Search results for: VSS (Vector Space Similarity)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5301

Search results for: VSS (Vector Space Similarity)

3621 Mutual Information Based Image Registration of Satellite Images Using PSO-GA Hybrid Algorithm

Authors: Dipti Patra, Guguloth Uma, Smita Pradhan

Abstract:

Registration is a fundamental task in image processing. It is used to transform different sets of data into one coordinate system, where data are acquired from different times, different viewing angles, and/or different sensors. The registration geometrically aligns two images (the reference and target images). Registration techniques are used in satellite images and it is important in order to be able to compare or integrate the data obtained from these different measurements. In this work, mutual information is considered as a similarity metric for registration of satellite images. The transformation is assumed to be a rigid transformation. An attempt has been made here to optimize the transformation function. The proposed image registration technique hybrid PSO-GA incorporates the notion of Particle Swarm Optimization and Genetic Algorithm and is used for finding the best optimum values of transformation parameters. The performance comparision obtained with the experiments on satellite images found that the proposed hybrid PSO-GA algorithm outperforms the other algorithms in terms of mutual information and registration accuracy.

Keywords: image registration, genetic algorithm, particle swarm optimization, hybrid PSO-GA algorithm and mutual information

Procedia PDF Downloads 408
3620 The Rise of Darknet: A Call for Understanding Online Communication of Terrorist Groups in Indonesia

Authors: Aulia Dwi Nastiti

Abstract:

A number of studies and reports on terrorism have continuously addressed the role of internet and online activism to support terrorist and extremist groups. In particular, they stress on social media’s usage that generally serves for the terrorist’s propaganda as well as justification of their causes. While those analyses are important to understand how social media is a vital tool for global network terrorism, they are inadequate to explain the online communication patterns that enable terrorism acts. Beyond apparent online narratives, there is a deep cyber sphere where the very vein of terrorism movement lies. That is a hidden space in the internet called ‘darknet’. Recent investigations, particularly in Middle Eastern context, have shed some lights that this invisible space in the internet is fundamental to maintain the terrorist activities. Despite that, limited number of research examines darknet within the issue of terrorist movements in Indonesian context—where the country is considered quite a hotbed for extremist groups. Therefore, this paper attempts to provide an insight of darknet operation in Indonesian cases. By exploring how the darknet is used by the Indonesian-based extremist groups, this paper maps out communication patterns of terrorist groups on the internet which appear as an intermingled network. It shows the usage of internet is differentiated in different level of anonymity for distinctive purposes. This paper further argues that the emerging terrorist communication network calls for a more comprehensive counterterrorism strategy on the Internet.

Keywords: communication pattern, counterterrorism, darknet, extremist groups, terrorism

Procedia PDF Downloads 293
3619 A Mathematical Analysis of a Model in Capillary Formation: The Roles of Endothelial, Pericyte and Macrophages in the Initiation of Angiogenesis

Authors: Serdal Pamuk, Irem Cay

Abstract:

Our model is based on the theory of reinforced random walks coupled with Michealis-Menten mechanisms which view endothelial cell receptors as the catalysts for transforming both tumor and macrophage derived tumor angiogenesis factor (TAF) into proteolytic enzyme which in turn degrade the basal lamina. The model consists of two main parts. First part has seven differential equations (DE’s) in one space dimension over the capillary, whereas the second part has the same number of DE’s in two space dimensions in the extra cellular matrix (ECM). We connect these two parts via some boundary conditions to move the cells into the ECM in order to initiate capillary formation. But, when does this movement begin? To address this question we estimate the thresholds that activate the transport equations in the capillary. We do this by using steady-state analysis of TAF equation under some assumptions. Once these equations are activated endothelial, pericyte and macrophage cells begin to move into the ECM for the initiation of angiogenesis. We do believe that our results play an important role for the mechanisms of cell migration which are crucial for tumor angiogenesis. Furthermore, we estimate the long time tendency of these three cells, and find that they tend to the transition probability functions as time evolves. We provide our numerical solutions which are in good agreement with our theoretical results.

Keywords: angiogenesis, capillary formation, mathematical analysis, steady-state, transition probability function

Procedia PDF Downloads 156
3618 High-Capacity Image Steganography using Wavelet-based Fusion on Deep Convolutional Neural Networks

Authors: Amal Khalifa, Nicolas Vana Santos

Abstract:

Steganography has been known for centuries as an efficient approach for covert communication. Due to its popularity and ease of access, image steganography has attracted researchers to find secure techniques for hiding information within an innocent looking cover image. In this research, we propose a novel deep-learning approach to digital image steganography. The proposed method, DeepWaveletFusion, uses convolutional neural networks (CNN) to hide a secret image into a cover image of the same size. Two CNNs are trained back-to-back to merge the Discrete Wavelet Transform (DWT) of both colored images and eventually be able to blindly extract the hidden image. Based on two different image similarity metrics, a weighted gain function is used to guide the learning process and maximize the quality of the retrieved secret image and yet maintaining acceptable imperceptibility. Experimental results verified the high recoverability of DeepWaveletFusion which outperformed similar deep-learning-based methods.

Keywords: deep learning, steganography, image, discrete wavelet transform, fusion

Procedia PDF Downloads 90
3617 Significance of Tridimensional Volume of Tumor in Breast Cancer Compared to Conventional TNM Stage

Authors: Jaewoo Choi, Ki-Tae Hwang, Eunyoung Ko

Abstract:

Backgrounds/Aims: Patients with breast cancer are currently classified according to TNM stage. Nevertheless, the actual volume would be mis-estimated, and it would bring on inappropriate diagnosis. Tridimensional volume-stage derived from the ellipsoid formula was presented as useful measure. Methods: The medical records of 480 consecutive breast cancer between January 2001 and March 2013 were retrospectively reviewed. All patients were divided into three groups according to tumor volume by receiver operating characteristic analysis, and the ranges of each volume-stage were that V1 was below 2.5 cc, V2 was exceeded 2.5 and below 10.9 cc, and V3 was exceeded 10.9 cc. We analyzed outcomes of volume-stage and compared disease-free survival (DFS) and overall survival (OS) between size-stage and volume-stage with variant intrinsic factor. Results: In the T2 stage, there were patients who had a smaller volume than 4.2 cc known as maximum value of T1. These findings presented that patients in T1c had poorer DFS than T2-lesser (mean of DFS 48.7 vs. 51.8, p = 0.011). Such is also the case in OS (mean of OS 51.1 vs. 55.3, p = 0.006). The cumulative survival curves for V1, V2 compared T1, T2 showed similarity in DFS (HR 1.9 vs. 1.9), and so did it for V3 compared T3 (HR 3.5 vs. 2.6) significantly. Conclusion: This study demonstrated that tumor volume had good feasibility on the prognosis of patients with breast cancer. We proposed that volume-stage should be considered for an additional stage indicator, particularly in early breast cancer.

