Search results for: school effect
665 The Influence of Thermal Radiation and Chemical Reaction on MHD Micropolar Fluid in The Presence of Heat Generation/Absorption
Authors: Binyam Teferi
Abstract:
Numerical and theoretical analysis of mixed convection flow of magneto- hydrodynamics micropolar fluid with stretching capillary in the presence of thermal radiation, chemical reaction, viscous dissipation, and heat generation/ absorption have been studied. The non-linear partial differential equations of momentum, angular velocity, energy, and concentration are converted into ordinary differential equations using similarity transformations which can be solved numerically. The dimensionless governing equations are solved by using Runge Kutta fourth and fifth order along with the shooting method. The effect of physical parameters viz., micropolar parameter, unsteadiness parameter, thermal buoyancy parameter, concentration buoyancy parameter, Hartmann number, spin gradient viscosity parameter, microinertial density parameter, thermal radiation parameter, Prandtl number, Eckert number, heat generation or absorption parameter, Schmidt number and chemical reaction parameter on flow variables viz., the velocity of the micropolar fluid, microrotation, temperature, and concentration has been analyzed and discussed graphically. MATLAB code is used to analyze numerical and theoretical facts. From the simulation study, it can be concluded that an increment of micropolar parameter, Hartmann number, unsteadiness parameter, thermal and concentration buoyancy parameter results in decrement of velocity flow of micropolar fluid; microrotation of micropolar fluid decreases with an increment of micropolar parameter, unsteadiness parameter, microinertial density parameter, and spin gradient viscosity parameter; temperature profile of micropolar fluid decreases with an increment of thermal radiation parameter, Prandtl number, micropolar parameter, unsteadiness parameter, heat absorption, and viscous dissipation parameter; concentration of micropolar fluid decreases as unsteadiness parameter, Schmidt number and chemical reaction parameter increases. Furthermore, computational values of local skin friction coefficient, local wall coupled coefficient, local Nusselt number, and local Sherwood number for different values of parameters have been investigated. In this paper, the following important results are obtained; An increment of micropolar parameter and Hartmann number results in a decrement of velocity flow of micropolar fluid. Microrotation decreases with an increment of the microinertial density parameter. Temperature decreases with an increasing value of the thermal radiation parameter and viscous dissipation parameter. Concentration decreases as the values of Schmidt number and chemical reaction parameter increases. The coefficient of local skin friction is enhanced with an increase in values of both the unsteadiness parameter and micropolar parameter. Increasing values of unsteadiness parameter and micropolar parameter results in an increment of the local couple stress. An increment of values of unsteadiness parameter and thermal radiation parameter results in an increment of the rate of heat transfer. As the values of Schmidt number and unsteadiness parameter increases, Sherwood number decreases.Keywords: thermal radiation, chemical reaction, viscous dissipation, heat absorption/ generation, similarity transformation
Procedia PDF Downloads 132664 The Gaps of Environmental Criminal Liability in Armed Conflicts and Its Consequences: An Analysis under Stockholm, Geneva and Rome
Authors: Vivian Caroline Koerbel Dombrowski
Abstract:
Armed conflicts have always meant the ultimate expression of power and at the same time, lack of understanding among nations. Cities were destroyed, people were killed, assets were devastated. But these are not only the loss of a war: the environmental damage comes to be considered immeasurable losses in the short, medium and long term. And this is because no nation wants to bear that cost. They invest in military equipment, training, technical equipment but the environmental account yet finds gaps in international law. Considering such a generalization in rights protection, many nations are at imminent danger in a conflict if the water will be used as a mass weapon, especially if we consider important rivers such as Jordan, Euphrates and Nile. The top three international documents were analyzed on the subject: the Stockholm Convention (1972), Additional Protocol I to the Geneva Convention (1977) and the Rome Statute (1998). Indeed, some references are researched in doctrine, especially scientific articles, to substantiate with consistent data about the extent of the damage, historical factors and decisions which have been successful. However, due to the lack of literature about this subject, the research tends to be exhaustive. From the study of the indicated material, it was noted that international law - humanitarian and environmental - calls in some of its instruments the environmental protection in war conflicts, but they are generic and vague rules that do not define exactly what is the environmental damage , nor sets standards for measure them. Taking into account the mains conflicts of the century XX: World War II, the Vietnam War and the Gulf War, one must realize that the environmental consequences were of great rides - never deactivated landmines, buried nuclear weapons, armaments and munitions destroyed in the soil, chemical weapons, not to mention the effects of some weapons when used (uranium, agent Orange, etc). Extending the search for more recent conflicts such as Afghanistan, it is proven that the effects on health of the civilian population were catastrophic: cancer, birth defects, and deformities in newborns. There are few reports of nations that, somehow, repaired the damage caused to the environment as a result of the conflict. In the pitch of contemporary conflicts, many nations fear that water resources are used as weapons of mass destruction, because once contaminated - directly or indirectly - can become a means of disguised genocide side effect of military objective. In conclusion, it appears that the main international treaties governing the subject mention the concern for environmental protection, however leave the normative specifications vacancies necessary to effectively there is a prevention of environmental damage in armed conflict and, should they occur, the repair of the same. Still, it appears that there is no protection mechanism to safeguard natural resources and avoid them to become a mass destruction weapon.Keywords: armed conflicts, criminal liability, environmental damages, humanitarian law, mass weapon
Procedia PDF Downloads 421663 Prolactin and Its Abnormalities: Its Implications on the Male Reproductive Tract and Male Factor Infertility
Authors: Rizvi Hasan
Abstract:
Male factor infertility due to abnormalities in prolactin levels is encountered in a significant proportion. This was a case-control study carried out to determine the effects of prolactin abnormalities in normal males with infertility, recruiting 297 male infertile patients with informed written consent. All underwent a Basic Seminal Fluid Analysis (BSA) and endocrine profiles of FSH, LH, testosterone and prolactin (PRL) hormones using the random access chemiluminescent immunoassay method (normal range 2.5-17ng/ml). Age, weight, and height matched voluntary controls were recruited for comparison. None of the cases had anatomical, medical or surgical disorders related to infertility. Among the controls; mean age 33.2yrs ± 5.2, BMI 21.04 ± 1.39kgm-2, BSA 34×106, a number of children fathered 2±1, PRL 6.78 ± 2.92ng/ml. Of the 297 patients, 28 were hyperprolactinaemic while one was hypoprolactinaemic. All the hyperprolactinaemic patients had oligoasthenospermia, abnormal morphology and decreased viability. The serum testosterone levels were markedly lowered in 26 (92.86%) of the hyperprolactinaemic subjects. In the other 2 hyperprolactinaemic subjects and the single hypoprolactinaemic subject, the serum testosterone levels were normal. FSH and LH were normal in all patients. The 29 male patients with abnormalities in their serum PRL profiles were followed up for 12 months. The 28 patients suffering from hyperprolactinaemia were treated with oral bromocriptine in a dose of 2.5 mg twice daily. The hypoprolactinaemic patient defaulted treatment. From the follow-up, it was evident that 19 (67.86%) of the treated patients responded after 3 months of therapy while 4 (14.29%) showed improvement after approximately 6 months of bromocriptine therapy. One patient responded after 1 year of therapy while 2 patients showed improvements although not up to normal levels within the same period. Response to treatment was assessed by improvement in their BSA parameters. Prolactin abnormalities affect the male reproductive system and semen parameters necessitating further studies to ascertain the exact role of prolactin on the male reproductive tract. A parallel study was carried out incorporating 200 male white rats that were grouped and subjected to variations in their serum PRL levels. At the end of 100 days of treatment, these rats were subjected to morphological studies of their male reproductive tracts.Varying morphological changes depending on the levels of PRL changes induced were evident. Notable changes were arrest of spermatogenesis at the spermatid stage, a reduced testicular cellularity, a reduction in microvilli of the pseudostratified epithelial lining of the epididymis, while measurement of the tubular diameter showed a 30% reduction compared to normal tissue. There were no changes in the vas deferens, seminal vesicles, and the prostate. It is evident that both hyperprolactinaemia and hypoprolactinaemia have a direct effect on the morphology and function of the male reproductive tract. The morphological studies carried out on the groups of rats who were subjected to variations in their PRL levels could be the basis for infertility in male human beings.Keywords: male factor infertility, morphological studies, prolactin, seminal fluid analysis
Procedia PDF Downloads 346662 The Mitigation of Quercetin on Lead-Induced Neuroinflammation in a Rat Model: Changes in Neuroinflammatory Markers and Memory
Authors: Iliyasu Musa Omoyine, Musa Sunday Abraham, Oladele Sunday Blessing, Iliya Ibrahim Abdullahi, Ibegbu Augustine Oseloka, Nuhu Nana-Hawau, Animoku Abdulrazaq Amoto, Yusuf Abdullateef Onoruoiza, Sambo Sohnap James, Akpulu Steven Peter, Ajayi Abayomi
Abstract:
The neuroprotective role of inflammation from detrimental intrinsic and extrinsic factors has been reported. However, the overactivation of astrocytes and microglia due to lead toxicity produce excessive pro-inflammatory cytokines, mediating neurodegenerative diseases. The present study investigated the mitigatory effects of quercetin on neuroinflammation, correlating with memory function in lead-exposed rats. In this study, Wistar rats were administered orally with Quercetin (Q: 60 mg/kg) and Succimer as a standard drug (S: 10 mg/kg) for 21 days after lead exposure (Pb: 125 mg/kg) of 21 days or in combination with Pb, once daily for 42 days. Working and reference memory was assessed using an Eight-arm radial water maze (8-ARWM). The changes in brain lead level, the neuronal nitric oxide synthase (nNOS) activity, and the level of neuroinflammatory markers such as tumour necrosis factor-alpha (TNF-α) and Interleukin 1 Beta (IL-1β) were determined. Immunohistochemically, astrocyte expression was evaluated. The results showed that the brain level of lead was increased significantly in lead-exposed rats. The expression of astrocytes increased in the CA3 and CA1 regions of the hippocampus, and the levels of brain TNF-α and IL-1β increased in lead-exposed rats. Lead impaired reference and working memory by increasing reference memory errors and working memory incorrect errors in lead-exposed rats. However, quercetin treatment effectively improved memory and inhibited neuroinflammation by reducing astrocytes’ expression and the levels of TNF-α and IL-1β. The expression of astrocytes and the levels of TNF-α and IL-1β correlated with memory function. The possible explanation for quercetin’s anti-neuroinflammatory effect is that it modulates the activity of cellular proteins involved in the inflammatory response; inhibits the transcription factor of nuclear factor-kappa B (NF-κB), which regulates the expression of proinflammatory molecules; inhibits kinases required for the synthesis of Glial fibrillary acidic protein (GFAP) and modifies the phosphorylation of some proteins, which affect the structure and function of intermediate filament proteins; and, lastly, induces Cyclic-AMP Response Element Binding (CREB) activation and neurogenesis as a compensatory mechanism for memory deficits and neuronal cell death. In conclusion, the levels of neuroinflammatory markers negatively correlated with memory function. Thus, quercetin may be a promising therapy in neuroinflammation and memory dysfunction in populations prone to lead exposure.Keywords: lead, quercetin, neuroinflammation, memory
Procedia PDF Downloads 56661 Distribution and Ecological Risk Assessment of Trace Elements in Sediments along the Ganges River Estuary, India
Authors: Priyanka Mondal, Santosh K. Sarkar
Abstract:
The present study investigated the spatiotemporal distribution and ecological risk assessment of trace elements of surface sediments (top 0 - 5 cm; grain size ≤ 0.63 µm) in relevance to sediment quality characteristics along the Ganges River Estuary, India. Sediment samples were collected during ebb tide from intertidal regions covering seven sampling sites of diverse environmental stresses. The elements were analyzed with the help of ICPAES. This positive, mixohaline, macro-tidal estuary has global significance contributing ecological and economic services. Presence of fine-clayey particle (47.03%) enhances the adsorption as well as transportation of trace elements. There is a remarkable inter-metallic variation (mg kg-1 dry weight) in the distribution pattern in the following manner: Al (31801± 15943) > Fe (23337± 7584) > Mn (461±147) > S(381±235) > Zn(54 ±18) > V(43 ±14) > Cr(39 ±15) > As (34±15) > Cu(27 ±11) > Ni (24 ±9) > Se (17 ±8) > Co(11 ±3) > Mo(10 ± 2) > Hg(0.02 ±0.01). An overall trend of enrichment of majority of trace elements was very much pronounced at the site Lot 8, ~ 35km upstream of the estuarine mouth. In contrast, the minimum concentration was recorded at site Gangasagar, mouth of the estuary, with high energy profile. The prevalent variations in trace element distribution are being liable for a set of cumulative factors such as hydrodynamic conditions, sediment dispersion pattern and textural variations as well as non-homogenous input of contaminants from point and non-point sources. In order to gain insight into the trace elements distribution, accumulation, and their pollution status, geoaccumulation index (Igeo) and enrichment factor (EF) were used. The Igeo indicated that surface sediments were moderately polluted with As (0.60) and Mo (1.30) and strongly contaminated with Se (4.0). The EF indicated severe pollution of Se (53.82) and significant pollution of As (4.05) and Mo (6.0) and indicated the influx of As, Mo and Se in sediments from anthropogenic sources (such as industrial and municipal sewage, atmospheric deposition, agricultural run-off, etc.). The significant role of the megacity Calcutta in relevance to the untreated sewage discharge, atmospheric inputs and other anthropogenic activities is worthwhile to mention. The ecological risk for different trace elements was evaluated using sediment quality guidelines, effects range low (ERL), and effect range median (ERM). The concentration of As, Cu and Ni at 100%, 43% and 86% of the sampling sites has exceeded the ERL value while none of the element concentration exceeded ERM. The potential ecological risk index values revealed that As at 14.3% of the sampling sites would pose relatively moderate risk to benthic organisms. The effective role of finer clay particles for trace element distribution was revealed by multivariate analysis. The authors strongly recommend regular monitoring emphasizing on accurate appraisal of the potential risk of trace elements for effective and sustainable management of this estuarine environment.Keywords: pollution assessment, sediment contamination, sediment quality, trace elements
Procedia PDF Downloads 259660 Inconsistent Effects of Landscape Heterogeneity on Animal Diversity in an Agricultural Mosaic: A Multi-Scale and Multi-Taxon Investigation
Authors: Chevonne Reynolds, Robert J. Fletcher, Jr, Celine M. Carneiro, Nicole Jennings, Alison Ke, Michael C. LaScaleia, Mbhekeni B. Lukhele, Mnqobi L. Mamba, Muzi D. Sibiya, James D. Austin, Cebisile N. Magagula, Themba’alilahlwa Mahlaba, Ara Monadjem, Samantha M. Wisely, Robert A. McCleery
Abstract:
A key challenge for the developing world is reconciling biodiversity conservation with the growing demand for food. In these regions, agriculture is typically interspersed among other land-uses creating heterogeneous landscapes. A primary hypothesis for promoting biodiversity in agricultural landscapes is the habitat heterogeneity hypothesis. While there is evidence that landscape heterogeneity positively influences biodiversity, the application of this hypothesis is hindered by a need to determine which components of landscape heterogeneity drive these effects and at what spatial scale(s). Additionally, whether diverse taxonomic groups are similarly affected is central for determining the applicability of this hypothesis as a general conservation strategy in agricultural mosaics. Two major components of landscape heterogeneity are compositional and configurational heterogeneity. Disentangling the roles of each component is important for biodiversity conservation because each represents different mechanisms underpinning variation in biodiversity. We identified a priori independent gradients of compositional and configurational landscape heterogeneity within an extensive agricultural mosaic in north-eastern Swaziland. We then tested how bird, dung beetle, ant and meso-carnivore diversity responded to compositional and configurational heterogeneity across six different spatial scales. To determine if a general trend could be observed across multiple taxa, we also tested which component and spatial scale was most influential across all taxonomic groups combined, Compositional, not configurational, heterogeneity explained diversity in each taxonomic group, with the exception of meso-carnivores. Bird and ant diversity was positively correlated with compositional heterogeneity at fine spatial scales < 1000 m, whilst dung beetle diversity was negatively correlated to compositional heterogeneity at broader spatial scales > 1500 m. Importantly, because of these contrasting effects across taxa, there was no effect of either component of heterogeneity on the combined taxonomic diversity at any spatial scale. The contrasting responses across taxonomic groups exemplify the difficulty in implementing effective conservation strategies that meet the requirements of diverse taxa. To promote diverse communities across a range of taxa, conservation strategies must be multi-scaled and may involve different strategies at varying scales to offset the contrasting influences of compositional heterogeneity. A diversity of strategies are likely key to conserving biodiversity in agricultural mosaics, and we have demonstrated that a landscape management strategy that only manages for heterogeneity at one particular scale will likely fall short of management objectives.Keywords: agriculture, biodiversity, composition, configuration, heterogeneity
Procedia PDF Downloads 265659 Role of Lipid-Lowering Treatment in the Monocyte Phenotype and Chemokine Receptor Levels after Acute Myocardial Infarction
Authors: Carolina N. França, Jônatas B. do Amaral, Maria C.O. Izar, Ighor L. Teixeira, Francisco A. Fonseca
Abstract:
Introduction: Atherosclerosis is a progressive disease, characterized by lipid and fibrotic element deposition in large-caliber arteries. Conditions related to the development of atherosclerosis, as dyslipidemia, hypertension, diabetes, and smoking are associated with endothelial dysfunction. There is a frequent recurrence of cardiovascular outcomes after acute myocardial infarction and, at this sense, cycles of mobilization of monocyte subtypes (classical, intermediate and nonclassical) secondary to myocardial infarction may determine the colonization of atherosclerotic plaques in different stages of the development, contributing to early recurrence of ischemic events. The recruitment of different monocyte subsets during inflammatory process requires the expression of chemokine receptors CCR2, CCR5, and CX3CR1, to promote the migration of monocytes to the inflammatory site. The aim of this study was to evaluate the effect of lipid-lowering treatment by six months in the monocyte phenotype and chemokine receptor levels of patients after Acute Myocardial Infarction (AMI). Methods: This is a PROBE (prospective, randomized, open-label trial with blinded endpoints) study (ClinicalTrials.gov Identifier: NCT02428374). Adult patients (n=147) of both genders, ageing 18-75 years, were randomized in a 2x2 factorial design for treatment with rosuvastatin 20 mg/day or simvastatin 40 mg/day plus ezetimibe 10 mg/day as well as ticagrelor 90 mg 2x/day and clopidogrel 75 mg, in addition to conventional AMI therapy. Blood samples were collected at baseline, after one month and six months of treatment. Monocyte subtypes (classical - inflammatory, intermediate - phagocytic and nonclassical – anti-inflammatory) were identified, quantified and characterized by flow cytometry, as well as the expressions of the chemokine receptors (CCR2, CCR5 and CX3CR1) were also evaluated in the mononuclear cells. Results: After six months of treatment, there was an increase in the percentage of classical monocytes and reduction in the nonclassical monocytes (p=0.038 and p < 0.0001 Friedman Test), without differences for intermediate monocytes. Besides, classical monocytes had higher expressions of CCR5 and CX3CR1 after treatment, without differences related to CCR2 (p < 0.0001 for CCR5 and CX3CR1; p=0.175 for CCR2). Intermediate monocytes had higher expressions of CCR5 and CX3CR1 and lower expression of CCR2 (p = 0.003; p < 0.0001 and p = 0.011, respectively). Nonclassical monocytes had lower expressions of CCR2 and CCR5, without differences for CX3CR1 (p < 0.0001; p = 0.009 and p = 0.138, respectively). There were no differences after the comparison between the four treatment arms. Conclusion: The data suggest a time-dependent modulation of classical and nonclassical monocytes and chemokine receptor levels. The higher percentage of classical monocytes (inflammatory cells) suggest a residual inflammatory risk, even under preconized treatments to AMI. Indeed, these changes do not seem to be affected by choice of the lipid-lowering strategy.Keywords: acute myocardial infarction, chemokine receptors, lipid-lowering treatment, monocyte subtypes
Procedia PDF Downloads 121658 A New Perspective in Cervical Dystonia: Neurocognitive Impairment
Authors: Yesim Sucullu Karadag, Pinar Kurt, Sule Bilen, Nese Subutay Oztekin, Fikri Ak
Abstract:
Background: Primary cervical dystonia is thought to be a purely motor disorder. But recent studies revealed that patients with dystonia had additional non-motor features. Sensory and psychiatric disturbances could be included into the non-motor spectrum of dystonia. The Basal Ganglia receive inputs from all cortical areas and throughout the thalamus project to several cortical areas, thus participating to circuits that have been linked to motor as well as sensory, emotional and cognitive functions. However, there are limited studies indicating cognitive impairment in patients with cervical dystonia. More evidence is required regarding neurocognitive functioning in these patients. Objective: This study is aimed to investigate neurocognitive profile of cervical dystonia patients in comparison to healthy controls (HC) by employing a detailed set of neuropsychological tests in addition to self-reported instruments. Methods: Totally 29 (M/F: 7/22) cervical dystonia patients and 30 HC (M/F: 10/20) were included into the study. Exclusion criteria were depression and not given informed consent. Standard demographic, educational data and clinical reports (disease duration, disability index) were recorded for all patients. After a careful neurological evaluation, all subjects were given a comprehensive battery of neuropsychological tests: Self report of neuropsychological condition (by visual analogue scale-VAS, 0-100), RAVLT, STROOP, PASAT, TMT, SDMT, JLOT, DST, COWAT, ACTT, and FST. Patients and HC were compared regarding demographic, clinical features and neurocognitive tests. Also correlation between disease duration, disability index and self report -VAS were assessed. Results: There was no difference between patients and HCs regarding socio-demographic variables such as age, gender and years of education (p levels were 0.36, 0.436, 0.869; respectively). All of the patients were assessed at the peak of botulinum toxine effect and they were not taking an anticholinergic agent or benzodiazepine. Dystonia patients had significantly impaired verbal learning and memory (RAVLT, p<0.001), divided attention and working memory (ACTT, p<0.001), attention speed (TMT-A and B, p=0.008, 0.050), executive functions (PASAT, p<0.001; SDMT, p= 0.001; FST, p<0.001), verbal attention (DST, p=0.001), verbal fluency (COWAT, p<0.001), visio-spatial processing (JLOT, p<0.001) in comparison to healthy controls. But focused attention (STROOP-spontaneous correction) was not different between two groups (p>0.05). No relationship was found regarding disease duration and disability index with any neurocognitive tests. Conclusions: Our study showed that neurocognitive functions of dystonia patients were worse than control group with the similar age, sex, and education independently clinical expression like disease duration and disability index. This situation may be the result of possible cortical and subcortical changes in dystonia patients. Advanced neuroimaging techniques might be helpful to explain these changes in cervical dystonia patients.Keywords: cervical dystonia, neurocognitive impairment, neuropsychological test, dystonia disability index
Procedia PDF Downloads 421657 Increasing Recoverable Oil in Northern Afghanistan Kashkari Oil Field by Low-Salinity Water Flooding
Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi
Abstract:
Afghanistan is located in a tectonically complex and dynamic area, surrounded by rocks that originated on the mother continent of Gondwanaland. The northern Afghanistan basin, which runs along the country's northern border, has the potential for petroleum generation and accumulation. The Amu Darya basin has the largest petroleum potential in the region. Sedimentation occurred in the Amu Darya basin from the Jurassic to the Eocene epochs. Kashkari oil field is located in northern Afghanistan's Amu Darya basin. The field structure consists of a narrow northeast-southwest (NE-SW) anticline with two structural highs, the northwest limb being mild and the southeast limb being steep. The first oil production well in the Kashkari oil field was drilled in 1976, and a total of ten wells were drilled in the area between 1976 and 1979. The amount of original oil in place (OOIP) in the Kashkari oil field, based on the results of surveys and calculations conducted by research institutions, is estimated to be around 140 MMbbls. The objective of this study is to increase recoverable oil reserves in the Kashkari oil field through the implementation of low-salinity water flooding (LSWF) enhanced oil recovery (EOR) technique. The LSWF involved conducting a core flooding laboratory test consisting of four sequential steps with varying salinities. The test commenced with the use of formation water (FW) as the initial salinity, which was subsequently reduced to a salinity level of 0.1%. Afterward, the numerical simulation model of core scale oil recovery by LSWF was designed by Computer Modelling Group’s General Equation Modeler (CMG-GEM) software to evaluate the applicability of the technology to the field scale. Next, the Kahskari oil field simulation model was designed, and the LSWF method was applied to it. To obtain reasonable results, laboratory settings (temperature, pressure, rock, and oil characteristics) are designed as far as possible based on the condition of the Kashkari oil field, and several injection and production patterns are investigated. The relative permeability of oil and water in this study was obtained using Corey’s equation. In the Kashkari oilfield simulation model, three models: 1. Base model (with no water injection), 2. FW injection model, and 3. The LSW injection model was considered for the evaluation of the LSWF effect on oil recovery. Based on the results of the LSWF laboratory experiment and computer simulation analysis, the oil recovery increased rapidly after the FW was injected into the core. Subsequently, by injecting 1% salinity water, a gradual increase of 4% oil can be observed. About 6.4% of the field is produced by the application of the LSWF technique. The results of LSWF (salinity 0.1%) on the Kashkari oil field suggest that this technology can be a successful method for developing Kashkari oil production.Keywords: low-salinity water flooding, immiscible displacement, Kashkari oil field, two-phase flow, numerical reservoir simulation model
Procedia PDF Downloads 42656 Melt–Electrospun Polyprophylene Fabrics Functionalized with TiO2 Nanoparticles for Effective Photocatalytic Decolorization
Authors: Z. Karahaliloğlu, C. Hacker, M. Demirbilek, G. Seide, E. B. Denkbaş, T. Gries
Abstract:
Currently, textile industry has played an important role in world’s economy, especially in developing countries. Dyes and pigments used in textile industry are significant pollutants. Most of theirs are azo dyes that have chromophore (-N=N-) in their structure. There are many methods for removal of the dyes from wastewater such as chemical coagulation, flocculation, precipitation and ozonation. But these methods have numerous disadvantages and alternative methods are needed for wastewater decolorization. Titanium-mediated photodegradation has been used generally due to non-toxic, insoluble, inexpensive, and highly reactive properties of titanium dioxide semiconductor (TiO2). Melt electrospinning is an attractive manufacturing process for thin fiber production through electrospinning from PP (Polyprophylene). PP fibers have been widely used in the filtration due to theirs unique properties such as hydrophobicity, good mechanical strength, chemical resistance and low-cost production. In this study, we aimed to investigate the effect of titanium nanoparticle localization and amine modification on the dye degradation. The applicability of the prepared chemical activated composite and pristine fabrics for a novel treatment of dyeing wastewater were evaluated.In this study, a photocatalyzer material was prepared from nTi (titanium dioxide nanoparticles) and PP by a melt-electrospinning technique. The electrospinning parameters of pristine PP and PP/nTi nanocomposite fabrics were optimized. Before functionalization with nTi, the surface of fabrics was activated by a technique using glutaraldehyde (GA) and polyethyleneimine to promote the dye degredation. Pristine PP and PP/nTi nanocomposite melt-electrospun fabrics were characterized using scanning electron microscopy (SEM) and X-Ray Photon Spectroscopy (XPS). Methyl orange (MO) was used as a model compound for the decolorization experiments. Photocatalytic performance of nTi-loaded pristine and nanocomposite melt-electrospun filters was investigated by varying initial dye concentration 10, 20, 40 mg/L). nTi-PP composite fabrics were successfully processed into a uniform, fibrous network of beadless fibers with diameters of 800±0.4 nm. The process parameters were determined as a voltage of 30 kV, a working distance of 5 cm, a temperature of the thermocouple and hotcoil of 260–300 ºC and a flow rate of 0.07 mL/h. SEM results indicated that TiO2 nanoparticles were deposited uniformly on the nanofibers and XPS results confirmed the presence of titanium nanoparticles and generation of amine groups after modification. According to photocatalytic decolarization test results, nTi-loaded GA-treated pristine or nTi-PP nanocomposite fabric filtern have superior properties, especially over 90% decolorization efficiency at GA-treated pristine and nTi-PP composite PP fabrics. In this work, as a photocatalyzer for wastewater treatment, surface functionalized with nTi melt-electrospun fabrics from PP were prepared. Results showed melt-electrospun nTi-loaded GA-tretaed composite or pristine PP fabrics have a great potential for use as a photocatalytic filter to decolorization of wastewater and thus, requires further investigation.Keywords: titanium oxide nanoparticles, polyprophylene, melt-electrospinning
Procedia PDF Downloads 268655 Biodsorption as an Efficient Technology for the Removal of Phosphate, Nitrate and Sulphate Anions in Industrial Wastewater
Authors: Angel Villabona-Ortíz, Candelaria Tejada-Tovar, Andrea Viera-Devoz
Abstract:
Wastewater treatment is an issue of vital importance in these times where the impacts of human activities are most evident, which have become essential tasks for the normal functioning of society. However, they put entire ecosystems at risk by time destroying the possibility of sustainable development. Various conventional technologies are used to remove pollutants from water. Agroindustrial waste is the product with the potential to be used as a renewable raw material for the production of energy and chemical products, and their use is beneficial since products with added value are generated from materials that were not used before. Considering the benefits that the use of residual biomass brings, this project proposes the use of agro-industrial residues from corn crops for the production of natural adsorbents whose purpose is aimed at the remediation of contaminated water bodies with large loads of nutrients. The adsorption capacity of two biomaterials obtained from the processing of corn stalks was evaluated by batch system tests. Biochar impregnated with sulfuric acid and thermally activated was synthesized. On the other hand, the cellulose was extracted from the corn stalks and chemically modified with cetyltrimethylammonium chloride in order to quaternize the surface of the adsorbent. The adsorbents obtained were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), infrared spectrometry with Fourier Transform (FTIR), analysis by Brunauer, Emmett and Teller method (BET) and X-ray Diffraction analysis ( XRD), which showed favorable characteristics for the cellulose extraction process. Higher adsorption capacities of the nutrients were obtained with the use of biochar, with phosphate being the anion with the best removal percentages. The effect of the initial adsorbate concentration was evaluated, with which it was shown that the Freundlich isotherm better describes the adsorption process in most systems. The adsorbent-phosphate / nitrate systems fit better to the Pseudo Primer Order kinetic model, while the adsorbent-sulfate systems showed a better fit to the Pseudo second-order model, which indicates that there are both physical and chemical interactions in the process. Multicomponent adsorption tests revealed that phosphate anions have a higher affinity for both adsorbents. On the other hand, the thermodynamic parameters standard enthalpy (ΔH °) and standard entropy (ΔS °) with negative results indicate the exothermic nature of the process, whereas the ascending values of standard Gibbs free energy (ΔG °). The adsorption process of anions with biocarbon and modified cellulose is spontaneous and exothermic. The use of the evaluated biomateriles is recommended for the treatment of industrial effluents contaminated with sulfate, nitrate and phosphate anions.Keywords: adsorption, biochar, modified cellulose, corn stalks
