mainly students, in order to fill places to secure their major source of funding. The study concludes with comments on the likely effects of the rankings paradigm in undermining the contributions of non-elite universities.

Keywords: League tables, measures, post-1992 universities, ranking, strategy

Procedia PDF Downloads 183
4213 Economic Forecasting Analysis for Solar Photovoltaic Application

Authors: Enas R. Shouman

Abstract:

Economic development with population growth is leading to a continuous increase in energy demand. At the same time, growing global concern for the environment is driving to decrease the use of conventional energy sources and to increase the use of renewable energy sources. The objective of this study is to present the market trends of solar energy photovoltaic technology over the world and to represent economics methods for PV financial analyzes on the basis of expectations for the expansion of PV in many applications. In the course of this study, detailed information about the current PV market was gathered and analyzed to find factors influencing the penetration of PV energy. The paper methodology depended on five relevant economic financial analysis methods that are often used for investment decisions maker. These methods are payback analysis, net benefit analysis, saving-to-investment ratio, adjusted internal rate of return, and life-cycle cost. The results of this study may be considered as a marketing guide that helps diffusion of using PV Energy. The study showed that PV cost is economically reliable. The consumers will pay higher purchase prices for PV system installation but will get lower electricity bill.

Keywords: photovoltaic, financial methods, solar energy, economics, PV panel

Procedia PDF Downloads 109
4212 A Comparative Study of the Impact of Membership in International Climate Change Treaties and the Environmental Kuznets Curve (EKC) in Line with Sustainable Development Theories

Authors: Mojtaba Taheri, Saied Reza Ameli

Abstract:

In this research, we have calculated the effect of membership in international climate change treaties for 20 developed countries based on the human development index (HDI) and compared this effect with the process of pollutant reduction in the Environmental Kuznets Curve (EKC) theory. For this purpose, the data related to The real GDP per capita with 2010 constant prices is selected from the World Development Indicators (WDI) database. Ecological Footprint (ECOFP) is the amount of biologically productive land needed to meet human needs and absorb carbon dioxide emissions. It is measured in global hectares (gha), and the data retrieved from the Global Ecological Footprint (2021) database will be used, and we will proceed by examining step by step and performing several series of targeted statistical regressions. We will examine the effects of different control variables, including Energy Consumption Structure (ECS) will be counted as the share of fossil fuel consumption in total energy consumption and will be extracted from The United States Energy Information Administration (EIA) (2021) database. Energy Production (EP) refers to the total production of primary energy by all energy-producing enterprises in one country at a specific time. It is a comprehensive indicator that shows the capacity of energy production in the country, and the data for its 2021 version, like the Energy Consumption Structure, is obtained from (EIA). Financial development (FND) is defined as the ratio of private credit to GDP, and to some extent based on the stock market value, also as a ratio to GDP, and is taken from the (WDI) 2021 version. Trade Openness (TRD) is the sum of exports and imports of goods and services measured as a share of GDP, and we use the (WDI) data (2021) version. Urbanization (URB) is defined as the share of the urban population in the total population, and for this data, we used the (WDI) data source (2021) version. The descriptive statistics of all the investigated variables are presented in the results section. Related to the theories of sustainable development, Environmental Kuznets Curve (EKC) is more significant in the period of study. In this research, we use more than fourteen targeted statistical regressions to purify the net effects of each of the approaches and examine the results.

Keywords: climate change, globalization, environmental economics, sustainable development, international climate treaty

Procedia PDF Downloads 71
4211 The Analysis of Regulation on Sustainability in the Financial Sector in Lithuania

Authors: Dalia Kubiliūtė

Abstract:

Lithuania is known as a trusted location for global business institutions, and it attracts investors with it’s competitive environment for financial service providers. Along with the aspiration to offer a strong results-oriented and innovations-driven environment for financial service providers, Lithuanian regulatory authorities consistently implement the European Union's high regulatory standards for financial activities, including sustainability-related disclosures. Since European Union directed its policy towards transition to a climate-neutral, green, competitive, and inclusive economy, additional regulatory requirements for financial market participants are adopted: disclosure of sustainable activities, transparency, prevention of greenwashing, etc. The financial sector is one of the key factors influencing the implementation of sustainability objectives in European Union policies and mitigating the negative effects of climate change –public funds are not enough to make a significant impact on sustainable investments, therefore directing public and private capital to green projects may help to finance the necessary changes. The topic of the study is original and has not yet been widely analyzed in Lithuanian legal discourse. There are used quantitative and qualitative methodologies, logical, systematic, and critical analysis principles; hence the aim of this study is to reveal the problem of the implementation of the regulation on sustainability in the Lithuanian financial sector. Additional regulatory requirements could cause serious changes in financial business operations: additional funds, employees, and time have to be dedicated in order for the companies could implement these regulations. Lack of knowledge and data on how to implement new regulatory requirements towards sustainable reporting causes a lot of uncertainty for financial market participants. And for some companies, it might even be an essential point in terms of business continuity. It is considered that the supervisory authorities should find a balance between financial market needs and legal regulation.

Keywords: financial, legal, regulatory, sustainability

Procedia PDF Downloads 102
4210 The LNG Paradox: The Role of Gas in the Energy Transition

Authors: Ira Joseph

Abstract:

The LNG paradox addresses the issue of how the most expensive form of gas supply, which is LNG, will grow in an end user market where demand is most competitive, which is power generation. In this case, LNG demand growth is under siege from two entirely different directions. At one end is price; it will be extremely difficult for gas to replace coal in Asia due to the low price of coal and the age of the generation plants. Asia's coal fleet, on average, is less than two decades old and will need significant financial incentives to retire before its state lifespan. While gas would cut emissions in half relative to coal, it would also more than double the price of the fuel source for power generation, which puts it in a precarious position. In most countries in Asia other than China, this cost increase, particularly from imports, is simply not realistic when it is also necessary to focus on economic growth and social welfare. On the other end, renewables are growing at an exponential rate for three reasons. One is that prices are dropping. Two is that policy incentives are driving deployment, and three is that China is forcing renewables infrastructure into the market to take a political seat at the global energy table with Saudi Arabia, the US, and Russia. Plus, more renewables will lower import growth of oil and gas in China, if not end it altogether. Renewables are the predator at the gate of gas demand in power generation and in every year that passes, renewables cut into demand growth projections for gas; in particular, the type of gas that is most expensive, which is LNG. Gas does have a role in the future, particularly within a domestic market. Once it crosses borders in the form of LNG or even pipeline gas, it quickly becomes a premium fuel and must be marketed and used this way. Our research shows that gas will be able to compete with batteries as an intermittency and storage tool and does offer a method to harmonize with renewables as part of the energy transition. As a baseload fuel, however, the role of gas, particularly, will be limited by cost once it needs to cross a border. Gas converted into blue or green hydrogen or ammonia is also an option for storage depending on the location. While this role is much reduced from the primary baseload role that gas once aspired to land, it still offers a credible option for decades to come.

Keywords: natural gas, LNG, demand, price, intermittency, storage, renewables

Procedia PDF Downloads 61
4209 Intellectual Property Protection of CRISPR Related Technologies

Authors: Zheng Miao, Dennis Fernandez

Abstract:

CRISPR research has the potential to completely transform life science, agriculture, live-stock and the health care industry. The Intellectual Property derived from its research has raised significant attention in the academic as well as the biopharmaceutical industry culminating an urgent need for strategic IP protection. We review the rudimentary concepts and key competitors of CRISPR technologies as well as the paramount strategies for intellectual property protection. Further, we elaborate on prosecution issues related to CRISPR patents as well as possible solutions to various patent laws, interferences and litigation. Finally, we address how the bioinformatics of the CRISPR technology begs an inquiry into issues of privacy and a host of ethical concerns.

