Search results for: stack data
23575 Various Advanced Statistical Analyses of Index Values Extracted from Outdoor Agricultural Workers Motion Data
Authors: Shinji Kawakura, Ryosuke Shibasaki
Abstract:
We have been grouping and developing various kinds of practical, promising sensing applied systems concerning agricultural advancement and technical tradition (guidance). These include advanced devices to secure real-time data related to worker motion, and we analyze by methods of various advanced statistics and human dynamics (e.g. primary component analysis, Ward system based cluster analysis, and mapping). What is more, we have been considering worker daily health and safety issues. Targeted fields are mainly common farms, meadows, and gardens. After then, we observed and discussed time-line style, changing data. And, we made some suggestions. The entire plan makes it possible to improve both the aforementioned applied systems and farms.Keywords: advanced statistical analysis, wearable sensing system, tradition of skill, supporting for workers, detecting crisis
Procedia PDF Downloads 39423574 Mean Monthly Rainfall Prediction at Benina Station Using Artificial Neural Networks
Authors: Hasan G. Elmazoghi, Aisha I. Alzayani, Lubna S. Bentaher
Abstract:
Rainfall is a highly non-linear phenomena, which requires application of powerful supervised data mining techniques for its accurate prediction. In this study the Artificial Neural Network (ANN) technique is used to predict the mean monthly historical rainfall data collected from BENINA station in Benghazi for 31 years, the period of “1977-2006” and the results are compared against the observed values. The specific objective to achieve this goal was to determine the best combination of weather variables to be used as inputs for the ANN model. Several statistical parameters were calculated and an uncertainty analysis for the results is also presented. The best ANN model is then applied to the data of one year (2007) as a case study in order to evaluate the performance of the model. Simulation results reveal that application of ANN technique is promising and can provide reliable estimates of rainfall.Keywords: neural networks, rainfall, prediction, climatic variables
Procedia PDF Downloads 48823573 Revealing of the Wave-Like Process in Kinetics of the Structural Steel Radiation Degradation
Authors: E. A. Krasikov
Abstract:
Dependence of the materials properties on neutron irradiation intensity (flux) is a key problem while usage data of the accelerated materials irradiation in test reactors for forecasting of their capacity for work in realistic (practical) circumstances of operation. Investigations of the reactor pressure vessel steel radiation degradation dependence on fast neutron fluence (embrittlement kinetics) at low flux reveal the instability in the form of the scatter of the experimental data and wave-like sections of embrittlement kinetics appearance. Disclosure of the steel degradation oscillating is a sign of the steel structure cyclic self-recovery transformation as it take place in self-organization processes. This assumption has received support through the discovery of the similar ‘anomalous’ data in scientific publications and by means of own additional experiments. Data obtained stimulate looking-for ways to management of the structural steel radiation stability (for example, by means of nano - structure modification for radiation defects annihilation intensification) for creation of the intelligent self-recovering material. Expected results: - radiation degradation theory and mechanisms development, - more adequate models of the radiation embrittlement elaboration, - surveillance specimen programs improvement, - methods and facility development for usage data of the accelerated materials irradiation for forecasting of their capacity for work in realistic (practical) circumstances of operation, - search of the ways for creating of the radiation stable self-recovery intelligent materials.Keywords: degradation, radiation, steel, wave-like kinetics
Procedia PDF Downloads 30423572 Improving Similarity Search Using Clustered Data
Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong
Abstract:
This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.Keywords: visual search, deep learning, convolutional neural network, machine learning
Procedia PDF Downloads 21523571 Systematic Review and Meta-Analysis of Mid-Term Survival, and Recurrent Mitral Regurgitation for Robotic-Assisted Mitral Valve Repair
Authors: Ramanen Sugunesegran, Michael L. Williams
Abstract:
Over the past two decades surgical approaches for mitral valve (MV) disease have evolved with the advent of minimally invasive techniques. Robotic mitral valve repair (RMVr) safety and efficacy has been well documented, however, mid- to long-term data are limited. The aim of this review was to provide a comprehensive analysis of the available mid- to long-term term data for RMVr. Electronic searches of five databases were performed to identify all relevant studies reporting minimum 5-year data on RMVr. Pre-defined primary outcomes of interest were overall survival, freedom from MV reoperation and freedom from moderate or worse mitral regurgitation (MR) at 5-years or more post-RMVr. A meta-analysis of proportions or means was performed, utilizing a random effects model, to present the data. Kaplan-Meier curves were aggregated using reconstructed individual patient data. Nine studies totaling 3,300 patients undergoing RMVr were identified. Rates of overall survival at 1-, 5- and 10-years were 99.2%, 97.4% and 92.3%, respectively. Freedom from MV reoperation at 8-years post RMVr was 95.0%. Freedom from moderate or worse MR at 7-years was 86.0%. Rates of early post-operative complications were low with only 0.2% all-cause mortality and 1.0% cerebrovascular accident. Reoperation for bleeding was low at 2.2% and successful RMVr was 99.8%. Mean intensive care unit and hospital stay were 22.4 hours and 5.2 days, respectively. RMVr is a safe procedure with low rates of early mortality and other complications. It can be performed with low complication rates in high volume, experienced centers. Evaluation of available mid-term data post-RMVr suggests favorable rates of overall survival, freedom from MV reoperation and freedom from moderate or worse MR recurrence.Keywords: mitral valve disease, mitral valve repair, robotic cardiac surgery, robotic mitral valve repair