Keywords: breast cancer, tridimensional volume of tumor, TNM stage, volume stage

Procedia PDF Downloads 403
3616 Comparative Assessment of ISSR and RAPD Markers among Egyptian Jojoba Shrubs

Authors: Abdelsabour G. A. Khaled, Galal A.R. El-Sherbeny, Ahmed M. Hassanein, Gameel M. G. Aly

Abstract:

Classical methods of identification, based on agronomical characterization, are not always the most accurate way due to the instability of these characteristics under the influence of the different environments. In order to estimate the genetic diversity, molecular markers provided excellent tools. In this study, Genetic variation of nine Egyptian jojoba shrubs was tested using ISSR (inter simple sequences repeats), RAPD (random amplified polymorphic DNA) markers and based on the morphological characterization. The average of the percentage of polymorphism (%P) ranged between 58.17% and 74.07% for ISSR and RAPD markers, respectively. The range of genetic similarity percents among shrubs based on ISSR and RAPD markers were from 82.9 to 97.9% and from 85.5 to 97.8%, respectively. The average of PIC (polymorphism information content) values were 0.19 (ISSR) and 0.24 (RAPD). In the present study, RAPD markers were more efficient than the ISSR markers. Where the RAPD technique exhibited higher marker index (MI) average (1.26) compared to ISSR one (1.11). There was an insignificant correlation between the ISSR and RAPD data (0.076, P > 0.05). The dendrogram constructed by the combined RAPD and ISSR data gave a relatively different clustering pattern.

Keywords: correlation, molecular markers, polymorphism, marker index

Procedia PDF Downloads 478
3615 Intercultural Urbanism: Interpreting Cultural Inclusion in Traditional Precincts of Contemporary Cities: A Case of Mattancherry

Authors: Amrutha Jayan

Abstract:

The cities are attractors of the human population, offering opportunities for economic activities for different linguistic, cultural, and ethnic groups. The urban form and design of the city impact the life of these people. Social and cultural exclusions result in spatial segregation and gentrification. The spaces provided in cities must be inclusive for all these communities for them to feel part of the city and contribute to society. Intercultural urbanism is a theory and practice of city building, planning, and design of urban spaces and architectures that are cognizant of the social impact of the built environment. The postulate acknowledges cultural differences and opportunities for cultural exchange. Literature on intercultural urbanism, culture and space, spatial justice, and cultural inclusion are analyzed to identify parameters contributing to intercultural placemaking. A qualitative study on Mattancherry shows how the precinct has sustained throughout the years with different communities living together within a radius of 5 km, creating a diverse and vibrant environment. The research identifies the urban elements that contribute to intercultural interactions and maintain the synergy between these communities. The public spaces, porous edges, built-form, streets, and accessibility contribute to chance encounters and intercultural interactivity. The research seeks to find the factors that contribute to intercultural placemaking.

Keywords: intercultural urbanism, cultural inclusion, spatial justice, public space

Procedia PDF Downloads 220
3614 An Introduction to the Radiation-Thrust Based on Alpha Decay and Spontaneous Fission

Authors: Shiyi He, Yan Xia, Xiaoping Ouyang, Liang Chen, Zhongbing Zhang, Jinlu Ruan

Abstract:

As the key system of the spacecraft, various propelling system have been developing rapidly, including ion thrust, laser thrust, solar sail and other micro-thrusters. However, there still are some shortages in these systems. The ion thruster requires the high-voltage or magnetic field to accelerate, resulting in extra system, heavy quantity and large volume. The laser thrust now is mostly ground-based and providing pulse thrust, restraint by the station distribution and the capacity of laser. The thrust direction of solar sail is limited to its relative position with the Sun, so it is hard to propel toward the Sun or adjust in the shadow.In this paper, a novel nuclear thruster based on alpha decay and spontaneous fission is proposed and the principle of this radiation-thrust with alpha particle has been expounded. Radioactive materials with different released energy, such as 210Po with 5.4MeV and 238Pu with 5.29MeV, attached to a metal film will provides various thrust among 0.02-5uN/cm2. With this repulsive force, radiation is able to be a power source. With the advantages of low system quantity, high accuracy and long active time, the radiation thrust is promising in the field of space debris removal, orbit control of nano-satellite array and deep space exploration. To do further study, a formula lead to the amplitude and direction of thrust by the released energy and decay coefficient is set up. With the initial formula, the alpha radiation elements with the half life period longer than a hundred days are calculated and listed. As the alpha particles emit continuously, the residual charge in metal film grows and affects the emitting energy distribution of alpha particles. With the residual charge or extra electromagnetic field, the emitting of alpha particles performs differently and is analyzed in this paper. Furthermore, three more complex situations are discussed. Radiation element generating alpha particles with several energies in different intensity, mixture of various radiation elements, and cascaded alpha decay are studied respectively. In combined way, it is more efficient and flexible to adjust the thrust amplitude. The propelling model of the spontaneous fission is similar with the one of alpha decay, which has a more complex angular distribution. A new quasi-sphere space propelling system based on the radiation-thrust has been introduced, as well as the collecting and processing system of excess charge and reaction heat. The energy and spatial angular distribution of emitting alpha particles on unit area and certain propelling system have been studied. As the alpha particles are easily losing energy and self-absorb, the distribution is not the simple stacking of each nuclide. With the change of the amplitude and angel of radiation-thrust, orbital variation strategy on space debris removal is shown and optimized.