Procedia PDF Downloads 184654 Modified Graphene Oxide in Ceramic Composite
Authors: Natia Jalagonia, Jimsher Maisuradze, Karlo Barbakadze, Tinatin Kuchukhidze
Abstract:
At present intensive scientific researches of ceramics, cermets and metal alloys have been conducted for improving materials physical-mechanical characteristics. In purpose of increasing impact strength of ceramics based on alumina, simple method of graphene homogenization was developed. Homogeneous distribution of graphene (homogenization) in pressing composite became possible through the connection of functional groups of graphene oxide (-OH, -COOH, -O-O- and others) and alumina superficial OH groups with aluminum organic compounds. These two components connect with each other with -O-Al–O- bonds, and by their thermal treatment (300–500°C), graphene and alumina phase are transformed. Thus, choosing of aluminum organic compounds for modification is stipulated by the following opinion: aluminum organic compounds fragments fixed on graphene and alumina finally are transformed into an integral part of the matrix. By using of other elements as modifier on the matrix surface (Al2O3) other phases are transformed, which change sharply physical-mechanical properties of ceramic composites, for this reason, effect caused by the inclusion of graphene will be unknown. Fixing graphene fragments on alumina surface by alumoorganic compounds result in new type graphene-alumina complex, in which these two components are connected by C-O-Al bonds. Part of carbon atoms in graphene oxide are in sp3 hybrid state, so functional groups (-OH, -COOH) are located on both sides of graphene oxide layer. Aluminum organic compound reacts with graphene oxide at the room temperature, and modified graphene oxide is obtained: R2Al-O-[graphene]–COOAlR2. Remaining Al–C bonds also reacts rapidly with surface OH groups of alumina. In a result of these process, pressing powdery composite [Al2O3]-O-Al-O-[graphene]–COO–Al–O–[Al2O3] is obtained. For the purpose, graphene oxide suspension in dry toluene have added alumoorganic compound Al(iC4H9)3 in toluene with equimolecular ratio. Obtained suspension has put in the flask and removed solution in a rotary evaporate presence nitrogen atmosphere. Obtained powdery have been researched and used to consolidation of ceramic materials based on alumina. Ceramic composites are obtained in high temperature vacuum furnace with different temperature and pressure conditions. Received ceramics do not have open pores and their density reaches 99.5 % of TD. During the work, the following devices have been used: High temperature vacuum furnace OXY-GON Industries Inc (USA), device of spark-plasma synthesis, induction furnace, Electronic Scanning Microscopes Nikon Eclipse LV 150, Optical Microscope NMM-800TRF, Planetary mill Pulverisette 7 premium line, Shimadzu Dynamic Ultra Micro Hardness Tester DUH-211S, Analysette 12 Dynasizer and others.Keywords: graphene oxide, alumo-organic, ceramic
Procedia PDF Downloads 310653 Production, Characterization and In vitro Evaluation of [223Ra]RaCl2 Nanomicelles for Targeted Alpha Therapy of Osteosarcoma
Authors: Yang Yang, Luciana Magalhães Rebelo Alencar, Martha Sahylí Ortega Pijeira, Beatriz da Silva Batista, Alefe Roger Silva França, Erick Rafael Dias Rates, Ruana Cardoso Lima, Sara Gemini-Piperni, Ralph Santos-Oliveira
Abstract:
Radium-²²³ dichloride ([²²³Rₐ]RₐCl₂) is an alpha particle-emitting radiopharmaceutical currently approved for the treatment of patients with castration-resistant prostate cancer, symptomatic bone metastases, and no known visceral metastatic disease. [²²³Rₐ]RₐCl₂ is bone-seeking calcium mimetic that bonds into the newly formed bone stroma, especially osteoblastic or sclerotic metastases, killing the tumor cells by inducing DNA breaks in a potent and localized manner. Nonetheless, the successful therapy of osteosarcoma as primary bone tumors is still a challenge. Nanomicelles are colloidal nanosystems widely used in drug development to improve blood circulation time, bioavailability, and specificity of therapeutic agents, among other applications. In addition, the enhanced permeability and retention effect of the nanosystems, and the renal excretion of the nanomicelles reported in most cases so far, are very attractive to achieve selective and increased accumulation in tumor site as well as to increase the safety of [²²³Rₐ]RₐCl₂ in the clinical routine. In the present work, [²²³Rₐ]RₐCl₂ nanomicelles were produced, characterized, in vitro evaluated, and compared with pure [²²³Rₐ]RₐCl2 solution using SAOS2 osteosarcoma cells. The [²²³Rₐ]RₐCl₂ nanomicelles were prepared using the amphiphilic copolymer Pluronic F127. The dynamic light scattering analysis of freshly produced [²²³Rₐ]RₐCl₂ nanomicelles demonstrated a mean size of 129.4 nm with a polydispersity index (PDI) of 0.303. After one week stored in the refrigerator, the mean size of the [²²³Rₐ]RₐCl₂ nanomicelles increased to 169.4 with a PDI of 0.381. Atomic force microscopy analysis of [223Rₐ]RₐCl₂ nanomicelles exhibited spherical structures whose heights reach 1 µm, suggesting the filling of 127-Pluronic nanomicelles with [²²³Rₐ]RₐCl₂. The viability assay with [²²³Rₐ]RₐCl₂ nanomicelles displayed a dose-dependent response as it was observed using pure [²²³Rₐ]RₐCl2. However, at the same dose, [²²³Rₐ]RₐCl₂ nanomicelles were 20% higher efficient in killing SAOS2 cells when compared with pure [²²³Rₐ]RₐCl₂. These findings demonstrated the effectiveness of the nanosystem validating the application of nanotechnology in targeted alpha therapy with [²²³Ra]RₐCl₂. In addition, the [²²³Rₐ]RaCl₂nanomicelles may be decorated and incorporated with a great variety of agents and compounds (e.g., monoclonal antibodies, aptamers, peptides) to overcome the limited use of [²²³Ra]RₐCl₂.Keywords: nanomicelles, osteosarcoma, radium dichloride, targeted alpha therapy
Procedia PDF Downloads 119652 Authentic Connection between the Deity and the Individual Human Being Is Vital for Psychological, Biological, and Social Health
Authors: Sukran Karatas
Abstract:
Authentic energy network interrelations between the Creator and the creations as well as from creations to creations are the most important points for the worlds of physics and metaphysic to unite together and work in harmony, both within human beings, on the other hand, have the ability to choose their own life style voluntarily. However, it includes the automated involuntary spirit, soul and body working systems together with the voluntary actions, which involve personal, cultural and universal, rational or irrational variable values. Therefore, it is necessary for human beings to know the methods of existing authentic energy network connections to be able to communicate correlate and accommodate the physical and metaphysical entities as a proper functioning unity; this is essential for complete human psychological, biological and social well-being. Authentic knowledge is necessary for human beings to verify the position of self within self and with others to regulate conscious and voluntary actions accordingly in order to prevent oppressions and frictions within self and between self and others. Unfortunately, the absence of genuine individual and universal basic knowledge about how to establish an authentic energy network connection within self, with the deity and the environment is the most problematic issue even in the twenty-first century. The second most problematic issue is how to maintain freedom, equality and justice among human beings during these strictly interwoven network connections, which naturally involve physical, metaphysical and behavioral actions of the self and the others. The third and probably the most complicated problem is the scientific identification and the authentication of the deity. This not only provides the whole power and control over the choosers to set their life orders but also to establish perfect physical and metaphysical links as fully coordinated functional energy network. This thus indicates that choosing an authentic deity is the key-point that influences automated, emotional, and behavioral actions altogether, which shapes human perception, personal actions, and life orders. Therefore, we will be considering the existing ‘four types of energy wave end boundary behaviors’, comprising, free end, fixed end boundary behaviors, as well as boundary behaviors from denser medium to less dense medium and from less dense medium to denser medium. Consequently, this article aims to demonstrate that the authentication and the choice of deity has an important effect on individual psychological, biological and social health. It is hoped that it will encourage new researches in the field of authentic energy network connections to establish the best position and the most correct interrelation connections with self and others without violating the authorized orders and the borders of one another to live happier and healthier lives together. In addition, the book ‘Deity and Freedom, Equality, Justice in History, Philosophy, Science’ has more detailed information for those interested in this subject.Keywords: deity, energy network, power, freedom, equality, justice, happiness, sadness, hope, fear, psychology, biology, sociology
Procedia PDF Downloads 348651 Influence of Structured Capillary-Porous Coatings on Cryogenic Quenching Efficiency
Authors: Irina P. Starodubtseva, Aleksandr N. Pavlenko
Abstract:
Quenching is a term generally accepted for the process of rapid cooling of a solid that is overheated above the thermodynamic limit of the liquid superheat. The main objective of many previous studies on quenching is to find a way to reduce the total time of the transient process. Computational experiments were performed to simulate quenching by a falling liquid nitrogen film of an extremely overheated vertical copper plate with a structured capillary-porous coating. The coating was produced by directed plasma spraying. Due to the complexities in physical pattern of quenching from chaotic processes to phase transition, the mechanism of heat transfer during quenching is still not sufficiently understood. To our best knowledge, no information exists on when and how the first stable liquid-solid contact occurs and how the local contact area begins to expand. Here we have more models and hypotheses than authentically established facts. The peculiarities of the quench front dynamics and heat transfer in the transient process are studied. The created numerical model determines the quench front velocity and the temperature fields in the heater, varying in space and time. The dynamic pattern of the running quench front obtained numerically satisfactorily correlates with the pattern observed in experiments. Capillary-porous coatings with straight and reverse orientation of crests are investigated. The results show that the cooling rate is influenced by thermal properties of the coating as well as the structure and geometry of the protrusions. The presence of capillary-porous coating significantly affects the dynamics of quenching and reduces the total quenching time more than threefold. This effect is due to the fact that the initialization of a quench front on a plate with a capillary-porous coating occurs at a temperature significantly higher than the thermodynamic limit of the liquid superheat, when a stable solid-liquid contact is thermodynamically impossible. Waves present on the liquid-vapor interface and protrusions on the complex micro-structured surface cause destabilization of the vapor film and the appearance of local liquid-solid micro-contacts even though the average integral surface temperature is much higher than the liquid superheat limit. The reliability of the results is confirmed by direct comparison with experimental data on the quench front velocity, the quench front geometry, and the surface temperature change over time. Knowledge of the quench front velocity and total time of transition process is required for solving practically important problems of nuclear reactors safety.Keywords: capillary-porous coating, heat transfer, Leidenfrost phenomenon, numerical simulation, quenching