Procedia PDF Downloads 8223570 Development of mHealth Information in Community Based on Geographical Information: A Case Study from Saraphi District, Chiang Mai, Thailand
Authors: Waraporn Boonchieng, Ekkarat Boonchieng, Wilawan Senaratana, Jaras Singkaew
Abstract:
Geographical information system (GIS) is a designated system widely used for collecting and analyzing geographical data. Since the introduction of ultra-mobile, 'smart' devices, investigators, clinicians, and even the general public have had powerful new tools for collecting, uploading and accessing information in the field. Epidemiology paired with GIS will increase the efficacy of preventive health care services. The objective of this study is to apply GPS location services that are available on the common mobile device with district health systems, storing data on our private cloud system. The mobile application has been developed for use on iOS, Android, and web-based platforms. The system consists of two parts of district health information, including recorded resident data forms and individual health recorded data forms, which were developed and approved by opinion sharing and public hearing. The application's graphical user interface was developed using HTML5 and PHP with MySQL as a database management system (DBMS). The reporting module of the developed software displays data in a variety of views, from traditional tables to various types of high-resolution, layered graphics, incorporating map location information with street views from Google Maps. Multi-extension exporting is also supported, utilizing standard platforms such as PDF, PNG, JPG, and XLS. The data were collected in the database beginning in March 2013, by district health volunteers and district youth volunteers who had completed the application training program. District health information consisted of patients’ household coordinates, individual health data, social and economic information. This was combined with Google Street View data, collected in March 2014. Studied groups consisted of 16,085 (67.87%) and 47,811 (59.87%) of the total 23,701 households and 79,855 people were collected by the system respectively, in Saraphi district, Chiang Mai Province. The report generated from the system has had a major benefit directly to the Saraphi District Hospital. Healthcare providers are able to use the basic health data to provide a specific home health care service and also to create health promotion activities according to medical needs of the people in the community.Keywords: health, public health, GIS, geographic information system
Procedia PDF Downloads 33623569 Non-Linear Regression Modeling for Composite Distributions
Authors: Mostafa Aminzadeh, Min Deng
Abstract:
Modeling loss data is an important part of actuarial science. Actuaries use models to predict future losses and manage financial risk, which can be beneficial for marketing purposes. In the insurance industry, small claims happen frequently while large claims are rare. Traditional distributions such as Normal, Exponential, and inverse-Gaussian are not suitable for describing insurance data, which often show skewness and fat tails. Several authors have studied classical and Bayesian inference for parameters of composite distributions, such as Exponential-Pareto, Weibull-Pareto, and Inverse Gamma-Pareto. These models separate small to moderate losses from large losses using a threshold parameter. This research introduces a computational approach using a nonlinear regression model for loss data that relies on multiple predictors. Simulation studies were conducted to assess the accuracy of the proposed estimation method. The simulations confirmed that the proposed method provides precise estimates for regression parameters. It's important to note that this approach can be applied to datasets if goodness-of-fit tests confirm that the composite distribution under study fits the data well. To demonstrate the computations, a real data set from the insurance industry is analyzed. A Mathematica code uses the Fisher information algorithm as an iteration method to obtain the maximum likelihood estimation (MLE) of regression parameters.Keywords: maximum likelihood estimation, fisher scoring method, non-linear regression models, composite distributions
Procedia PDF Downloads 3323568 Risks beyond Cyber in IoT Infrastructure and Services
Authors: Mattias Bergstrom
Abstract:
Significance of the Study: This research will provide new insights into the risks with digital embedded infrastructure. Through this research, we will analyze each risk and its potential negation strategies, especially for AI and autonomous automation. Moreover, the analysis that is presented in this paper will convey valuable information for future research that can create more stable, secure, and efficient autonomous systems. To learn and understand the risks, a large IoT system was envisioned, and risks with hardware, tampering, and cyberattacks were collected, researched, and evaluated to create a comprehensive understanding of the potential risks. Potential solutions have then been evaluated on an open source IoT hardware setup. This list shows the identified passive and active risks evaluated in the research. Passive Risks: (1) Hardware failures- Critical Systems relying on high rate data and data quality are growing; SCADA systems for infrastructure are good examples of such systems. (2) Hardware delivers erroneous data- Sensors break, and when they do so, they don’t always go silent; they can keep going, just that the data they deliver is garbage, and if that data is not filtered out, it becomes disruptive noise in the system. (3) Bad Hardware injection- Erroneous generated sensor data can be pumped into a system by malicious actors with the intent to create disruptive noise in critical systems. (4) Data gravity- The weight of the data collected will affect Data-Mobility. (5) Cost inhibitors- Running services that need huge centralized computing is cost inhibiting. Large complex AI can be extremely expensive to run. Active Risks: Denial of Service- It is one of the most simple attacks, where an attacker just overloads the system with bogus requests so that valid requests disappear in the noise. Malware- Malware can be anything from simple viruses to complex botnets created with specific goals, where the creator is stealing computer power and bandwidth from you to attack someone else. Ransomware- It is a kind of malware, but it is so different in its implementation that it is worth its own mention. The goal with these pieces of software is to encrypt your system so that it can only be unlocked with a key that is held for ransom. DNS spoofing- By spoofing DNS calls, valid requests and data dumps can be sent to bad destinations, where the data can be extracted for extortion or to corrupt and re-inject into a running system creating a data echo noise loop. After testing multiple potential solutions. We found that the most prominent solution to these risks was to use a Peer 2 Peer consensus algorithm over a blockchain to validate the data and behavior of the devices (sensors, storage, and computing) in the system. By the devices autonomously policing themselves for deviant behavior, all risks listed above can be negated. In conclusion, an Internet middleware that provides these features would be an easy and secure solution to any future autonomous IoT deployments. As it provides separation from the open Internet, at the same time, it is accessible over the blockchain keys.Keywords: IoT, security, infrastructure, SCADA, blockchain, AI
Procedia PDF Downloads 10723567 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions
Authors: Oscar E. Cariceo, Claudia V. Casal
Abstract:
Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.Keywords: cyberbullying, evidence based practice, machine learning, social work research
Procedia PDF Downloads 16823566 Herbal Medicines Used for the Cure of Jaundice among the Some Tribal Populations of Madhya Pradesh, India
Authors: Awdhesh Narayan Sharma
Abstract:
The use of herbal medicines for the cure of various ailments among the tribal population is as old as human origin itself. Most of the tribal populations of Madhya Pradesh inhabit in remote and inaccessible ecological setup. From long back, tribals and forests are interrelated to each other. They use an enormous range of wild plants for their basic needs and medicines. The tribal developed a unique understanding with wild plants, herbs, etc., and earned specialized knowledge of disease pattern and curative therapy-through hard experiences, common sense, trial, and error methods. They have passed this knowledge through traditions, taboos, totems, folklore by words of mouth from generation to generation. Here, an attempt has been made to study the possible aspects of herbal medicine for the cure of Jaundice among the tribal populations of Madhya Pradesh, India, through primary data as well as available secondary data. The data have been collected from the 305 Bharias of Patalkot, Madhya Pradesh, India, and included available secondary source of data by various investigators. It may be concluded that a sizable herbal medicinal plants' wealth exists in Madhya Pradesh, India, which still awaits for scientific exploration. The existing herbal medicines used for the cure of jaundice need an extensive investigation from the pharmaceutical point of view.Keywords: Bharias, herbal medicine, tribal, Madhya Pradesh
Procedia PDF Downloads 17523565 Characterization of Internet Exchange Points by Using Quantitative Data
Authors: Yamba Dabone, Tounwendyam Frédéric Ouedraogo, Pengwendé Justin Kouraogo, Oumarou Sie
Abstract:
Reliable data transport over the Internet is one of the goals of researchers in the field of computer science. Data such as videos and audio files are becoming increasingly large. As a result, transporting them over the Internet is becoming difficult. Therefore, it has been important to establish a method to locally interconnect autonomous systems (AS) with each other to facilitate traffic exchange. It is in this context that Internet Exchange Points (IXPs) are set up to facilitate local and even regional traffic. They are now the lifeblood of the Internet. Therefore, it is important to think about the factors that can characterize IXPs. However, other more quantifiable characteristics can help determine the quality of an IXP. In addition, these characteristics may allow ISPs to have a clearer view of the exchange node and may also convince other networks to connect to an IXP. To that end, we define five new IXP characteristics: the attraction rate (τₐₜₜᵣ); and the peering rate (τₚₑₑᵣ); the target rate of an IXP (Objₐₜₜ); the number of IXP links (Nₗᵢₙₖ); the resistance rate τₑ𝒻𝒻 and the attraction failure rate (τ𝒻).Keywords: characteristic, autonomous system, internet service provider, internet exchange point, rate