Keywords: alpha decay, angular distribution, emitting energy, orbital variation, radiation-thruster

Procedia PDF Downloads 207
3613 BEATRICE: A Low-Cost Manipulator Arm for an Educational Planetary Rover

Authors: T. Pakulski, L. Kryza, A. Linossier

Abstract:

The BEar Articulated TeleRobotic Inspection and Clasping Extremity is a lightweight, 5 DoF robotic manipulator for the Berlin Educational Assistant Rover (BEAR). BEAR is one of the educational planetary rovers developed under the Space Rover projects at the Chair of Space Technology of the Technische Universität Berlin. The projects serve to conduct research and train engineers by developing rovers for competitions like the European Rover Challenge and the DLR SpaceBot Cup. BEATRICE is the result of a cost-driven design process to deliver a simple but capable platform for a variety of competition tasks: object grasping and manipulation, inspection, instrument wielding and more. The manipulator’s simple mechatronic design, based on a combination of servomotors and stepper motors with planetary gearboxes, also makes it a practical tool for developing embedded control systems. The platform’s initial implementation relies on tele-operated control but is fully instrumented for future autonomous functionality. This paper describes BEATRICE’s development from its preliminary link model to its structural and mechatronic design, embedded control and AI and T. In parallel, it examines the influence of budget constraints and high personnel turnover commonly associated with student teams on the manipulator’s design. Finally, it comments on the utility of robot design projects for educating future engineers.

Keywords: education, low-cost, manipulator, robotics, rover

Procedia PDF Downloads 255
3612 Robust Medical Image Watermarking Using Frequency Domain and Least Significant Bits Algorithms

Authors: Volkan Kaya, Ersin Elbasi

Abstract:

Watermarking and stenography are getting importance recently because of copyright protection and authentication. In watermarking we embed stamp, logo, noise or image to multimedia elements such as image, video, audio, animation and text. There are several works have been done in watermarking for different purposes. In this research work, we used watermarking techniques to embed patient information into the medical magnetic resonance (MR) images. There are two methods have been used; frequency domain (Digital Wavelet Transform-DWT, Digital Cosine Transform-DCT, and Digital Fourier Transform-DFT) and spatial domain (Least Significant Bits-LSB) domain. Experimental results show that embedding in frequency domains resist against one type of attacks, and embedding in spatial domain is resist against another group of attacks. Peak Signal Noise Ratio (PSNR) and Similarity Ratio (SR) values are two measurement values for testing. These two values give very promising result for information hiding in medical MR images.

Keywords: watermarking, medical image, frequency domain, least significant bits, security

Procedia PDF Downloads 287
3611 Control Performance Simulation and Analysis for Microgravity Vibration Isolation System Onboard Chinese Space Station

Authors: Wei Liu, Shuquan Wang, Yang Gao

Abstract:

Microgravity Science Experiment Rack (MSER) will be onboard TianHe (TH) spacecraft planned to be launched in 2018. TH is one module of Chinese Space Station. Microgravity Vibration Isolation System (MVIS), which is MSER’s core part, is used to isolate disturbance from TH and provide high-level microgravity for science experiment payload. MVIS is two stage vibration isolation system, consisting of Follow Unit (FU) and Experiment Support Unit (ESU). FU is linked to MSER by umbilical cables, and ESU suspends within FU and without physical connection. The FU’s position and attitude relative to TH is measured by binocular vision measuring system, and the acceleration and angular velocity is measured by accelerometers and gyroscopes. Air-jet thrusters are used to generate force and moment to control FU’s motion. Measurement module on ESU contains a set of Position-Sense-Detectors (PSD) sensing the ESU’s position and attitude relative to FU, accelerometers and gyroscopes sensing ESU’s acceleration and angular velocity. Electro-magnetic actuators are used to control ESU’s motion. Firstly, the linearized equations of FU’s motion relative to TH and ESU’s motion relative to FU are derived, laying the foundation for control system design and simulation analysis. Subsequently, two control schemes are proposed. One control scheme is that ESU tracks FU and FU tracks TH, shorten as E-F-T. The other one is that FU tracks ESU and ESU tracks TH, shorten as F-E-T. In addition, motion spaces are constrained within ±15 mm、±2° between FU and ESU, and within ±300 mm between FU and TH or between ESU and TH. A Proportional-Integrate-Differentiate (PID) controller is designed to control FU’s position and attitude. ESU’s controller includes an acceleration feedback loop and a relative position feedback loop. A Proportional-Integrate (PI) controller is designed in the acceleration feedback loop to reduce the ESU’s acceleration level, and a PID controller in the relative position feedback loop is used to avoid collision. Finally, simulations of E-F-T and F-E-T are performed considering variety uncertainties, disturbances and motion space constrains. The simulation results of E-T-H showed that control performance was from 0 to -20 dB for vibration frequency from 0.01 to 0.1 Hz, and vibration was attenuated 40 dB per ten octave above 0.1Hz. The simulation results of T-E-H showed that vibration was attenuated 20 dB per ten octave at the beginning of 0.01Hz.

Keywords: microgravity science experiment rack, microgravity vibration isolation system, PID control, vibration isolation performance

Procedia PDF Downloads 160
3610 Bayesian Inference for High Dimensional Dynamic Spatio-Temporal Models

Authors: Sofia M. Karadimitriou, Kostas Triantafyllopoulos, Timothy Heaton

Abstract:

Reduced dimension Dynamic Spatio-Temporal Models (DSTMs) jointly describe the spatial and temporal evolution of a function observed subject to noise. A basic state space model is adopted for the discrete temporal variation, while a continuous autoregressive structure describes the continuous spatial evolution. Application of such a DSTM relies upon the pre-selection of a suitable reduced set of basic functions and this can present a challenge in practice. In this talk, we propose an online estimation method for high dimensional spatio-temporal data based upon DSTM and we attempt to resolve this issue by allowing the basis to adapt to the observed data. Specifically, we present a wavelet decomposition in order to obtain a parsimonious approximation of the spatial continuous process. This parsimony can be achieved by placing a Laplace prior distribution on the wavelet coefficients. The aim of using the Laplace prior, is to filter wavelet coefficients with low contribution, and thus achieve the dimension reduction with significant computation savings. We then propose a Hierarchical Bayesian State Space model, for the estimation of which we offer an appropriate particle filter algorithm. The proposed methodology is illustrated using real environmental data.