Keywords: bioinformatics, CRISPR, biotechnology, intellectual property

Procedia PDF Downloads 254
4208 Application of ANN for Estimation of Power Demand of Villages in Sulaymaniyah Governorate

Authors: A. Majeed, P. Ali

Abstract:

Before designing an electrical system, the estimation of load is necessary for unit sizing and demand-generation balancing. The system could be a stand-alone system for a village or grid connected or integrated renewable energy to grid connection, especially as there are non–electrified villages in developing countries. In the classical model, the energy demand was found by estimating the household appliances multiplied with the amount of their rating and the duration of their operation, but in this paper, information exists for electrified villages could be used to predict the demand, as villages almost have the same life style. This paper describes a method used to predict the average energy consumed in each two months for every consumer living in a village by Artificial Neural Network (ANN). The input data are collected using a regional survey for samples of consumers representing typical types of different living, household appliances and energy consumption by a list of information, and the output data are collected from administration office of Piramagrun for each corresponding consumer. The result of this study shows that the average demand for different consumers from four villages in different months throughout the year is approximately 12 kWh/day, this model estimates the average demand/day for every consumer with a mean absolute percent error of 11.8%, and MathWorks software package MATLAB version 7.6.0 that contains and facilitate Neural Network Toolbox was used.

Keywords: artificial neural network, load estimation, regional survey, rural electrification

Procedia PDF Downloads 123
4207 Does Operating Cash Flow Really Matter in Value Relevance? A Recent Empirical Analysis on the Largest European Companies

Authors: Francesco Paolone

Abstract:

This paper investigates the role of Operating Cash Flow (OCF) and accruals in firm valuation analyzing financial statement information from the largest European companies and evaluating their relation to firm market value. Using a dataset of 500 largest European companies in 2018, the study investigates the relative value-relevance of equity, net income and operating cash flow (OCF). Findings show that the cash flow measure has the same explanatory power and intensity as equity and earnings to explain the market value. This study contributes to the debate on the value relevance of OCF incremental to book value and earnings. It also extends the literature, showing that OCF has information content (value relevance) superior to earnings and book value in the main European markets (Bepari et al., 2013). Finally, the study provides a support that accounting method choice may confuse investors, who have reduced confidence in accounting earnings and book value; in other words, nowadays European investors rely more on cash flows instead of accruals numbers.

Keywords: Cash Flow Statement, Value Relevance, Accounting, Financial Statement Analysis

Procedia PDF Downloads 132
4206 The Effect of Artificial Intelligence on Communication and Information Systems

Authors: Sameh Ibrahim Ghali Hanna

Abstract:

Information system (IS) are fairly crucial in the operation of private and public establishments in growing and developed international locations. Growing countries are saddled with many project failures throughout the implementation of records systems. However, successful information systems are greatly wished for in developing nations in an effort to decorate their economies. This paper is extraordinarily critical in view of the high failure fee of data structures in growing nations, which desire to be decreased to minimal proper levels by means of advocated interventions. This paper centers on a review of IS development in developing international locations. The paper gives evidence of the IS successes and screw-ups in developing nations and posits a version to deal with the IS failures. The proposed model can then be utilized by means of growing nations to lessen their IS mission implementation failure fee. A contrast is drawn between IS improvement in growing international locations and evolved international locations. The paper affords valuable records to assist in decreasing IS failure, and growing IS models and theories on IS development for developing countries.

Keywords: research information systems (RIS), research information, heterogeneous sources, data quality, data cleansing, science system, standardization artificial intelligence, AI, enterprise information system, EIS, integration developing countries, information systems, IS development, information systems failure, information systems success, information systems success model

Procedia PDF Downloads 21
4205 The Impact of Organizational Culture on Internet Marketing Adoption

Authors: Hafiz Mushtaq Ahmad, Syed Faizan Ali Shah, Bushra Hussain, Muneeb Iqbal

Abstract:

Purpose: The purpose of this study is to investigate the impact of organizational culture on internet marketing adoption. Moreover, the study intends to explore the role of organizational culture in the internet marketing adoption that helps business to achieve organizational growth and augmented market share. Background: With the enormous expansion of technology, organizations now need technology-based marketing paradigm in order to capture larger group of customers. Organizational culture plays a dominant and prominent role in the internet marketing adoption. Changes in the world economy have demolished current organizational competition and generating new technology standards and strategies. With all the technological advances, e-marketing has become one of the essential part of marketing strategies. Organizations require advance internet marketing strategies in order to compete in a global market. Methodology: The population of this study consists of telecom sector organizations of Pakistan. The sample size consists of 200 telecom sector employees. Data were gathered through the questionnaire instrument. The research strategy of this study is survey. The study uses a deductive approach. The sampling technique of this study is convenience sampling. Tentative Results: The study reveals that organizational culture played a vital role in the internet marketing adoption. The results show that there is a strong association between the organizational culture and internet marketing adoption. The results further show that flexible organizational culture helps organization to easily adopt internet marketing. Conclusion: The study discloses that flexible organizational culture helps organizations to easily adopt e-marketing. The study guides decision-makers and owners of organizations to recognize the importance of internet marketing strategy and help them to increase market share by using e-marketing. The study offers solution to the managers to develop flexible organizational culture that helps in internet marketing adoption.