Procedia PDF Downloads 9423564 Statistic Regression and Open Data Approach for Identifying Economic Indicators That Influence e-Commerce
Authors: Apollinaire Barme, Simon Tamayo, Arthur Gaudron
Abstract:
This paper presents a statistical approach to identify explanatory variables linearly related to e-commerce sales. The proposed methodology allows specifying a regression model in order to quantify the relevance between openly available data (economic and demographic) and national e-commerce sales. The proposed methodology consists in collecting data, preselecting input variables, performing regressions for choosing variables and models, testing and validating. The usefulness of the proposed approach is twofold: on the one hand, it allows identifying the variables that influence e- commerce sales with an accessible approach. And on the other hand, it can be used to model future sales from the input variables. Results show that e-commerce is linearly dependent on 11 economic and demographic indicators.Keywords: e-commerce, statistical modeling, regression, empirical research
Procedia PDF Downloads 22623563 A Reasoning Method of Cyber-Attack Attribution Based on Threat Intelligence
Authors: Li Qiang, Yang Ze-Ming, Liu Bao-Xu, Jiang Zheng-Wei
Abstract:
With the increasing complexity of cyberspace security, the cyber-attack attribution has become an important challenge of the security protection systems. The difficult points of cyber-attack attribution were forced on the problems of huge data handling and key data missing. According to this situation, this paper presented a reasoning method of cyber-attack attribution based on threat intelligence. The method utilizes the intrusion kill chain model and Bayesian network to build attack chain and evidence chain of cyber-attack on threat intelligence platform through data calculation, analysis and reasoning. Then, we used a number of cyber-attack events which we have observed and analyzed to test the reasoning method and demo system, the result of testing indicates that the reasoning method can provide certain help in cyber-attack attribution.Keywords: reasoning, Bayesian networks, cyber-attack attribution, Kill Chain, threat intelligence
Procedia PDF Downloads 45023562 A Pre-Assessment Questionnaire to Identify Healthcare Professionals’ Perception on Information Technology Implementation
Authors: Y. Atilgan Şengül
Abstract:
Health information technologies promise higher quality, safer care and much more for both patients and professionals. Despite their promise, they are costly to develop and difficult to implement. On the other hand, user acceptance and usage determine the success of implemented information technology in healthcare. This study provides a model to understand health professionals’ perception and expectation of health information technology. Extensive literature review has been conducted to determine the main factors to be measured. A questionnaire has been designed as a measurement model and submitted to the personnel of an in vitro fertilization clinic. The respondents’ degree of agreement according to five-point Likert scale was 72% for convenient access to data and 69.4% for the importance of data security. There was a significant difference in acceptance of electronic data storage for female respondents. Also, other significant differences between professions were obtained.Keywords: healthcare, health informatics, medical record system, questionnaire
Procedia PDF Downloads 17323561 Validation of Electrical Field Effect on Electrostatic Desalter Modeling with Experimental Laboratory Data
Authors: Fatemeh Yazdanmehr, Iulian Nistor
Abstract:
The scope of the current study is the evaluation of the electric field effect on electrostatic desalting mathematical modeling with laboratory data. This research study was focused on developing a model for an existing operation desalting unit of one of the Iranian heavy oil field with a 75 MBPD production capacity. The high temperature of inlet oil to dehydration unit reduces the oil recovery, so the mathematical modeling of desalter operation parameters is very significant. The existing production unit operating data has been used for the accuracy of the mathematical desalting plant model. The inlet oil temperature to desalter was decreased from 110 to 80°C, and the desalted electrical field was increased from 0.75 to 2.5 Kv/cm. The model result shows that the desalter parameter changes meet the water-oil specification and also the oil production and consequently annual income is increased. In addition to that, changing desalter operation conditions reduces environmental footprint because of flare gas reduction. Following to specify the accuracy of selected electrostatic desalter electrical field, laboratory data has been used. Experimental data are used to ensure the effect of electrical field change on desalter. Therefore, the lab test is done on a crude oil sample. The results include the dehydration efficiency in the presence of a demulsifier and under electrical field (0.75 Kv) conditions at various temperatures. Comparing lab experimental and electrostatic desalter mathematical model results shows 1-3 percent acceptable error which confirms the validity of desalter specification and operation conditions changes.Keywords: desalter, electrical field, demulsification, mathematical modeling, water-oil separation