Keywords: multidimensional Laplace prior, particle filtering, spatio-temporal modelling, wavelets

Procedia PDF Downloads 427
3609 Generating Individualized Wildfire Risk Assessments Utilizing Multispectral Imagery and Geospatial Artificial Intelligence

Authors: Gus Calderon, Richard McCreight, Tammy Schwartz

Abstract:

Forensic analysis of community wildfire destruction in California has shown that reducing or removing flammable vegetation in proximity to buildings and structures is one of the most important wildfire defenses available to homeowners. State laws specify the requirements for homeowners to create and maintain defensible space around all structures. Unfortunately, this decades-long effort had limited success due to noncompliance and minimal enforcement. As a result, vulnerable communities continue to experience escalating human and economic costs along the wildland-urban interface (WUI). Quantifying vegetative fuels at both the community and parcel scale requires detailed imaging from an aircraft with remote sensing technology to reduce uncertainty. FireWatch has been delivering high spatial resolution (5” ground sample distance) wildfire hazard maps annually to the community of Rancho Santa Fe, CA, since 2019. FireWatch uses a multispectral imaging system mounted onboard an aircraft to create georeferenced orthomosaics and spectral vegetation index maps. Using proprietary algorithms, the vegetation type, condition, and proximity to structures are determined for 1,851 properties in the community. Secondary data processing combines object-based classification of vegetative fuels, assisted by machine learning, to prioritize mitigation strategies within the community. The remote sensing data for the 10 sq. mi. community is divided into parcels and sent to all homeowners in the form of defensible space maps and reports. Follow-up aerial surveys are performed annually using repeat station imaging of fixed GPS locations to address changes in defensible space, vegetation fuel cover, and condition over time. These maps and reports have increased wildfire awareness and mitigation efforts from 40% to over 85% among homeowners in Rancho Santa Fe. To assist homeowners fighting increasing insurance premiums and non-renewals, FireWatch has partnered with Black Swan Analytics, LLC, to leverage the multispectral imagery and increase homeowners’ understanding of wildfire risk drivers. For this study, a subsample of 100 parcels was selected to gain a comprehensive understanding of wildfire risk and the elements which can be mitigated. Geospatial data from FireWatch’s defensible space maps was combined with Black Swan’s patented approach using 39 other risk characteristics into a 4score Report. The 4score Report helps property owners understand risk sources and potential mitigation opportunities by assessing four categories of risk: Fuel sources, ignition sources, susceptibility to loss, and hazards to fire protection efforts (FISH). This study has shown that susceptibility to loss is the category residents and property owners must focus their efforts. The 4score Report also provides a tool to measure the impact of homeowner actions on risk levels over time. Resiliency is the only solution to breaking the cycle of community wildfire destruction and it starts with high-quality data and education.

Keywords: defensible space, geospatial data, multispectral imaging, Rancho Santa Fe, susceptibility to loss, wildfire risk.

Procedia PDF Downloads 108
3608 Assessment of Genetic Diversity among Wild Bulgarian Berries as Determined by Random Amplified Polymorphic DNA (RAPD)

Authors: Ilian Badjakov, Ivayla Dincheva, Violeta Kondakova, Rossitza Batchvarova

Abstract:

In this study, we present our initial results on the assessment of genetic diversity among wild Bulgarian berry accessions (Rubus idaeus L. Fragaria Vesca L., Vaccinium vitis-idaea L., Vaccinium myrtillus L.) using Random Amplified Polymorphic DNA (RAPDs) markers. Leaves and fruits were collected from two natural habitats - the Balkan Mountain and the Mountain of Orpheus - Rhodope Mountain. All accessions were screened for their polymorphism using five RAPD primers. The phylogenetic distances calculated from RAPD data ranged from 0.29 to 0.82 thus indicating that a high level of gene diversity is present in the selected genotypes. In order to characterize further the structure and grouping of berry accessions, a dendrogram deriving from UPGMA cluster analysis based on the genetic similarity (GS) coefficient matrix was designed. RAPD analysis provided to be efficient for discrimination of accessions within the same species with similar morphological characters

Keywords: Bulgarian wild berries, genetic diversity, RAPD, UPGMA

Procedia PDF Downloads 310
3607 Comparative Study od Three Artificial Intelligence Techniques for Rain Domain in Precipitation Forecast

Authors: Nabilah Filzah Mohd Radzuan, Andi Putra, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Precipitation forecast is important to avoid natural disaster incident which can cause losses in the involved area. This paper reviews three techniques logistic regression, decision tree, and random forest which are used in making precipitation forecast. These combination techniques through the vector auto-regression (VAR) model help in finding the advantages and strengths of each technique in the forecast process. The data-set contains variables of the rain’s domain. Adaptation of artificial intelligence techniques involved in rain domain enables the forecast process to be easier and systematic for precipitation forecast.

Keywords: logistic regression, decisions tree, random forest, VAR model

Procedia PDF Downloads 446
3606 Hand Motion Trajectory Analysis for Dynamic Hand Gestures Used in Indian Sign Language

Authors: Daleesha M. Viswanathan, Sumam Mary Idicula

Abstract:

Dynamic hand gestures are an intrinsic component in sign language communication. Extracting spatial temporal features of the hand gesture trajectory plays an important role in a dynamic gesture recognition system. Finding a discrete feature descriptor for the motion trajectory based on the orientation feature is the main concern of this paper. Kalman filter algorithm and Hidden Markov Models (HMM) models are incorporated with this recognition system for hand trajectory tracking and for spatial temporal classification, respectively.