Keywords: internet technology, internet marketing, marketing paradigm, organizational culture

Procedia PDF Downloads 231
4204 Assessment of Proximate Composition and Heavy Metal in Vigna unguculata (White Beans) Sold in Kazaure Market, Jigawa State, Nigeria

Authors: Abdu Umar Adamu, Saidu Akun Abdullahi, Al-Hassan Muhammed, Hamisu Abdu

Abstract:

Leguminous plants such as beans have been considered as a source of protein in this present work. The proximate analysis on beans (Vigna unguiculata) were determined in order to identify the nutritional content as well as presence of some heavy metals accumulation in washed and unwashed beans (white Beans) sold in Kazaure market Jigawa State Nigeria. On the average comparative analysis, the result has indicated that, the Vigna unguiculata had protein content of 61.1%, fibre 4.5%, ash 10.4%, moisture 5%, carbohydrate 15.8% and total lipid 4.9%, therefore it could be suggested that beans has enough nutritional content that helps the people health. The heavy metal analysis of unwashed white beans showed that Fe (17.37 ± 6.71)mg/kg had the highest concentration followed by Zn (6.41 ± 3.09), Cu (5.69 ± 2.42), Cd (0.46 ± 0.65) and Pb (0.57 ± 0.94)mg/kg , while the washed beans shows that Zn (0.11 ± 0.17), Fe (0.01 ± 0.006), Cd (0.02 ± 0.01), Cu (0.03 ± 0.021), Pb (0.01 ± 0.006)mg/kg. The washed white beans are safe for consumption and also the concentration of heavy metal are negligible and of nontoxic effect to human health.

Keywords: white beans, protein, proximate composition, heavy metal

Procedia PDF Downloads 433
4203 Towards Sustainable Construction in the United Arab Emirates: Challenges and Opportunities

Authors: Yousef Alqaryouti, Mariam Al Suwaidi, Raed Mohmood AlKhuwaildi, Hind Kolthoum, Issa Youssef, Mohammed Al Imam

Abstract:

The UAE has experienced rapid economic growth due to its mature oil production industry, leading to a surge in urbanization and infrastructure development in the construction sector. Sustainable development practices are becoming increasingly important, and the UAE government has taken proactive measures to promote them, including the introduction of sustainable building codes, energy-efficient technologies, and renewable energy sources. Initiatives such as the Masdar City project and the Emirates Green Building Council further demonstrate the government's commitment to a cleaner and healthier environment. By adopting sustainable practices, the UAE can reduce its carbon footprint, lessen its reliance on fossil fuels, and achieve cost savings in the long run. The purpose of this paper is to conduct a thorough review of the current state of sustainability in the construction industry of the UAE. Our research methodology includes a local market survey and qualitative observational analysis of executed housing construction projects by the Mohammed Bin Rashid Housing Establishment. The market survey assesses eleven different challenging factors that affect sustainable construction project delivery. The qualitative observational research is based on data collected from three projects, including construction progress, bill of quantity, and construction program. The study concludes that addressing these challenges requires a collaborative team approach, incentivized contracts, traditional project management practices, an integrated project team, and an increase in sustainability awareness among stakeholders. The recommendations proposed in this study aim to promote and improve the application of sustainability in the UAE's construction industry for the future.