Procedia PDF Downloads 14023560 Isolation Preserving Medical Conclusion Hold Structure via C5 Algorithm
Authors: Swati Kishor Zode, Rahul Ambekar
Abstract:
Data mining is the extraction of fascinating examples on the other hand information from enormous measure of information and choice is made as indicated by the applicable information extracted. As of late, with the dangerous advancement in internet, stockpiling of information and handling procedures, privacy preservation has been one of the major (higher) concerns in data mining. Various techniques and methods have been produced for protection saving data mining. In the situation of Clinical Decision Support System, the choice is to be made on the premise of the data separated from the remote servers by means of Internet to diagnose the patient. In this paper, the fundamental thought is to build the precision of Decision Support System for multiple diseases for different maladies and in addition protect persistent information while correspondence between Clinician side (Client side) also, the Server side. A privacy preserving protocol for clinical decision support network is proposed so that patients information dependably stay scrambled amid diagnose prepare by looking after the accuracy. To enhance the precision of Decision Support System for various malady C5.0 classifiers and to save security, a Homomorphism encryption algorithm Paillier cryptosystem is being utilized.Keywords: classification, homomorphic encryption, clinical decision support, privacy
Procedia PDF Downloads 33023559 Framework to Quantify Customer Experience
Authors: Anant Sharma, Ashwin Rajan
Abstract:
Customer experience is measured today based on defining a set of metrics and KPIs, setting up thresholds and defining triggers across those thresholds. While this is an effective way of measuring against a Key Performance Indicator ( referred to as KPI in the rest of the paper ), this approach cannot capture the various nuances that make up the overall customer experience. Customers consume a product or service at various levels, which is not reflected in metrics like Customer Satisfaction or Net Promoter Score, but also across other measurements like recurring revenue, frequency of service usage, e-learning and depth of usage. Here we explore an alternative method of measuring customer experience by flipping the traditional views. Rather than rolling customers up to a metric, we roll up metrics to hierarchies and then measure customer experience. This method allows any team to quantify customer experience across multiple touchpoints in a customer’s journey. We make use of various data sources which contain information for metrics like CXSAT, NPS, Renewals, and depths of service usage collected across a customer lifecycle. This data can be mined systematically to get linkages between different data points like geographies, business groups, products and time. Additional views can be generated by blending synthetic contexts into the data to show trends and top/bottom types of reports. We have created a framework that allows us to measure customer experience using the above logic.Keywords: analytics, customers experience, BI, business operations, KPIs, metrics
Procedia PDF Downloads 7523558 Analysis of Noodle Production Process at Yan Hu Food Manufacturing: Basis for Production Improvement
Authors: Rhadinia Tayag-Relanes, Felina C. Young
Abstract:
This study was conducted to analyze the noodle production process at Yan Hu Food Manufacturing for the basis of production improvement. The study utilized the PDCA approach and record review in the gathering of data for the calendar year 2019 from August to October data of the noodle products miki, canton, and misua. Causal-comparative research was used in this study; it attempts to establish cause-effect relationships among the variables such as descriptive statistics and correlation, both were used to compute the data gathered. The study found that miki, canton, and misua production has different cycle time sets for each production and has different production outputs in every set of its production process and a different number of wastages. The company has not yet established its allowable rejection rate/ wastage; instead, this paper used a 1% wastage limit. The researcher recommended the following: machines used for each process of the noodle product must be consistently maintained and monitored; an assessment of all the production operators by checking their performance statistically based on the output and the machine performance; a root cause analysis for finding the solution must be conducted; and an improvement on the recording system of the input and output of the production process of noodle product should be established to eliminate the poor recording of data.Keywords: continuous improvement, process, operations, PDCA
Procedia PDF Downloads 7223557 Modelling the Indonesian Goverment Securities Yield Curve Using Nelson-Siegel-Svensson and Support Vector Regression
Authors: Jamilatuzzahro, Rezzy Eko Caraka
Abstract:
The yield curve is the plot of the yield to maturity of zero-coupon bonds against maturity. In practice, the yield curve is not observed but must be extracted from observed bond prices for a set of (usually) incomplete maturities. There exist many methodologies and theory to analyze of yield curve. We use two methods (the Nelson-Siegel Method, the Svensson Method, and the SVR method) in order to construct and compare our zero-coupon yield curves. The objectives of this research were: (i) to study the adequacy of NSS model and SVR to Indonesian government bonds data, (ii) to choose the best optimization or estimation method for NSS model and SVR. To obtain that objective, this research was done by the following steps: data preparation, cleaning or filtering data, modeling, and model evaluation.Keywords: support vector regression, Nelson-Siegel-Svensson, yield curve, Indonesian government