Keywords: orientation features, discrete feature vector, HMM., Indian sign language

Procedia PDF Downloads 370
3605 Tongue Image Retrieval Based Using Machine Learning

Authors: Ahmad FAROOQ, Xinfeng Zhang, Fahad Sabah, Raheem Sarwar

Abstract:

In Traditional Chinese Medicine, tongue diagnosis is a vital inspection tool (TCM). In this study, we explore the potential of machine learning in tongue diagnosis. It begins with the cataloguing of the various classifications and characteristics of the human tongue. We infer 24 kinds of tongues from the material and coating of the tongue, and we identify 21 attributes of the tongue. The next step is to apply machine learning methods to the tongue dataset. We use the Weka machine learning platform to conduct the experiment for performance analysis. The 457 instances of the tongue dataset are used to test the performance of five different machine learning methods, including SVM, Random Forests, Decision Trees, and Naive Bayes. Based on accuracy and Area under the ROC Curve, the Support Vector Machine algorithm was shown to be the most effective for tongue diagnosis (AUC).

Keywords: medical imaging, image retrieval, machine learning, tongue

Procedia PDF Downloads 81
3604 In Life: Space as Doppelganger in “The House of Usher”

Authors: Tuğçe Arslan

Abstract:

In the dark and gloomy times of the Middle Ages, high, majestic, and frightening structures were revealed in the architectural field. Thus, gothic architecture began to find a place for itself in different areas and spread its influence. Gothic has found its place in almost every literary genre and manages to show itself as the dominant genre in the works it enters. It has exploited many concepts, such as a chest full of bad feelings, and creates a gloomy, scary, frightening, and pessimistic mood in the story with these concepts. One of the essential concepts it uses while creating these feelings is the concept of “Doppelganger.” With this concept, the authors make sense of the uncanny; at this point, they allow the spaces to act like characters, just like the uncanny feeling Edgar Allan Poe creates in his story “The Fall of the House of the Usher.” In this story by Edgar Allan Poe, attention should be paid to the symbolic link between the two, as “House of Usher” refers to the family and the building. And indeed, it is possible to see this minor rift as representative of a breakdown in family unity, specifically between Madeline and Roderick. Because although the home is not alive, it has some supernatural features that make it look like a living, breathing being. Therefore, the remainder of this paper will argue that apart from the apparent twins, the house should also qualify as a Doppelganger in the story. This study will first explore the physical and mental disorders of the twins and their journey to complement each other; next, in an attempt to demonstrate how the house as a non-living needs to be considered as a Doppelganger of the twins, a close reading on the house depictions will be scrutinized.

Keywords: Edgar Allan Poe, doppelganger, uncanny, gothic, space, home

Procedia PDF Downloads 121
3603 Automated Detection of Related Software Changes by Probabilistic Neural Networks Model

Authors: Yuan Huang, Xiangping Chen, Xiaonan Luo

Abstract:

Current software are continuously updating. The change between two versions usually involves multiple program entities (e.g., packages, classes, methods, attributes) with multiple purposes (e.g., changed requirements, bug fixing). It is hard for developers to understand which changes are made for the same purpose. Whether two changes are related is not decided by the relationship between this two entities in the program. In this paper, we summarized 4 coupling rules(16 instances) and 4 state-combination types at the class, method and attribute levels for software change. Related Change Vector (RCV) are defined based on coupling rules and state-combination types, and applied to classify related software changes by using Probabilistic Neural Network during a software updating.

Keywords: PNN, related change, state-combination, logical coupling, software entity

Procedia PDF Downloads 437
3602 Effect of Experience on Evacuation of Mice in Emergency Conditions

Authors: Teng Zhang, Shenshi Huang, Gang Xu, Xuelin Zhang, Shouxiang Lu

Abstract:

With the acceleration of urbanization and the increasing of the population in the city, the evacuation of pedestrians suffering from disaster environments such as fire in a room or other limited space becomes a vital issue in modern society. Mice have been used in experimental crowd evacuation in recent years for its good similarities to human in physical structure and stress reaction. In this study, the effect of experience or memory on the collective behavior of mice was explored. To help mice familiarize themselves with the design of the space and the stimulus caused by smoke, we trained them repeatedly for 2 days so that they can escape from the emergency conditions as soon as possible. The escape pattern, trajectories, walking speed, turning angle and mean individual escape time of mice in each training trail were analyzed. We found that mice can build memory quickly after the first trial on the first day. On the second day, the evacuation of mice was maintained in a stable and efficient state. Meanwhile, the group with size of 30 (G30) had a shorter mean individual escape time compared with G12. Furthermore, we tested the experience of evacuation skill of mice after several days. The results showed that the mice can hold the experience or memory over 3 weeks. We proposed the importance of experience of evacuation skill and the research of training methods in experimental evacuation of mice. The results can deepen our understanding of collective behavior of mice and conduce to the establishment of animal models in the study of pedestrian crowd dynamics in emergency conditions.

Keywords: experience, evacuation, mice, group size, behavior

Procedia PDF Downloads 268
3601 Machine Learning Techniques for Estimating Ground Motion Parameters

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.

Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine

Procedia PDF Downloads 122
3600 Cartography through Picasso’s Eyes

Authors: Desiree Di Marco

Abstract:

The aim of this work is to show through the lens of art first which kind of reality was the one represented through fascist maps, and second to study the impact of the fascist regime’s cartography (FRC) on observers eye’s. In this study, it is assumed that the FRC’s representation of reality was simplified, timeless, and even a-spatial because it underrates the concept of territoriality. Cubism and Picasso’s paintings will be used as counter-examples to mystify fascist cartography’s ideological assumptions. The difference between the gaze of an observer looking at the surface of a fascist map and the gaze of someone observing a Picasso painting is impressive. Because there is always something dark, hidden, behind and inside a map, the world of fascist maps was a world built starting from the observation of a “window” that distorted reality and trapped the eyes of the observers. Moving across the map, they seem as if they were hypnotized. Cartohypnosis is the state in which the observer finds himself enslaved by the attractive force of the map, which uses a sort of “magic” geography, a geography that, by means of symbolic language, never has as its primary objective the attempt to show us reality in its complexity, but that of performing for its audience. Magical geography and hypnotic cartography in fascism blended together, creating an almost mystical, magical relationship that demystified reality to reduce the world to a conquerable space. This reduction offered the observer the possibility of conceiving new dimensions: of the limit, of the boundary, elements with which the subject felt fully involved and in which the aesthetic force of the images demonstrated all its strength. But in the early 20th century, the combination of art and cartography gave rise to new possibilities. Cubism which, more than all the other artistic currents showed us how much the observation of reality from a single point of view falls within dangerous logic, is an example. Cubism was an artistic movement that brought about a profound transformation in pictorial culture. It was not only a revolution of pictorial space, but it was a revolution of our conception of pictorial space. Up until that time, men and women were more inclined to believe in the power of images and their representations. Cubist painters rebelled against this blindness by claiming that art must always offer an alternative. Indeed the contribution of this work is precisely to show how art can be able to provide alternatives to even the most horrible regimes and the most atrocious human misfortunes. It also enriches the field of cartography because it "reassures" it by showing how much good it can be for cartography if also for other disciplines come close. Only in this way researcher can increase the chances for the cartography of a greater diffusion at the academic level.

Keywords: cartography, Picasso, fascism, culture

Procedia PDF Downloads 64
3599 Photoemission Momentum Microscopy of Graphene on Ir (111)

Authors: Anna V. Zaporozhchenko, Dmytro Kutnyakhov, Katherina Medjanik, Christian Tusche, Hans-Joachim Elmers, Olena Fedchenko, Sergey Chernov, Martin Ellguth, Sergej A. Nepijko, Gerd Schoenhense

Abstract:

Graphene reveals a unique electronic structure that predetermines many intriguing properties such as massless charge carriers, optical transparency and high velocity of fermions at the Fermi level, opening a wide horizon of future applications. Hence, a detailed investigation of the electronic structure of graphene is crucial. The method of choice is angular resolved photoelectron spectroscopy ARPES. Here we present experiments using time-of-flight (ToF) momentum microscopy, being an alternative way of ARPES using full-field imaging of the whole Brillouin zone (BZ) and simultaneous acquisition of up to several 100 energy slices. Unlike conventional ARPES, k-microscopy is not limited in simultaneous k-space access. We have recorded the whole first BZ of graphene on Ir(111) including all six Dirac cones. As excitation source we used synchrotron radiation from BESSY II (Berlin) at the U125-2 NIM, providing linearly polarized (both polarizations p- and s-) VUV radiation. The instrument uses a delay-line detector for single-particle detection up the 5 Mcps range and parallel energy detection via ToF recording. In this way, we gather a 3D data stack I(E,kx,ky) of the full valence electronic structure in approx. 20 mins. Band dispersion stacks were measured in the energy range of 14 eV up to 23 eV with steps of 1 eV. The linearly-dispersing graphene bands for all six K and K’ points were simultaneously recorded. We find clear features of hybridization with the substrate, in particular in the linear dichroism in the angular distribution (LDAD). Recording of the whole Brillouin zone of graphene/Ir(111) revealed new features. First, the intensity differences (i.e. the LDAD) are very sensitive to the interaction of graphene bands with substrate bands. Second, the dark corridors are investigated in detail for both, p- and s- polarized radiation. They appear as local distortions of photoelectron current distribution and are induced by quantum mechanical interference of graphene sublattices. The dark corridors are located in different areas of the 6 Dirac cones and show chirality behaviour with a mirror plane along vertical axis. Moreover, two out of six show an oval shape while the rest are more circular. It clearly indicates orientation dependence with respect to E vector of incident light. Third, a pattern of faint but very sharp lines is visible at energies around 22eV that strongly remind on Kikuchi lines in diffraction. In conclusion, the simultaneous study of all six Dirac cones is crucial for a complete understanding of dichroism phenomena and the dark corridor.

Keywords: band structure, graphene, momentum microscopy, LDAD

Procedia PDF Downloads 340
3598 Genomic and Proteomic Variability in Glycine Max Genotypes in Response to Salt Stress

Authors: Faheema Khan

Abstract:

To investigate the ability of sensitive and tolerant genotype of Glycine max to adapt to a saline environment in a field, we examined the growth performance, water relation and activities of antioxidant enzymes in relation to photosynthetic rate, chlorophyll a fluorescence, photosynthetic pigment concentration, protein and proline in plants exposed to salt stress. Ten soybean genotypes (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712) were selected and grown hydroponically. After 3 days of proper germination, the seedlings were transferred to Hoagland’s solution (Hoagland and Arnon 1950). The growth chamber was maintained at a photosynthetic photon flux density of 430 μmol m−2 s−1, 14 h of light, 10 h of dark and a relative humidity of 60%. The nutrient solution was bubbled with sterile air and changed on alternate days. Ten-day-old seedlings were given seven levels of salt in the form of NaCl viz., T1 = 0 mM NaCl, T2=25 mM NaCl, T3=50 mM NaCl, T4=75 mM NaCl, T5=100 mM NaCl, T6=125 mM NaCl, T7=150 mM NaCl. The investigation showed that genotype Pusa-24, PK-416 and Pusa-20 appeared to be the most salt-sensitive. genotypes as inferred from their significantly reduced length, fresh weight and dry weight in response to the NaCl exposure. Pusa-37 appeared to be the most tolerant genotype since no significant effect of NaCl treatment on growth was found. We observed a greater decline in the photosynthetic variables like photosynthetic rate, chlorophyll fluorescence and chlorophyll content, in salt-sensitive (Pusa-24) genotype than in salt-tolerant Pusa-37 under high salinity. Numerous primers were verified on ten soybean genotypes obtained from Operon technologies among which 30 RAPD primers shown high polymorphism and genetic variation. The Jaccard’s similarity coefficient values for each pairwise comparison between cultivars were calculated and similarity coefficient matrix was constructed. The closer varieties in the cluster behaved similar in their response to salinity tolerance. Intra-clustering within the two clusters precisely grouped the 10 genotypes in sub-cluster as expected from their physiological findings.Salt tolerant genotype Pusa-37, was further analysed by 2-Dimensional gel electrophoresis to analyse the differential expression of proteins at high salt stress. In the Present study, 173 protein spots were identified. Of these, 40 proteins responsive to salinity were either up- or down-regulated in Pusa-37. Proteomic analysis in salt-tolerant genotype (Pusa-37) led to the detection of proteins involved in a variety of biological processes, such as protein synthesis (12 %), redox regulation (19 %), primary and secondary metabolism (25 %), or disease- and defence-related processes (32 %). In conclusion, the soybean plants in our study responded to salt stress by changing their protein expression pattern. The photosynthetic, biochemical and molecular study showed that there is variability in salt tolerance behaviour in soybean genotypes. Pusa-24 is the salt-sensitive and Pusa-37 is the salt-tolerant genotype. Moreover this study gives new insights into the salt-stress response in soybean and demonstrates the power of genomic and proteomic approach in plant biology studies which finally could help us in identifying the possible regulatory switches (gene/s) controlling the salt tolerant genotype of the crop plants and their possible role in defence mechanism.