Keywords: sustainability, construction, challenges, opportunities, case study, market survey

Procedia PDF Downloads 57
4202 Machine Learning-Based Workflow for the Analysis of Project Portfolio

Authors: Jean Marie Tshimula, Atsushi Togashi

Abstract:

We develop a data-science approach for providing an interactive visualization and predictive models to find insights into the projects' historical data in order for stakeholders understand some unseen opportunities in the African market that might escape them behind the online project portfolio of the African Development Bank. This machine learning-based web application identifies the market trend of the fastest growing economies across the continent as well skyrocketing sectors which have a significant impact on the future of business in Africa. Owing to this, the approach is tailored to predict where the investment needs are the most required. Moreover, we create a corpus that includes the descriptions of over more than 1,200 projects that approximately cover 14 sectors designed for some of 53 African countries. Then, we sift out this large amount of semi-structured data for extracting tiny details susceptible to contain some directions to follow. In the light of the foregoing, we have applied the combination of Latent Dirichlet Allocation and Random Forests at the level of the analysis module of our methodology to highlight the most relevant topics that investors may focus on for investing in Africa.

Keywords: machine learning, topic modeling, natural language processing, big data

Procedia PDF Downloads 168
4201 Investigating the UAE Residential Valuation System: A Framework for Analysis

Authors: Simon Huston, Ebraheim Lahbash, Ali Parsa

Abstract:

The development of the United Arab Emirates (UAE) into a regional trade, tourism, finance and logistics hub has transformed its real estate markets. However, speculative activity and price volatility remain concerns. UAE residential market values (MV) are exposed to fluctuations in capital flows and migration which in turn are affected by geopolitical uncertainty, oil price volatility, and global investment market sentiment. Internally, a complex interplay between administrative boundaries, land tenure, building quality and evolving location characteristics fragments UAE residential property markets. In short, the UAE Residential Valuation System (UAE-RVS) confronts multiple challenges to collect, filter and analyze relevant information in complex and dynamic spatial and capital markets. A robust (RVS) can mitigate the risk of unhelpful volatility, speculative excess or investment mistakes. The research outlines the institutional, ontological, dynamic, and epistemological issues at play. We highlight the importance of system capabilities, valuation standard salience and stakeholders trust.

Keywords: valuation, property rights, information, institutions, trust, salience

Procedia PDF Downloads 379
4200 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction

Authors: Qais M. Yousef, Yasmeen A. Alshaer

Abstract:

Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.

Keywords: artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization

Procedia PDF Downloads 175
4199 Web Development in Information Technology with Javascript, Machine Learning and Artificial Intelligence

Authors: Abdul Basit Kiani, Maryam Kiani

Abstract:

Online developers now have the tools necessary to create online apps that are not only reliable but also highly interactive, thanks to the introduction of JavaScript frameworks and APIs. The objective is to give a broad overview of the recent advances in the area. The fusion of machine learning (ML) and artificial intelligence (AI) has expanded the possibilities for web development. Modern websites now include chatbots, clever recommendation systems, and customization algorithms built in. In the rapidly evolving landscape of modern websites, it has become increasingly apparent that user engagement and personalization are key factors for success. To meet these demands, websites now incorporate a range of innovative technologies. One such technology is chatbots, which provide users with instant assistance and support, enhancing their overall browsing experience. These intelligent bots are capable of understanding natural language and can answer frequently asked questions, offer product recommendations, and even help with troubleshooting. Moreover, clever recommendation systems have emerged as a powerful tool on modern websites. By analyzing user behavior, preferences, and historical data, these systems can intelligently suggest relevant products, articles, or services tailored to each user's unique interests. This not only saves users valuable time but also increases the chances of conversions and customer satisfaction. Additionally, customization algorithms have revolutionized the way websites interact with users. By leveraging user preferences, browsing history, and demographic information, these algorithms can dynamically adjust the website's layout, content, and functionalities to suit individual user needs. This level of personalization enhances user engagement, boosts conversion rates, and ultimately leads to a more satisfying online experience. In summary, the integration of chatbots, clever recommendation systems, and customization algorithms into modern websites is transforming the way users interact with online platforms. These advanced technologies not only streamline user experiences but also contribute to increased customer satisfaction, improved conversions, and overall website success.