Procedia PDF Downloads 134650 Review of Published Articles on Climate Change and Health in Two Francophone Newspapers: 1990-2015
Authors: Mathieu Hemono, Sophie Puig-Malet, Patrick Zylberman, Avner Bar-Hen, Rainer Sauerborn, Stefanie Schütte, Niamh Herlihi, Antoine Flahault et Anneliese Depoux
Abstract:
Since the IPCC released its first report in 1990, an increasing number of peer-reviewed publications have reported the health risks associated with climate change. Although there is a large body of evidence supporting the association between climate change and poor health outcomes, the media is inconsistent in the attention it pays to the subject matter. This study aims to analyze the modalities and rhetoric in the media concerning the impact of climate change on health in order to better understand its role in information dissemination. A review was conducted of articles published between 1990 and 2015 in the francophone newspapers Le Monde and Jeune Afrique. A detailed search strategy including specific climate and health terminology was used to search the newspapers’ online databases. 1202 articles were identified as having referenced the terms climate change and health. Inclusion and exclusion criteria were applied to narrow the search to articles referencing the effects of climate change on human health and 160 articles were included in the final analysis. Data was extracted and categorized to create a structured database allowing for further investigation and analysis. The review indicated that although 66% of the selected newspaper articles reference scientific evidence of the impact of climate change on human health, the focus on the topic is limited major political events or is circumstances relating to public health crises. Main findings also include that among the many direct and indirect health outcomes, infectious diseases are the main health outcome highlighted in association with climate change. Lastly, the articles suggest that while developed countries have caused most of the greenhouse effect, the global south is more immediately affected. Overall, the reviewed articles reinforce the need for international cooperation in finding a solution to mitigate the effects of climate change on health. The manner in which scientific results are communicated and disseminated, impact individual and collective perceptions of the topic in the public sphere and affect political will to shape policy. The results of this analysis will underline the modalities of the rhetoric of transparency and provide the basis for a perception study of media discourses. This study is part of an interdisciplinary project called 4CHealth that confronts results of the research done on scientific, political and press literature to better understand how the knowledge on climate changes and health circulates within those different fields and whether and how it is translated to real world change.Keywords: climate change, health, health impacts, communication, media, rhetoric, awareness, Global South, Africa
Procedia PDF Downloads 425649 Fructose-Aided Cross-Linked Enzyme Aggregates of Laccase: An Insight on Its Chemical and Physical Properties
Authors: Bipasa Dey, Varsha Panwar, Tanmay Dutta
Abstract:
Laccase, a multicopper oxidase (EC 1.10.3.2) have been at the forefront as a superior industrial biocatalyst. They are versatile in terms of bestowing sustainable and ecological catalytic reactions such as polymerisation, xenobiotic degradation and bioremediation of phenolic and non-phenolic compounds. Regardless of the wide biotechnological applications, the critical limiting factors viz. reusability, retrieval, and storage stability still prevail. This can cause an impediment in their applicability. Crosslinked enzyme aggregates (CLEAs) have emerged as a promising technique that rehabilitates these essential facets, albeit at the expense of their enzymatic activity. The carrier free crosslinking method prevails over the carrier-bound immobilisation in conferring high productivity, low production cost owing to the absence of additional carrier and circumvent any non-catalytic ballast which could dilute the volumetric activity. To the best of our knowledge, the ε-amino group of lysyl residue is speculated as the best choice for forming Schiff’s base with glutaraldehyde. Despite being most preferrable, excess glutaraldehyde can bring about disproportionate and undesirable crosslinking within the catalytic site and hence could deliver undesirable catalytic losses. Moreover, the surface distribution of lysine residues in Trametes versicolor laccase is significantly less. Thus, to mitigate the adverse effect of glutaraldehyde in conjunction with scaling down the degradation or catalytic loss of the enzyme, crosslinking with inert substances like gelatine, collagen, Bovine serum albumin (BSA) or excess lysine is practiced. Analogous to these molecules, sugars have been well known as a protein stabiliser. It helps to retain the structural integrity, specifically secondary structure of the protein during aggregation by changing the solvent properties. They are comprehended to avert protein denaturation or enzyme deactivation during precipitation. We prepared crosslinked enzyme aggregates (CLEAs) of laccase from T. versicolor with the aid of sugars. The sugar CLEAs were compared with the classic BSA and glutaraldehyde laccase CLEAs concerning physico-chemical properties. The activity recovery for the fructose CLEAs were found to be ~20% higher than the non-sugar CLEA. Moreover, the 𝐾𝑐𝑎𝑡𝐾𝑚⁄ values of the CLEAs were two and three-fold higher than BSA-CLEA and GACLEA, respectively. The half-life (t1/2) deciphered by sugar-CLEA was higher than the t1/2 of GA-CLEAs and free enzyme, portraying more thermal stability. Besides, it demonstrated extraordinarily high pH stability, which was analogous to BSA-CLEA. The promising attributes of increased storage stability and recyclability (>80%) gives more edge to the sugar-CLEAs over conventional CLEAs of their corresponding free enzyme. Thus, sugar-CLEA prevails in furnishing the rudimentary properties required for a biocatalyst and holds many prospects.Keywords: cross-linked enzyme aggregates, laccase immobilization, enzyme reusability, enzyme stability
Procedia PDF Downloads 105648 The Effect of Slum Neighborhoods on Pregnancy Outcomes in Tanzania: Secondary Analysis of the 2015-2016 Tanzania Demographic and Health Survey Data
Authors: Luisa Windhagen, Atsumi Hirose, Alex Bottle
Abstract:
Global urbanization has resulted in the expansion of slums, leaving over 10 million Tanzanians in urban poverty and at risk of poor health. Whilst rural residence has historically been associated with an increased risk of adverse pregnancy outcomes, recent studies found higher perinatal mortality rates in urban Tanzania. This study aims to understand to what extent slum neighborhoods may account for the spatial disparities seen in Tanzania. We generated a slum indicator based on UN-HABITAT criteria to identify slum clusters within the 2015-2016 Tanzania Demographic and Health Survey. Descriptive statistics, disaggregated by urban slum, urban non-slum, and rural areas, were produced. Simple and multivariable logistic regression examined the association between cluster residence type and neonatal mortality and stillbirth. For neonatal mortality, we additionally built a multilevel logistic regression model, adjusting for confounding and clustering. The neonatal mortality ratio was highest in slums (38.3 deaths per 1000 live births); the stillbirth rate was three times higher in slums (32.4 deaths per 1000 births) than in urban non-slums. Neonatal death was more likely to occur in slums than in urban non-slums (aOR=2.15, 95% CI=1.02-4.56) and rural areas (aOR=1.78, 95% CI=1.15-2.77). Odds of stillbirth were over five times higher among rural than urban non-slum residents (aOR=5.25, 95% CI=1.31-20.96). The results suggest that slums contribute to the urban disadvantage in Tanzanian neonatal health. Higher neonatal mortality in slums may be attributable to lack of education, lower socioeconomic status, poor healthcare access, and environmental factors, including indoor and outdoor air pollution and unsanitary conditions from inadequate housing. However, further research is required to ascertain specific causalities as well as significant associations between residence type and other pregnancy outcomes. The high neonatal mortality, stillbirth, and slum formation rates in Tanzania signify that considerable change is necessary to achieve international goals for health and human settlements. Disparities in access to adequate housing, safe water and sanitation, high standard antenatal, intrapartum, and neonatal care, and maternal education need to urgently be addressed. This study highlights the spatial neonatal mortality shift from rural settings to urban informal settlements in Tanzania. Importantly, other low- and middle-income countries experiencing overwhelming urbanization and slum expansion may also be at risk of a reversing trend in residential neonatal health differences.Keywords: urban health, slum residence, neonatal mortality, stillbirth, global urbanisation
Procedia PDF Downloads 65647 Identifying Biomarker Response Patterns to Vitamin D Supplementation in Type 2 Diabetes Using K-means Clustering: A Meta-Analytic Approach to Glycemic and Lipid Profile Modulation
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
Background and Aims: This meta-analysis aimed to evaluate the effect of vitamin D supplementation on key metabolic and cardiovascular parameters, such as glycated hemoglobin (HbA1C), fasting blood sugar (FBS), low-density lipoprotein (LDL), high-density lipoprotein (HDL), systolic blood pressure (SBP), and total vitamin D levels in patients with Type 2 diabetes mellitus (T2DM). Methods: A systematic search was performed across databases, including PubMed, Scopus, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov, from January 1990 to January 2024. A total of 4,177 relevant studies were initially identified. Using an unsupervised K-means clustering algorithm, publications were grouped based on common text features. Maximum entropy classification was then applied to filter studies that matched a pre-identified training set of 139 potentially relevant articles. These selected studies were manually screened for relevance. A parallel manual selection of all initially searched studies was conducted for validation. The final inclusion of studies was based on full-text evaluation, quality assessment, and meta-regression models using random effects. Sensitivity analysis and publication bias assessments were also performed to ensure robustness. Results: The unsupervised K-means clustering algorithm grouped the patients based on their responses to vitamin D supplementation, using key biomarkers such as HbA1C, FBS, LDL, HDL, SBP, and total vitamin D levels. Two primary clusters emerged: one representing patients who experienced significant improvements in these markers and another showing minimal or no change. Patients in the cluster associated with significant improvement exhibited lower HbA1C, FBS, and LDL levels after vitamin D supplementation, while HDL and total vitamin D levels increased. The analysis showed that vitamin D supplementation was particularly effective in reducing HbA1C, FBS, and LDL within this cluster. Furthermore, BMI, weight gain, and disease duration were identified as factors that influenced cluster assignment, with patients having lower BMI and shorter disease duration being more likely to belong to the improvement cluster. Conclusion: The findings of this machine learning-assisted meta-analysis confirm that vitamin D supplementation can significantly improve glycemic control and reduce the risk of cardiovascular complications in T2DM patients. The use of automated screening techniques streamlined the process, ensuring the comprehensive evaluation of a large body of evidence while maintaining the validity of traditional manual review processes.Keywords: HbA1C, T2DM, SBP, FBS