Keywords: glycine max, salt stress, RAPD, genomic and proteomic variability

Procedia PDF Downloads 423
3597 Automatic Moment-Based Texture Segmentation

Authors: Tudor Barbu

Abstract:

An automatic moment-based texture segmentation approach is proposed in this paper. First, we describe the related work in this computer vision domain. Our texture feature extraction, the first part of the texture recognition process, produces a set of moment-based feature vectors. For each image pixel, a texture feature vector is computed as a sequence of area moments. Second, an automatic pixel classification approach is proposed. The feature vectors are clustered using some unsupervised classification algorithm, the optimal number of clusters being determined using a measure based on validation indexes. From the resulted pixel classes one determines easily the desired texture regions of the image.

Keywords: image segmentation, moment-based, texture analysis, automatic classification, validation indexes

Procedia PDF Downloads 416
3596 Kansei Engineering Applied to the Design of Rural Primary Education Classrooms: Design-Based Learning Case

Authors: Jimena Alarcon, Andrea Llorens, Gabriel Hernandez, Maritza Palma, Lucia Navarrete

Abstract:

The research has funding from the Government of Chile and is focused on defining the design of rural primary classroom that stimulates creativity. The relevance of the study consists of its capacity to define adequate educational spaces for the implementation of the design-based learning (DBL) methodology. This methodology promotes creativity and teamwork, generating a meaningful learning experience for students, based on the appreciation of their environment and the generation of projects that contribute positively to their communities; also, is an inquiry-based form of learning that is based on the integration of design thinking and the design process into the classroom. The main goal of the study is to define the design characteristics of rural primary school classrooms, associated with the implementation of the DBL methodology. Along with the change in learning strategies, it is necessary to change the educational spaces in which they develop. The hypothesis indicates that a change in the space and equipment of the classrooms based on the emotions of the students will motivate better learning results based on the implementation of a new methodology. In this case, the pedagogical dynamics require an important interaction between the participants, as well as an environment favorable to creativity. Methodologies from Kansei engineering are used to know the emotional variables associated with their definition. The study is done to 50 students between 6 and 10 years old (average age of seven years), 48% of men and 52% women. Virtual three-dimensional scale models and semantic differential tables are used. To define the semantic differential, self-applied surveys were carried out. Each survey consists of eight separate questions in two groups: question A to find desirable emotions; question B related to emotions. Both questions have a maximum of three alternatives to answer. Data were tabulated with IBM SPSS Statistics version 19. Terms referred to emotions are grouped into twenty concepts with a higher presence in surveys. To select the values obtained as part of the implementation of Semantic Differential, a number expected of 'chi-square test (x2)' frequency calculated for classroom space is considered lower limit. All terms over the N expected a cut point, are included to prepare tables for surveys to find a relation between emotion and space. Statistic contrast (Chi-Square) represents significance level ≥ 0, indicator that frequencies appeared are not random. Then, the most representative terms depend on the variable under study: a) definition of textures and color of vertical surfaces is associated with emotions such as tranquility, attention, concentration, creativity; and, b) distribution of the equipment of the rooms, with emotions associated with happiness, distraction, creativity, freedom. The main findings are linked to the generation of classrooms according to diverse DBL team dynamics. Kansei engineering is the appropriate methodology to know the emotions that students want to feel in the classroom space.

Keywords: creativity, design-based learning, education spaces, emotions

Procedia PDF Downloads 142
3595 Modeling and Experimental Verification of Crystal Growth Kinetics in Glass Forming Alloys

Authors: Peter K. Galenko, Stefanie Koch, Markus Rettenmayr, Robert Wonneberger, Evgeny V. Kharanzhevskiy, Maria Zamoryanskaya, Vladimir Ankudinov

Abstract:

We analyze the structure of undercooled melts, crystal growth kinetics and amorphous/crystalline microstructure of rapidly solidifying glass-forming Pd-based and CuZr-based alloys. A dendrite growth model is developed using a combination of the kinetic phase-field model and mesoscopic sharp interface model. The model predicts features of crystallization kinetics in alloys from thermodynamically controlled growth (governed by the Gibbs free energy change on solidification) to the kinetically limited regime (governed by atomic attachment-detachment processes at the solid/liquid interface). Comparing critical undercoolings observed in the crystallization kinetics with experimental data on melt viscosity, atomistic simulation's data on liquid microstructure and theoretically predicted dendrite growth velocity allows us to conclude that the dendrite growth kinetics strongly depends on the cluster structure changes of the melt. The obtained data of theoretical and experimental investigations are used for interpretation of microstructure of samples processed in electro-magnetic levitator on board International Space Station in the frame of the project "MULTIPHAS" (European Space Agency and German Aerospace Center, 50WM1941) and "KINETIKA" (ROSKOSMOS).