Keywords: Javascript, machine learning, artificial intelligence, web development

Procedia PDF Downloads 80
4198 Climate Changes Impact on Artificial Wetlands

Authors: Carla Idely Palencia-Aguilar

Abstract:

Artificial wetlands play an important role at Guasca Municipality in Colombia, not only because they are used for the agroindustry, but also because more than 45 species were found, some of which are endemic and migratory birds. Remote sensing was used to determine the changes in the area occupied by water of artificial wetlands by means of Aster and Modis images for different time periods. Evapotranspiration was also determined by three methods: Surface Energy Balance System-Su (SEBS) algorithm, Surface Energy Balance- Bastiaanssen (SEBAL) algorithm, and Potential Evapotranspiration- FAO. Empirical equations were also developed to determine the relationship between Normalized Difference Vegetation Index (NDVI) versus net radiation, ambient temperature and rain with an obtained R2 of 0.83. Groundwater level fluctuations on a daily basis were studied as well. Data from a piezometer placed next to the wetland were fitted with rain changes (with two weather stations located at the proximities of the wetlands) by means of multiple regression and time series analysis, the R2 from the calculated and measured values resulted was higher than 0.98. Information from nearby weather stations provided information for ordinary kriging as well as the results for the Digital Elevation Model (DEM) developed by using PCI software. Standard models (exponential, spherical, circular, gaussian, linear) to describe spatial variation were tested. Ordinary Cokriging between height and rain variables were also tested, to determine if the accuracy of the interpolation would increase. The results showed no significant differences giving the fact that the mean result of the spherical function for the rain samples after ordinary kriging was 58.06 and a standard deviation of 18.06. The cokriging using for the variable rain, a spherical function; for height variable, the power function and for the cross variable (rain and height), the spherical function had a mean of 57.58 and a standard deviation of 18.36. Threatens of eutrophication were also studied, given the unconsciousness of neighbours and government deficiency. Water quality was determined over the years; different parameters were studied to determine the chemical characteristics of water. In addition, 600 pesticides were studied by gas and liquid chromatography. Results showed that coliforms, nitrogen, phosphorous and prochloraz were the most significant contaminants.

Keywords: DEM, evapotranspiration, geostatistics, NDVI

Procedia PDF Downloads 120
4197 Enhancing Information Technologies with AI: Unlocking Efficiency, Scalability, and Innovation

Authors: Abdal-Hafeez Alhussein

Abstract:

Artificial Intelligence (AI) has become a transformative force in the field of information technologies, reshaping how data is processed, analyzed, and utilized across various domains. This paper explores the multifaceted applications of AI within information technology, focusing on three key areas: automation, scalability, and data-driven decision-making. We delve into how AI-powered automation is optimizing operational efficiency in IT infrastructures, from automated network management to self-healing systems that reduce downtime and enhance performance. Scalability, another critical aspect, is addressed through AI’s role in cloud computing and distributed systems, enabling the seamless handling of increasing data loads and user demands. Additionally, the paper highlights the use of AI in cybersecurity, where real-time threat detection and adaptive response mechanisms significantly improve resilience against sophisticated cyberattacks. In the realm of data analytics, AI models—especially machine learning and natural language processing—are driving innovation by enabling more precise predictions, automated insights extraction, and enhanced user experiences. The paper concludes with a discussion on the ethical implications of AI in information technologies, underscoring the importance of transparency, fairness, and responsible AI use. It also offers insights into future trends, emphasizing the potential of AI to further revolutionize the IT landscape by integrating with emerging technologies like quantum computing and IoT.

Keywords: artificial intelligence, information technology, automation, scalability

Procedia PDF Downloads 17
4196 Monitoring Cellular Networks Performance Using Crowd Sourced IoT System: My Operator Coverage (MOC)

Authors: Bassem Boshra Thabet, Mohammed Ibrahim Elsabagh, Mohammad Adly Talaat

Abstract:

The number of cellular mobile phone users has increased enormously worldwide over the last two decades. Consequently, the monitoring of the performance of the Mobile Network Operators (MNOs) in terms of network coverage and broadband signal strength has become vital for both of the MNOs and regulators. This monitoring helps telecommunications operators and regulators keeping the market playing fair and most beneficial for users. However, the adopted methodologies to facilitate this continuous monitoring process are still problematic regarding cost, effort, and reliability. This paper introduces My Operator Coverage (MOC) system that is using Internet of Things (IoT) concepts and tools to monitor the MNOs performance using a crowd-sourced real-time methodology. MOC produces robust and reliable geographical maps for the user-perceived quality of the MNOs performance. MOC is also meant to enrich the telecommunications regulators with concrete, and up-to-date information that allows for adequate mobile market management strategies as well as appropriate decision making.