Procedia PDF Downloads 18646 p-Type Multilayer MoS₂ Enabled by Plasma Doping for Ultraviolet Photodetectors Application
Authors: Xiao-Mei Zhang, Sian-Hong Tseng, Ming-Yen Lu
Abstract:
Two-dimensional (2D) transition metal dichalcogenides (TMDCs), such as MoS₂, have attracted considerable attention owing to the unique optical and electronic properties related to its 2D ultrathin atomic layer structure. MoS₂ is becoming prevalent in post-silicon digital electronics and in highly efficient optoelectronics due to its extremely low thickness and its tunable band gap (Eg = 1-2 eV). For low-power, high-performance complementary logic applications, both p- and n-type MoS₂ FETs (NFETs and PFETs) must be developed. NFETs with an electron accumulation channel can be obtained using unintentionally doped n-type MoS₂. However, the fabrication of MoS₂ FETs with complementary p-type characteristics is challenging due to the significant difficulty of injecting holes into its inversion channel. Plasma treatments with different species (including CF₄, SF₆, O₂, and CHF₃) have also been found to achieve the desired property modifications of MoS₂. In this work, we demonstrated a p-type multilayer MoS₂ enabled by selective-area doping using CHF₃ plasma treatment. Compared with single layer MoS₂, multilayer MoS₂ can carry a higher drive current due to its lower bandgap and multiple conduction channels. Moreover, it has three times the density of states at its minimum conduction band. Large-area growth of MoS₂ films on 300 nm thick SiO₂/Si substrate is carried out by thermal decomposition of ammonium tetrathiomolybdate, (NH₄)₂MoS₄, in a tube furnace. A two-step annealing process is conducted to synthesize MoS₂ films. For the first step, the temperature is set to 280 °C for 30 min in an N₂ rich environment at 1.8 Torr. This is done to transform (NH₄)₂MoS₄ into MoS₃. To further reduce MoS₃ into MoS₂, the second step of annealing is performed. For the second step, the temperature is set to 750 °C for 30 min in a reducing atmosphere consisting of 90% Ar and 10% H₂ at 1.8 Torr. The grown MoS₂ films are subjected to out-of-plane doping by CHF₃ plasma treatment using a Dry-etching system (ULVAC original NLD-570). The radiofrequency power of this dry-etching system is set to 100 W and the pressure is set to 7.5 mTorr. The final thickness of the treated samples is obtained by etching for 30 s. Back-gated MoS₂ PFETs were presented with an on/off current ratio in the order of 10³ and a field-effect mobility of 65.2 cm²V⁻¹s⁻¹. The MoS₂ PFETs photodetector exhibited ultraviolet (UV) photodetection capability with a rapid response time of 37 ms and exhibited modulation of the generated photocurrent by back-gate voltage. This work suggests the potential application of the mild plasma-doped p-type multilayer MoS₂ in UV photodetectors for environmental monitoring, human health monitoring, and biological analysis.Keywords: photodetection, p-type doping, multilayers, MoS₂
Procedia PDF Downloads 106645 Structure and Properties of Intermetallic NiAl-Based Coatings Produced by Magnetron Sputtering Technique
Authors: Tatiana S. Ogneva
Abstract:
Aluminum and nickel-based intermetallic compounds have attracted the attention of scientific community as promising materials for heat-resistant and wear-resistant coatings in such manufacturing areas as microelectronics, aircraft and rocket building and chemical industries. Magnetron sputtering makes possible to coat materials without formation of liquid phase and improves the mechanical and functional properties of nickel aluminides due to the possibility of nanoscale structure formation. The purpose of the study is the investigation of structure and properties of intermetallic coatings produced by magnetron sputtering technique. The feature of this work is the using of composite targets for sputtering, which were consisted of two semicircular sectors of cp-Ni and cp-Al. Plates of alumina, silicon, titanium and steel alloys were used as substrates. To estimate sputtering conditions on structure of intermetallic coatings, a series of samples were produced and studied in detail using scanning and transition electron microcopy and X-Ray diffraction. Besides, nanohardness and scratching tests were carried out. The varying parameters were the distance from the substrate to the target, the duration and the power of the sputtering. The thickness of the obtained intermetallic coatings varied from 0.05 to 0.5 mm depending on the sputtering conditions. The X-ray diffraction data indicated that the formation of intermetallic compounds occurred after sputtering without additional heat treatment. Sputtering at a distance not closer than 120 mm led to the formation of NiAl phase. Increase in the power of magnetron from 300 to 900 W promoted the increase of heterogeneity of the phase composition and the appearance of intermetallic phases NiAl, Ni₂Al₃, NiAl₃, and Al under the aluminum side, and NiAl, Ni₃Al, and Ni under the nickel side of the target. A similar trend is observed with increasing the distance of sputtering from 100 to 60 mm. The change in the phase composition correlates with the changing of the atomic composition of the coatings. Scanning electron microscopy revealed that the coatings have a nanoscale grain structure. In this case, the substrate material and the distance from the substrate to the magnetron have a significant effect on the structure formation process. The size of nanograins differs from 10 to 83 nm and depends not only on the sputtering modes but also on material of a substrate. Nanostructure of the material influences the level of mechanical properties. The highest level of nanohardness of the coatings deposited during 30 minutes on metallic substrates at a distance of 100 mm reached 12 GPa. It was shown that nanohardness depends on the grain size of the intermetallic compound. Scratching tests of the coatings showed a high level of adhesion of the coating to substrate without any delamination and cracking. The results of the study showed that magnetron sputtering of composite targets consisting of nickel and aluminum semicircles makes it possible to form intermetallic coatings with good mechanical properties directly in the process of sputtering without additional heat treatment.Keywords: intermetallic coatings, magnetron sputtering, mechanical properties, structure
Procedia PDF Downloads 122644 The Role of Behavioral Syndromes in Human-Cattle Interactions: A Physiological Approach
Authors: Fruzsina Luca Kézér, Viktor Jurkovich, Ottó Szenci, János Tőzsér, Levente Kovács
Abstract:
Positive interaction between people and animals could have a favorable effect on the welfare and production by reducing stress levels. However, to the repeated contact with humans (e.g. farm staff, veterinarians or herdsmen), animals may respond with escape behavior or avoidance, which both have negative effects on the ease of handling, welfare and may lead to the expression of aggressive behaviors. Rough or aversive handling can impair health and the function of the cardiac autonomic activity due to fear and stress, which also can be determined by certain parameters of heart rate variability (HRV). Although the essential relationships between fear from humans and basal tone of the autonomic nervous system were described by the authors previously, several questions remained unclear in terms of the associations between different coping strategies (behavioral syndromes) of the animals and physiological responsiveness to humans. The main goal of this study was to find out whether human behavior and emotions to the animals have an impact on cardiac function and behavior of animals with different coping styles in response situations. Therefore, in the present study, special (fear, approaching, restraint, novel arena, novel object) tests were performed on healthy, 2-year old heifers (n = 104) differing in coping styles [reactive (passive) vs. proactive (active) coping]. Animals were categorized as reactive or proactive based on the following tests: 1) aggressive behavior at the feeding bunk, 2) avoidance from an approaching person, 3) immobility, and 4) daily activity (number of posture changes). Heart rate, the high frequency (HF) component of HRV as a measure of vagal activity and the ratio between the low frequency (LF) and HF components (LF/HF ratio) as a parameter of sympathetic nervous system activity were calculated for all individual during lying posture (baseline) and for response situations in novel object, novel arena, and unfamiliar person tests (both for 5 min), respectively. The differences between baseline and response were compared between groups. Higher sympathetic (higher heart rates and LF/HF ratios) and lower parasympathetic activity (lower HF) was found for proactive animals in response situations than for reactive (passive) animals either during the novel object, the novel arena and the unfamiliar person test. It suggests that animals with different behavioral traits differ in their immediate autonomic adaptation to novelty and people. Based on our preliminary results, it seems, that the analysis of HRV can help to understand the physiological manifestation of responsiveness to novelty and human presence in dairy cattle with different behavioral syndromes.Keywords: behavioral syndromes, human-cattle interaction, novel arena test, physiological responsiveness, proactive coping, reactive coping
Procedia PDF Downloads 356643 Upgrading of Bio-Oil by Bio-Pd Catalyst
Authors: Sam Derakhshan Deilami, Iain N. Kings, Lynne E. Macaskie, Brajendra K. Sharma, Anthony V. Bridgwater, Joseph Wood
Abstract:
This paper reports the application of a bacteria-supported palladium catalyst to the hydrodeoxygenation (HDO) of pyrolysis bio-oil, towards producing an upgraded transport fuel. Biofuels are key to the timely replacement of fossil fuels in order to mitigate the emissions of greenhouse gases and depletion of non-renewable resources. The process is an essential step in the upgrading of bio-oils derived from industrial by-products such as agricultural and forestry wastes, the crude oil from pyrolysis containing a large amount of oxygen that requires to be removed in order to create a fuel resembling fossil-derived hydrocarbons. The bacteria supported catalyst manufacture is a means of utilizing recycled metals and second life bacteria, and the metal can also be easily recovered from the spent catalysts after use. Comparisons are made between bio-Pd, and a conventional activated carbon supported Pd/C catalyst. Bio-oil was produced by fast pyrolysis of beechwood at 500 C at a residence time below 2 seconds, provided by Aston University. 5 wt % BioPd/C was prepared under reducing conditions, exposing cells of E. coli MC4100 to a solution of sodium tetrachloropalladate (Na2PdCl4), followed by rinsing, drying and grinding to form a powder. Pd/C was procured from Sigma-Aldrich. The HDO experiments were carried out in a 100 mL Parr batch autoclave using ~20g bio-crude oil and 0.6 g bio-Pd/C catalyst. Experimental variables investigated for optimization included temperature (160-350C) and reaction times (up to 5 h) at a hydrogen pressure of 100 bar. Most of the experiments resulted in an aqueous phase (~40%) and an organic phase (~50-60%) as well as gas phase (<5%) and coke (<2%). Study of the temperature and time upon the process showed that the degree of deoxygenation increased (from ~20 % up to 60 %) at higher temperatures in the region of 350 C and longer residence times up to 5 h. However minimum viscosity (~0.035 Pa.s) occurred at 250 C and 3 h residence time, indicating that some polymerization of the oil product occurs at the higher temperatures. Bio-Pd showed a similar degree of deoxygenation (~20 %) to Pd/C at lower temperatures of 160 C, but did not rise as steeply with temperature. More coke was formed over bio-Pd/C than Pd/C at temperatures above 250 C, suggesting that bio-Pd/C may be more susceptible to coke formation than Pd/C. Reactions occurring during bio-oil upgrading include catalytic cracking, decarbonylation, decarboxylation, hydrocracking, hydrodeoxygenation and hydrogenation. In conclusion, it was shown that bio-Pd/C displays an acceptable rate of HDO, which increases with residence time and temperature. However some undesirable reactions also occur, leading to a deleterious increase in viscosity at higher temperatures. Comparisons are also drawn with earlier work on the HDO of Chlorella derived bio-oil manufactured from micro-algae via hydrothermal liquefaction. Future work will analyze the kinetics of the reaction and investigate the effect of bi-metallic catalysts.Keywords: bio-oil, catalyst, palladium, upgrading
Procedia PDF Downloads 176642 Investigation of Permeate Flux Through Direct Contact Membrane Distillation Module by Inserting S-Ribs Carbon-Fiber Promoters with Ascending and Descending Hydraulic Diameters
Authors: Chii-Dong Ho, Jian-Har Chen
Abstract:
The decline in permeate flux across membrane modules is attributed to the increase in temperature polarization resistance in flat-plate direct contact membrane distillation (DCMD) modules for pure water productivity. Researchers have discovered that this effect can be diminished by embedding turbulence promoters, which augment turbulence intensity at the cost of increased power consumption, thereby improving vapor permeate flux. The device performance of DCMD modules for permeate flux was further enhanced by shrinking the hydraulic diameters of inserted S-ribs carbon-fiber promoters as well as considering the energy consumption increment. The mass-balance formulation, based on the resistance-in-series model by energy conservation in one-dimensional governing equations, was developed theoretically and conducted experimentally on a flat-plate polytetrafluoroethylene/polypropylene (PTFE/PP) membrane module to predict permeate flux and temperature distributions. The ratio of permeate flux enhancement to energy consumption increment, as referred to an assessment of an economic viewpoint and technical feasibilities, was calculated to determine the suitable design parameters for DCMD operations with the insertion of S-ribs carbon-fiber turbulence promoters. An economic analysis was also performed, weighing both permeate flux improvement and energy consumption increment on modules with promoter-filled channels by different array configurations and various hydraulic diameters of turbulence promoters. Results showed that the ratio of permeate flux improvement to energy consumption increment in descending hydraulic-diameter modules is higher than in uniform hydraulic-diameter modules. The fabrication details of the DCMD module filaments implementing the S-ribs carbon-fiber filaments and the schematic configuration of the flat-plate DCMD experimental setup with presenting acrylic plates as external walls were demonstrated in the present study. The S-ribs carbon fibers perform as turbulence promoters incorporated into the artificial hot saline feed stream, which was prepared by adding inorganic salts (NaCl) to distilled water. Theoretical predictions and experimental results exhibited a great accomplishment to considerably achieve permeate flux enhancement in such as new design of the DCMD module with inserting S-ribs carbon-fiber promoters. Additionally, the Nusselt number for the water vapor transferring membrane module with inserted S-ribs carbon-fiber promoters was generalized into a simplified expression to predict the heat transfer coefficient and permeate flux as well.Keywords: permeate flux, Nusselt number, DCMD module, temperature polarization, hydraulic diameters
Procedia PDF Downloads 14641 A Finite Element Analysis of Hexagonal Double-Arrowhead Auxetic Structure with Enhanced Energy Absorption Characteristics and Stiffness
Abstract:
Auxetic materials, as an emerging artificial designed metamaterial has attracted growing attention due to their promising negative Poisson’s ratio behaviors and tunable properties. The conventional auxetic lattice structures for which the deformation process is governed by a bending-dominated mechanism have faced the limitation of poor mechanical performance for many potential engineering applications. Recently, both load-bearing and energy absorption capabilities have become a crucial consideration in auxetic structure design. This study reports the finite element analysis of a class of hexagonal double-arrowhead auxetic structures with enhanced stiffness and energy absorption performance. The structure design was developed by extending the traditional double-arrowhead honeycomb to a hexagon frame, the stretching-dominated deformation mechanism was determined according to Maxwell’s stability criterion. The finite element (FE) models of 2D lattice structures established with stainless steel material were analyzed in ABAQUS/Standard for predicting in-plane structural deformation mechanism, failure process, and compressive elastic properties. Based on the computational simulation, the parametric analysis was studied to investigate the effect of the structural parameters on Poisson’s ratio and mechanical properties. The geometrical optimization was then implemented to achieve the optimal Poisson’s ratio for the maximum specific energy absorption. In addition, the optimized 2D lattice structure was correspondingly converted into a 3D geometry configuration by using the orthogonally splicing method. The numerical results of 2D and 3D structures under compressive quasi-static loading conditions were compared separately with the traditional double-arrowhead re-entrant honeycomb in terms of specific Young's moduli, Poisson's ratios, and specified energy absorption. As a result, the energy absorption capability and stiffness are significantly reinforced with a wide range of Poisson’s ratio compared to traditional double-arrowhead re-entrant honeycomb. The auxetic behaviors, energy absorption capability, and yield strength of the proposed structure are adjustable with different combinations of joint angle, struts thickness, and the length-width ratio of the representative unit cell. The numerical prediction in this study suggests the proposed concept of hexagonal double-arrowhead structure could be a suitable candidate for the energy absorption applications with a constant request of load-bearing capacity. For future research, experimental analysis is required for the validation of the numerical simulation.Keywords: auxetic, energy absorption capacity, finite element analysis, negative Poisson's ratio, re-entrant hexagonal honeycomb
Procedia PDF Downloads 90640 The Effect of Aerobics and Yogic Exercise on Selected Physiological and Psychological Variables of Middle-Aged Women
Authors: A. Pallavi, N. Vijay Mohan
Abstract:
A nation can be economically progressive only when the citizens have sufficient capacity to work efficiently to increase the productivity. So, good health must be regarded as a primary need of the community. This helps the growth and development of the body and the mind, which in turn leads to progress and prosperity of the nation. An optimum growth is a necessity for an efficient existence in a biologically adverse and economically competitive world. It is also necessary for the execution of daily routine work. Yoga is a method or a system for the complete development of the personality in a human being. It can be further elaborated as an all-around and complete development of the body, mind, morality, intellect and soul of a being. Sri Aurobindo defines yoga as 'a methodical effort towards self-perfection by the development of the potentialities in the individual.' Aerobic exercise as any activity that uses large muscle groups, can be maintained continuously, and is rhythmic I nature. It is a type of exercise that overloads the heart and lungs and causes them to work harder than at rest. The important idea behind aerobic exercise today, is to get up and get moving. There are more activities that ever to choose from, whether it is a new activity or an old one. Find something you enjoy doing that keeps our heart rate elevated for a continuous time period and get moving to a healthier life. Middle aged selected and served as the subjects for the purpose of this study. The selected subjects were in the age group of 30 to 40 years. By going through the literature and after consulting the experts in yoga and aerobic training, the investigator had chosen the variables which are specifically related to the middle-aged men. The selected physiological variables are pulse rate, diastolic blood pressure, systolic blood pressure; percent body fat and vital capacity. The selected psychological variables are job anxiety, occupational stress. The study was formulated as a random group design consisting of aerobic exercise and yogic exercises groups. The subjects (N=60) were at random divided into three equal groups of twenty middle-aged men each. The groups were assigned the names as follows: 1. Experimental group I- aerobic exercises group, 2. Experimental group II- yogic exercises, 3. Control group. All the groups were subjected to pre-test prior to the experimental treatment. The experimental groups participated in their respective duration of twenty-four weeks, six days in a week throughout the study. The various tests administered were: prior to training (pre-test), after twelfth week (second test) and twenty-fourth weeks (post-test) of the training schedule.Keywords: pulse rate, diastolic blood pressure, systolic blood pressure; percent body fat and vital capacity, psychological variables, job anxiety, occupational stress, aerobic exercise, yogic exercise
Procedia PDF Downloads 447639 The Food and Nutritional Effects of Smallholders’ Participation in Milk Value Chain in Ethiopia
Authors: Geday Elias, Montaigne Etienne, Padilla Martine, Tollossa Degefa
Abstract:
Smallholder farmers’ participation in agricultural value chain identified as a pathway to get out of poverty trap in Ethiopia. The smallholder dairy activities have a huge potential in poverty reduction through enhancing income, achieving food and nutritional security in the country. However, much less is known about the effects of smallholder’s participation in milk value chain on household food security and nutrition. This paper therefore, aims at evaluating the effects of smallholders’ participation in milk value chain on household food security taking in to account the four pillars of food security measurements (availability, access, utilization and stability). Using a semi-structured interview, a cross sectional farm household data collected from a randomly selected sample of 333 households (170 in Amhara and 163 in Oromia regions).Binary logit and propensity score matching( PSM) models are employed to examine the mechanisms through which smallholder’s participation in the milk value chain affects household food security where crop production, per capita calorie intakes, diet diversity score, and food insecurity access scale are used to measure food availability, access, utilization and stability respectively. Our findings reveal from 333 households, only 34.5% of smallholder farmers are participated in the milk value chain. Limited access to inputs and services, limited access to inputs markets and high transaction costs are key constraints for smallholders’ limited access to the milk value chain. To estimate the true average participation effects of milk value chain for participated households, the outcome variables (food security) of farm households who participated in milk value chain are compared with the outcome variables if the farm households had not participated. The PSM analysis reveals smallholder’s participation in milk value chain has a significant positive effect on household income, food security and nutrition. Smallholder farmers who are participated in milk chain are better by 15 quintals crops production and 73 percent of per capita calorie intakes in food availability and access respectively than smallholder farmers who are not participated in the market. Similarly, the participated households are better in dietary quality by 112 percents than non-participated households. Finally, smallholders’ who are participated in milk value chain are better in reducing household vulnerability to food insecurity by an average of 130 percent than non participated households. The results also shows income earned from milk value chain participation contributed to reduce capital’s constraints of the participated households’ by higher farm income and total household income by 5164 ETB and 14265 ETB respectively. This study therefore, confirms the potential role of smallholders’ participation in food value chain to get out of poverty trap through improving rural household income, food security and nutrition. Therefore, identified the determinants of smallholder participation in milk value chain and the participation effects on food security in the study areas are worth considering as a positive knock for policymakers and development agents to tackle the poverty trap in the study area in particular and in the country in general.Keywords: effects, food security and nutrition, milk, participation, smallholders, value chain
Procedia PDF Downloads 344638 Optimization of Ultrasound-Assisted Extraction of Oil from Spent Coffee Grounds Using a Central Composite Rotatable Design
Authors: Malek Miladi, Miguel Vegara, Maria Perez-Infantes, Khaled Mohamed Ramadan, Antonio Ruiz-Canales, Damaris Nunez-Gomez
Abstract:
Coffee is the second consumed commodity worldwide, yet it also generates colossal waste. Proper management of coffee waste is proposed by converting them into products with higher added value to achieve sustainability of the economic and ecological footprint and protect the environment. Based on this, a study looking at the recovery of coffee waste is becoming more relevant in recent decades. Spent coffee grounds (SCG's) resulted from brewing coffee represents the major waste produced among all coffee industry. The fact that SCGs has no economic value be abundant in nature and industry, do not compete with agriculture and especially its high oil content (between 7-15% from its total dry matter weight depending on the coffee varieties, Arabica or Robusta), encourages its use as a sustainable feedstock for bio-oil production. The bio-oil extraction is a crucial step towards biodiesel production by the transesterification process. However, conventional methods used for oil extraction are not recommended due to their high consumption of energy, time, and generation of toxic volatile organic solvents. Thus, finding a sustainable, economical, and efficient extraction technique is crucial to scale up the process and to ensure more environment-friendly production. Under this perspective, the aim of this work was the statistical study to know an efficient strategy for oil extraction by n-hexane using indirect sonication. The coffee waste mixed Arabica and Robusta, which was used in this work. The temperature effect, sonication time, and solvent-to-solid ratio on the oil yield were statistically investigated as dependent variables by Central Composite Rotatable Design (CCRD) 23. The results were analyzed using STATISTICA 7 StatSoft software. The CCRD showed the significance of all the variables tested (P < 0.05) on the process output. The validation of the model by analysis of variance (ANOVA) showed good adjustment for the results obtained for a 95% confidence interval, and also, the predicted values graph vs. experimental values confirmed the satisfactory correlation between the model results. Besides, the identification of the optimum experimental conditions was based on the study of the surface response graphs (2-D and 3-D) and the critical statistical values. Based on the CCDR results, 29 ºC, 56.6 min, and solvent-to-solid ratio 16 were the better experimental conditions defined statistically for coffee waste oil extraction using n-hexane as solvent. In these conditions, the oil yield was >9% in all cases. The results confirmed the efficiency of using an ultrasound bath in extracting oil as a more economical, green, and efficient way when compared to the Soxhlet method.Keywords: coffee waste, optimization, oil yield, statistical planning
Procedia PDF Downloads 120637 Rethinking Modernization Strategy of Muslim Society: The Need for Value-Based Approach
Authors: Louay Safi
Abstract:
The notion of secular society that evolved over the last two centuries was initially intended to free the public sphere from religious imposition, before it assumed the form a comprehensive ideology whose aim is to prevent any overt religious expression from the public space. The negative view of religious expression, and the desire by political elites to purge the public space from all forms of religious expressions were first experienced in the Middle East in the last decades of the twentieth century in relation to Islam, before it manifests itself in the twentieth century Europe. Arab regimes were encouraged by European democracies to marginalize all forms of religious expressions in the public as part of the secularization process that was deemed necessary for modernization and progress. The prohibition of Islamic symbols and outlawing the headscarf was first undertaken to Middle Eastern republics, such as Turkey in 1930s and Syria in 1970s, before it is implemented recently in France. Secularization has been perceived by European powers as the central aspect of social and political liberalization, and was given priority over democratization and human rights, so much so that European elites were willing to entrust the task of nurturing liberal democracy to Arab autocrats and dictators. Not only did the strategy of empowering autocratic regimes to effect liberal democratic culture failed, but it contributed to the rise of Islamist extremism and produced failed states in Syria and Iraq that undermine both national and global peace and stability. The paper adopts the distinction made by John Rawls between political and comprehensive liberalism to argue that the modernization via secularization in Muslim societies is counterproductive and has subverted early successful efforts at democratization and reform in the Middle East. Using case studies that illustrate the role of the secularization strategy in Syria, Iran, and Egypt in undermining democratic and reformist movements in those countries, the paper calls for adopting a different approach rooted in liberal and democratic values rather than cultural practices and lifestyle. The paper shows that Islamic values as articulated by reform movements support a democratic and pluralist political order, and emphasizes the need to legitimize and support social forces that advocate democracy and human rights. Such an alternative strategy allows for internal competition among social groups for popular support, and therefore enhances the chances that those with inclusive and forward-looking political principles and policies would create a democratic and pluralist political order more conducive to meaningful national and global cooperation, and respectful of human dignity.Keywords: democracy, Islamic values, political liberalism, secularization
Procedia PDF Downloads 172636 The Functionality of Ovarian Follicle on Steroid Hormone Secretion under Heat Stress
Authors: Petnamnueng Dettipponpong, Shuen E. Chen
Abstract:
Heat stress is known to have negative effects on reproductive functions, such as follicular development and ovulation. This study aimed to investigate the specific effects of heat stress on steroid hormone secretion of ovarian follicle cells, particularly in relation to the expression of Apolipoprotein B (ApoB) and microsomal triglyceride transfer protein (MTP). The aim of the study was to understand the impact of heat stress on steroid hormone secretion in ovarian follicle cells and to explore the role of ApoB and MTP in this process. Primary granulosa and theca cells were collected from follicles and cultured under heat stress conditions (42 °C) for various time periods. Controls were maintained under normal conditions (37.5 °C ). The culture medium was collected at different time points to measure levels of progesterone and estradiol using ELISA kits. ApoB and MTP expression levels were analyzed using homemade antibodies and western blot. Data were assessed by a one-way ANOVA comparison test with Duncan’s new multiple-range test. Results were expressed as mean±S.E. Difference was considered significant at P<0.05. The results showed that heat stress significantly increased progesterone secretion in granulosa cells, with the peak observed after 13 hours of recovery under thermoneutral conditions. Estradiol secretion by theca cells was not affected. Heat stress also had a significant negative effect on granulosa cell viability. Additionally, the expression of ApoB and MTP was found to be differentially regulated by heat stress. ApoB expression in theca cells was transiently promoted, while ApoB expression in granulosa cells was consistently suppressed. MTP expression increased after 5 hours of recovery in both cell types. These findings suggest a mechanism by which chicken follicle cells export cellular lipids as very low-density lipoprotein (VLDL) in response to thermal stress. These contribute to our understanding of the role of ApoB and MTP steroidogenesis and lipid metabolism under heat stress conditions. The study involved the collection of primary granulosa and theca cells, culture under different temperature conditions, and analysis of the culture medium for hormone levels using ELISA kits. ApoB and MTP expression levels were assessed using homemade antibodies and western blot. This study aimed to address the effects of heat stress on steroid hormone secretion in ovarian follicle cells, as well as the role of ApoB and MTP in this process. The study demonstrates that heat stress stimulates steroidogenesis in granulosa cells, affecting progesterone secretion. ApoB and MTP expression were found to be differentially regulated by heat stress, indicating a potential mechanism for the export of cellular lipids in response to thermal stress.Keywords: heat stress, granulosa cells, theca cells, steroidogenesis, chicken, apolipoprotein B, microsomal triglyceride transfer protein
Procedia PDF Downloads 78