Keywords: dendrite, kinetics, model, solidification

Procedia PDF Downloads 120
3594 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study

Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng

Abstract:

MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.

Keywords: microRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM

Procedia PDF Downloads 399
3593 Sustainable Living Where the Immaterial Matters

Authors: Maria Hadjisoteriou, Yiorgos Hadjichristou

Abstract:

This paper aims to explore and provoke a debate, through the work of the design studio, “living where the immaterial matters” of the architecture department of the University of Nicosia, on the role that the “immaterial matter” can play in enhancing innovative sustainable architecture and viewing the cities as sustainable organisms that always grow and alter. The blurring, juxtaposing binary of immaterial and matter, as the theoretical backbone of the Unit is counterbalanced by the practicalities of the contested sites of the last divided capital Nicosia with its ambiguous green line and the ghost city of Famagusta in the island of Cyprus. Jonathan Hill argues that the ‘immaterial is as important to architecture as the material concluding that ‘Immaterial–Material’ weaves the two together, so that they are in conjunction not opposition’. This understanding of the relationship of the immaterial vs material set the premises and the departing point of our argument, and talks about new recipes for creating hybrid public space that can lead to the unpredictability of a complex and interactive, sustainable city. We hierarchized the human experience as a priority. We distinguish the notion of space and place referring to Heidegger’s ‘building dwelling thinking’: ‘a distinction between space and place, where spaces gain authority not from ‘space’ appreciated mathematically but ‘place’ appreciated through human experience’. Following the above, architecture and the city are seen as one organism. The notions of boundaries, porous borders, fluidity, mobility, and spaces of flows are the lenses of the investigation of the unit’s methodology, leading to the notion of a new hybrid urban environment, where the main constituent elements are in a flux relationship. The material and the immaterial flows of the town are seen interrelated and interwoven with the material buildings and their immaterial contents, yielding to new sustainable human built environments. The above premises consequently led to choices of controversial sites. Indisputably a provoking site was the ghost town of Famagusta where the time froze back in 1974. Inspired by the fact that the nature took over the a literally dormant, decaying city, a sustainable rebirthing was seen as an opportunity where both nature and built environment, material and immaterial are interwoven in a new emergent urban environment. Similarly, we saw the dividing ‘green line’ of Nicosia completely failing to prevent the trespassing of images, sounds and whispers, smells and symbols that define the two prevailing cultures and becoming a porous creative entity which tends to start reuniting instead of separating , generating sustainable cultures and built environments. The authors would like to contribute to the debate by introducing a question about a new recipe of cooking the built environment. Can we talk about a new ‘urban recipe’: ‘cooking architecture and city’ to deliver an ever changing urban sustainable organism, whose identity will mainly depend on the interrelationship of the immaterial and material constituents?

Keywords: blurring zones, porous borders, spaces of flow, urban recipe

Procedia PDF Downloads 420
3592 Myanmar Consonants Recognition System Based on Lip Movements Using Active Contour Model

Authors: T. Thein, S. Kalyar Myo

Abstract:

Human uses visual information for understanding the speech contents in noisy conditions or in situations where the audio signal is not available. The primary advantage of visual information is that it is not affected by the acoustic noise and cross talk among speakers. Using visual information from the lip movements can improve the accuracy and robustness of automatic speech recognition. However, a major challenge with most automatic lip reading system is to find a robust and efficient method for extracting the linguistically relevant speech information from a lip image sequence. This is a difficult task due to variation caused by different speakers, illumination, camera setting and the inherent low luminance and chrominance contrast between lip and non-lip region. Several researchers have been developing methods to overcome these problems; the one is lip reading. Moreover, it is well known that visual information about speech through lip reading is very useful for human speech recognition system. Lip reading is the technique of a comprehensive understanding of underlying speech by processing on the movement of lips. Therefore, lip reading system is one of the different supportive technologies for hearing impaired or elderly people, and it is an active research area. The need for lip reading system is ever increasing for every language. This research aims to develop a visual teaching method system for the hearing impaired persons in Myanmar, how to pronounce words precisely by identifying the features of lip movement. The proposed research will work a lip reading system for Myanmar Consonants, one syllable consonants (င (Nga)၊ ည (Nya)၊ မ (Ma)၊ လ (La)၊ ၀ (Wa)၊ သ (Tha)၊ ဟ (Ha)၊ အ (Ah) ) and two syllable consonants ( က(Ka Gyi)၊ ခ (Kha Gway)၊ ဂ (Ga Nge)၊ ဃ (Ga Gyi)၊ စ (Sa Lone)၊ ဆ (Sa Lain)၊ ဇ (Za Gwe) ၊ ဒ (Da Dway)၊ ဏ (Na Gyi)၊ န (Na Nge)၊ ပ (Pa Saug)၊ ဘ (Ba Gone)၊ ရ (Ya Gaug)၊ ဠ (La Gyi) ). In the proposed system, there are three subsystems, the first one is the lip localization system, which localizes the lips in the digital inputs. The next one is the feature extraction system, which extracts features of lip movement suitable for visual speech recognition. And the final one is the classification system. In the proposed research, Two Dimensional Discrete Cosine Transform (2D-DCT) and Linear Discriminant Analysis (LDA) with Active Contour Model (ACM) will be used for lip movement features extraction. Support Vector Machine (SVM) classifier is used for finding class parameter and class number in training set and testing set. Then, experiments will be carried out for the recognition accuracy of Myanmar consonants using the only visual information on lip movements which are useful for visual speech of Myanmar languages. The result will show the effectiveness of the lip movement recognition for Myanmar Consonants. This system will help the hearing impaired persons to use as the language learning application. This system can also be useful for normal hearing persons in noisy environments or conditions where they can find out what was said by other people without hearing voice.

Keywords: feature extraction, lip reading, lip localization, Active Contour Model (ACM), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Two Dimensional Discrete Cosine Transform (2D-DCT)

Procedia PDF Downloads 286