Keywords: mobile performance monitoring, crowd-sourced applications, mobile broadband performance, cellular networks monitoring

Procedia PDF Downloads 396
4195 Harnessing Artificial Intelligence for Early Detection and Management of Infectious Disease Outbreaks

Authors: Amarachukwu B. Isiaka, Vivian N. Anakwenze, Chinyere C. Ezemba, Chiamaka R. Ilodinso, Chikodili G. Anaukwu, Chukwuebuka M. Ezeokoli, Ugonna H. Uzoka

Abstract:

Infectious diseases continue to pose significant threats to global public health, necessitating advanced and timely detection methods for effective outbreak management. This study explores the integration of artificial intelligence (AI) in the early detection and management of infectious disease outbreaks. Leveraging vast datasets from diverse sources, including electronic health records, social media, and environmental monitoring, AI-driven algorithms are employed to analyze patterns and anomalies indicative of potential outbreaks. Machine learning models, trained on historical data and continuously updated with real-time information, contribute to the identification of emerging threats. The implementation of AI extends beyond detection, encompassing predictive analytics for disease spread and severity assessment. Furthermore, the paper discusses the role of AI in predictive modeling, enabling public health officials to anticipate the spread of infectious diseases and allocate resources proactively. Machine learning algorithms can analyze historical data, climatic conditions, and human mobility patterns to predict potential hotspots and optimize intervention strategies. The study evaluates the current landscape of AI applications in infectious disease surveillance and proposes a comprehensive framework for their integration into existing public health infrastructures. The implementation of an AI-driven early detection system requires collaboration between public health agencies, healthcare providers, and technology experts. Ethical considerations, privacy protection, and data security are paramount in developing a framework that balances the benefits of AI with the protection of individual rights. The synergistic collaboration between AI technologies and traditional epidemiological methods is emphasized, highlighting the potential to enhance a nation's ability to detect, respond to, and manage infectious disease outbreaks in a proactive and data-driven manner. The findings of this research underscore the transformative impact of harnessing AI for early detection and management, offering a promising avenue for strengthening the resilience of public health systems in the face of evolving infectious disease challenges. This paper advocates for the integration of artificial intelligence into the existing public health infrastructure for early detection and management of infectious disease outbreaks. The proposed AI-driven system has the potential to revolutionize the way we approach infectious disease surveillance, providing a more proactive and effective response to safeguard public health.

Keywords: artificial intelligence, early detection, disease surveillance, infectious diseases, outbreak management

Procedia PDF Downloads 66
4194 The Relationship between Environmental Factors and Purchasing Decisions in the Residential Market in Sweden

Authors: Agnieszka Zalejska-Jonsson

Abstract:

The Swedish Green Building Council (SGBC) was established in 2009. Since then, over 1000 buildings have been certified, of which approximately 600 are newly produced and 340 are residential buildings. During that time, approximately 2000 apartment buildings have been built in Sweden. This means that over a five- year period 17% of residential buildings have been certified according to the environmental building scheme. The certification of the building is not a guarantee of environmental progress but it gives us an indication of the extent of the progress. The overarching aim of this study is to investigate the factors behind the relatively slow evolution of the green residential housing market in Sweden. The intention is to examine stated willingness to pay (WTP) for green and low energy apartments, and to explore which factors have a significant effect on stated WTP among apartment owners. A green building was defined as a building certified according to the environmental scheme and a low energy building as a building designed and constructed with high energy efficiency goals. Data for this study were collected through a survey conducted among occupants of comparable apartment buildings: two green and one conventional. The total number of received responses was 429: green A (N=160), response rate 42%; green B (N=138) response rate 35%, and conventional (N=131) response rate 43%. The study applied a quasi-experimental method. Survey responses regarding factors affecting purchase of apartment, stated WTP and environmental literacy have been analysed using descriptive statistics, the Mann–Whitney (rank sum) test and logistic models. Comments received from respondents have been used for further interpretation of results. Results indicate that environmental education has a significant effect on stated WTP. Occupants who declared higher WTP showed a higher level of environmental literacy and indicated that energy efficiency was one of the important factors that affected their decision to buy an apartment. Generally, the respondents were more likely to pay more for low energy buildings than for green buildings. This is to a great extent a consequence of rational customer behaviour and difficulty in apprehending the meaning of green building certification. The analysis shows that people living in green buildings indicate higher WTP for both green and low energy buildings, the difference being statistically significant. It is concluded that growth in the green housing market in Sweden might be achieved if policymakers and developers engage in active education in the environmental labelling system. The demand for green buildings is more likely to increase when the difference between green and conventional buildings is easily understood and information is not only delivered by the estate agent, but is part of an environmental education programme.