Procedia PDF Downloads 24423556 Influencers of E-Learning Readiness among Palestinian Secondary School Teachers: An Explorative Study
Authors: Fuad A. A. Trayek, Tunku Badariah Tunku Ahmad, Mohamad Sahari Nordin, Mohammed AM Dwikat
Abstract:
This paper reports on the results of an exploratory factor analysis procedure applied on the e-learning readiness data obtained from a survey of four hundred and seventy-nine (N = 479) teachers from secondary schools in Nablus, Palestine. The data were drawn from a 23-item Likert questionnaire measuring e-learning readiness based on Chapnick's conception of the construct. Principal axis factoring (PAF) with Promax rotation applied on the data extracted four distinct factors supporting four of Chapnick's e-learning readiness dimensions, namely technological readiness, psychological readiness, infrastructure readiness and equipment readiness. Together these four dimensions explained 56% of the variance. These findings provide further support for the construct validity of the items and for the existence of these four factors that measure e-learning readiness.Keywords: e-learning, e-learning readiness, technological readiness, psychological readiness, principal axis factoring
Procedia PDF Downloads 40123555 Design of SAE J2716 Single Edge Nibble Transmission Digital Sensor Interface for Automotive Applications
Authors: Jongbae Lee, Seongsoo Lee
Abstract:
Modern sensors often embed small-size digital controller for sensor control, value calibration, and signal processing. These sensors require digital data communication with host microprocessors, but conventional digital communication protocols are too heavy for price reduction. SAE J2716 SENT (single edge nibble transmission) protocol transmits direct digital waveforms instead of complicated analog modulated signals. In this paper, a SENT interface is designed in Verilog HDL (hardware description language) and implemented in FPGA (field-programmable gate array) evaluation board. The designed SENT interface consists of frame encoder/decoder, configuration register, tick period generator, CRC (cyclic redundancy code) generator/checker, and TX/RX (transmission/reception) buffer. Frame encoder/decoder is implemented as a finite state machine, and it controls whole SENT interface. Configuration register contains various parameters such as operation mode, tick length, CRC option, pause pulse option, and number of nibble data. Tick period generator generates tick signals from input clock. CRC generator/checker generates or checks CRC in the SENT data frame. TX/RX buffer stores transmission/received data. The designed SENT interface can send or receives digital data in 25~65 kbps at 3 us tick. Synthesized in 0.18 um fabrication technologies, it is implemented about 2,500 gates.Keywords: digital sensor interface, SAE J2716, SENT, verilog HDL
Procedia PDF Downloads 30023554 Teaching Translation during Covid-19 Outbreak: Challenges and Discoveries
Authors: Rafat Alwazna
Abstract:
Translation teaching is a particular activity that includes translators and interpreters training either inside or outside institutionalised settings, such as universities. It can also serve as a means of teaching other fields, such as foreign languages. Translation teaching began in the twentieth century. Teachers of translation hold the responsibilities of educating students, developing their translation competence and training them to be professional translators. The activity of translation teaching involves various tasks, including curriculum design, course delivery, material writing as well as application and implementation. The present paper addresses translation teaching during COVID-19 outbreak, seeking to find out the challenges encountered by translation teachers in online translation teaching and the discoveries/solutions arrived at to resolve them. The paper makes use of a comprehensive questionnaire, containing closed-ended and open-ended questions to elicit both quantitative as well as qualitative data from about sixty translation teachers who have been teaching translation at BA and MA levels during COVID-19 outbreak. The data shows that about 40% of the participants evaluate their online translation teaching experience during COVID-19 outbreak as enjoyable and exhilarating. On the contrary, no participant has evaluated his/her online translation teaching experience as being not good, nor has any participant evaluated his/her online translation teaching experience as being terrible. The data also presents that about 23.33% of the participants evaluate their online translation teaching experience as very good, and the same percentage applies to those who evaluate their online translation teaching experience as good to some extent. Moreover, the data indicates that around 13.33% of the participants evaluate their online translation teaching experience as good. The data also demonstrates that the majority of the participants have encountered obstacles in online translation teaching and have concurrently proposed solutions to resolve them.Keywords: online translation teaching, electronic learning platform, COVID-19 outbreak, challenges, solutions
Procedia PDF Downloads 22323553 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem
Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq
Abstract:
High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.Keywords: artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch
Procedia PDF Downloads 18923552 Gnss Aided Photogrammetry for Digital Mapping
Authors: Muhammad Usman Akram
Abstract:
This research work based on GNSS-Aided Photogrammetry for Digital Mapping. It focuses on topographic survey of an area or site which is to be used in future Planning & development (P&D) or can be used for further, examination, exploration, research and inspection. Survey and Mapping in hard-to-access and hazardous areas are very difficult by using traditional techniques and methodologies; as well it is time consuming, labor intensive and has less precision with limited data. In comparison with the advance techniques it is saving with less manpower and provides more precise output with a wide variety of multiple data sets. In this experimentation, Aerial Photogrammetry technique is used where an UAV flies over an area and captures geocoded images and makes a Three-Dimensional Model (3-D Model), UAV operates on a user specified path or area with various parameters; Flight altitude, Ground sampling distance (GSD), Image overlapping, Camera angle etc. For ground controlling, a network of points on the ground would be observed as a Ground Control point (GCP) using Differential Global Positioning System (DGPS) in PPK or RTK mode. Furthermore, that raw data collected by UAV and DGPS will be processed in various Digital image processing programs and Computer Aided Design software. From which as an output we obtain Points Dense Cloud, Digital Elevation Model (DEM) and Ortho-photo. The imagery is converted into geospatial data by digitizing over Ortho-photo, DEM is further converted into Digital Terrain Model (DTM) for contour generation or digital surface. As a result, we get Digital Map of area to be surveyed. In conclusion, we compared processed data with exact measurements taken on site. The error will be accepted if the amount of error is not breached from survey accuracy limits set by concerned institutions.Keywords: photogrammetry, post processing kinematics, real time kinematics, manual data inquiry
Procedia PDF Downloads 3123551 Problems and Challenges in Social Economic Research after COVID-19: The Case Study of Province Sindh
Authors: Waleed Baloch
Abstract:
This paper investigates the problems and challenges in social-economic research in the case study of the province of Sindh after the COVID-19 pandemic; the pandemic has significantly impacted various aspects of society and the economy, necessitating a thorough examination of the resulting implications. The study also investigates potential strategies and solutions to mitigate these challenges, ensuring the continuation of robust social and economic research in the region. Through an in-depth analysis of data and interviews with key stakeholders, the study reveals several significant findings. Firstly, researchers encountered difficulties in accessing primary data due to disruptions caused by the pandemic, leading to limitations in the scope and accuracy of their studies. Secondly, the study highlights the challenges faced in conducting fieldwork, such as restrictions on travel and face-to-face interactions, which impacted the ability to gather reliable data. Lastly, the research identifies the need for innovative research methodologies and digital tools to adapt to the new research landscape brought about by the pandemic. The study concludes by proposing recommendations to address these challenges, including utilizing remote data collection methods, leveraging digital technologies for data analysis, and establishing collaborations among researchers to overcome resource constraints. By addressing these issues, researchers in the social economic field can effectively navigate the post-COVID-19 research landscape, facilitating a deeper understanding of the socioeconomic impacts and facilitating evidence-based policy interventions.Keywords: social economic, sociology, developing economies, COVID-19
Procedia PDF Downloads 6323550 Smart Meter Incorporating UWB Technology
Authors: T. A. Khan, A. B. Khan, M. Babar, T. A. Taj, Imran Ijaz Imran
Abstract:
Smart Meter is a key element in the evolving concept of Smart Grid, which plays an important role in interaction between the consumer and the supplier. In general, the smart meter is an intelligent digital energy meter that measures the consumption of electrical energy and provides other additional services as compared to the conventional energy meters. One of the important element that makes a meter smart and different is its communication module. Smart meters usually have two way and real-time communication between the consumer and the supplier through which its transfer data and information. In this paper, Ultra Wide Band (UWB) is recommended as communication platform because of its high data-rate and presents the physical layer, which could be easily incorporated in existing Smart Meters. The physical layer is simulated in MATLAB Simulink and the results are provided.Keywords: Ultra Wide Band (UWB), Smart Meter, MATLAB, transfer data
Procedia PDF Downloads 51623549 Qualitative Approaches to Mindfulness Meditation Practices in Higher Education
Authors: Patrizia Barroero, Saliha Yagoubi
Abstract:
Mindfulness meditation practices in the context of higher education are becoming more and more common. Some of the reported benefits of mediation interventions and workshops include: improved focus, general well-being, diminished stress, and even increased resilience and grit. A series of workshops free to students, faculty, and staff was offered twice a week over two semesters at Hudson County Community College, New Jersey. The results of an exploratory study based on participants’ subjective reactions to these workshops will be presented. A qualitative approach was used to collect and analyze the data and a hermeneutic phenomenological perspective served as a framework for the research design and data collection and analysis. The data collected includes three recorded videos of semi-structured interviews and several written surveys submitted by volunteer participants.Keywords: mindfulness meditation practices, stress reduction, resilience, grit, higher education success, qualitative research
Procedia PDF Downloads 7523548 Integrated Nested Laplace Approximations For Quantile Regression
Authors: Kajingulu Malandala, Ranganai Edmore
Abstract:
The asymmetric Laplace distribution (ADL) is commonly used as the likelihood function of the Bayesian quantile regression, and it offers different families of likelihood method for quantile regression. Notwithstanding their popularity and practicality, ADL is not smooth and thus making it difficult to maximize its likelihood. Furthermore, Bayesian inference is time consuming and the selection of likelihood may mislead the inference, as the Bayes theorem does not automatically establish the posterior inference. Furthermore, ADL does not account for greater skewness and Kurtosis. This paper develops a new aspect of quantile regression approach for count data based on inverse of the cumulative density function of the Poisson, binomial and Delaporte distributions using the integrated nested Laplace Approximations. Our result validates the benefit of using the integrated nested Laplace Approximations and support the approach for count data.Keywords: quantile regression, Delaporte distribution, count data, integrated nested Laplace approximation
Procedia PDF Downloads 16323547 Measuring Flood Risk concerning with the Flood Protection Embankment in Big Flooding Events of Dhaka Metropolitan Zone
Authors: Marju Ben Sayed, Shigeko Haruyama
Abstract:
Among all kinds of natural disaster, the flood is a common feature in rapidly urbanizing Dhaka city. In this research, assessment of flood risk of Dhaka metropolitan area has been investigated by using an integrated approach of GIS, remote sensing and socio-economic data. The purpose of the study is to measure the flooding risk concerning with the flood protection embankment in big flooding events (1988, 1998 and 2004) and urbanization of Dhaka metropolitan zone. In this research, we considered the Dhaka city into two parts; East Dhaka (outside the flood protection embankment) and West Dhaka (inside the flood protection embankment). Using statistical data, we explored the socio-economic status of the study area population by comparing the density of population, land price and income level. We have drawn the cross section profile of the flood protection embankment into three different points for realizing the flooding risk in the study area, especially in the big flooding year (1988, 1998 and 2004). According to the physical condition of the study area, the land use/land cover map has been classified into five classes. Comparing with each land cover unit, historical weather station data and the socio-economic data, the flooding risk has been evaluated. Moreover, we compared between DEM data and each land cover units to find out the relationship with flood. It is expected that, this study could contribute to effective flood forecasting, relief and emergency management for a future flood event in Dhaka city.Keywords: land use, land cover change, socio-economic, Dhaka city, GIS, flood
Procedia PDF Downloads 29623546 Iterative Method for Lung Tumor Localization in 4D CT
Authors: Sarah K. Hagi, Majdi Alnowaimi
Abstract:
In the last decade, there were immense advancements in the medical imaging modalities. These advancements can scan a whole volume of the lung organ in high resolution images within a short time. According to this performance, the physicians can clearly identify the complicated anatomical and pathological structures of lung. Therefore, these advancements give large opportunities for more advance of all types of lung cancer treatment available and will increase the survival rate. However, lung cancer is still one of the major causes of death with around 19% of all the cancer patients. Several factors may affect survival rate. One of the serious effects is the breathing process, which can affect the accuracy of diagnosis and lung tumor treatment plan. We have therefore developed a semi automated algorithm to localize the 3D lung tumor positions across all respiratory data during respiratory motion. The algorithm can be divided into two stages. First, a lung tumor segmentation for the first phase of the 4D computed tomography (CT). Lung tumor segmentation is performed using an active contours method. Then, localize the tumor 3D position across all next phases using a 12 degrees of freedom of an affine transformation. Two data set where used in this study, a compute simulate for 4D CT using extended cardiac-torso (XCAT) phantom and 4D CT clinical data sets. The result and error calculation is presented as root mean square error (RMSE). The average error in data sets is 0.94 mm ± 0.36. Finally, evaluation and quantitative comparison of the results with a state-of-the-art registration algorithm was introduced. The results obtained from the proposed localization algorithm show a promising result to localize alung tumor in 4D CT data.Keywords: automated algorithm , computed tomography, lung tumor, tumor localization
Procedia PDF Downloads 602