Keywords: consumer, environmental education, housing market, stated WTP, Sweden

Procedia PDF Downloads 241
4193 Corporate Governance and Bank Performance: A Study of Selected Deposit Money Banks in Nigeria

Authors: Ayodele Ajayi, John Ajayi

Abstract:

This paper investigates the effect of corporate governance with a view to determining the relationship between board size and bank performance. Data for the study were obtained from the audited financial statements of five sampled banks listed on the Nigerian Stock Exchange. Panel data technique was adopted and analysis was carried out with the use of multiple regression and pooled ordinary least square. Results from the study show that the larger the board size, the greater the profit implying that corporate governance is positively correlated with bank performance.

Keywords: corporate governance, banks performance, board size, pooled data

Procedia PDF Downloads 360
4192 The Necessity of Retrofitting for Masonry Buildings in Turkey

Authors: Soner Güler, Mustafa Gülen, Eylem Güzel

Abstract:

Masonry buildings constitute major part of building stock in Turkey. Masonry buildings were built up especially in rural areas and underdeveloped regions due to economic reasons. Almost all of these masonry buildings are not designed and detailed according to any design guidelines by designers. As a result of this, masonry buildings were totally collapsed or heavily damaged when subjected to destructive earthquake effects. Thus, these masonry buildings that were built up in our country must be retrofitted to improve their seismic performance. In this study, new seismic retrofitting techniques that is easy to apply and low-cost are summarized and the importance of seismic retrofitting is also emphasized for existing masonry buildings in Turkey.

Keywords: masonry buildings, earthquake effects, seismic retrofitting techniques, seismic performance

Procedia PDF Downloads 343
4191 Impact of Social Crisis on Property Market Performance and Evolving Strategy for Improved Property Transactions in Crisis Prone Environment: A Case Study of North Eastern Nigeria

Authors: Abdur Raheem, Ado Yakub

Abstract:

Urban violence in the form of ethnic and religious conflicts have been on the increase in many African cities in the recent years of which most of them are the result of intense and bitter competition for political power, the control of limited economic, social and environmental resources. In Nigeria, the emergence of the Boko Haram insurgency in most parts of the north eastern parts have ignited violence, bloodshed, refuge exodus and internal migration. Not only do the persistent attacks of the sect create widespread insecurity and fear, it has also stifled normal processes of trade and investments most especially real property investment which is acclaimed to accelerate the economic cycle, thus the need to evolve strategies for an improved property market in such areas. This paper, therefore, examines the impact of these social crisis on effective and efficient utilization of real properties as a resource towards the development of the economy, using a descriptive analysis approach where particular emphasis was based on trends in residential housing values; volume of estimated property transactions and real estate investment decisions by affected individuals. Findings indicate that social crisis in the affected areas have been a clog on the wheels of property development and investment as properties worth hundreds of millions have been destroyed thereby having great impact on property values. Based on these findings, recommendations were made to include the need to strategically continue investing in property during such times, the need for Nigerian government to establish an active conflict monitoring and management unit for prompt response, encourage community and neighbourhood policing to ameliorate security challenges in Nigeria.

Keywords: social crisis, property market, economy, resources, north-eastern Nigeria

Procedia PDF Downloads 322