Search results for: sensory processing patterns
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6876

Search results for: sensory processing patterns

5226 Effect of Extrusion Parameters on the Rheological Properties of Ready-To-Eat Extrudates Developed from De-Oiled Rice Bran

Authors: Renu Sharma, D. C. Saxena, Tanuja Srivastava

Abstract:

Mechanical properties of ready-to-eat extrudates are perceived by the consumers as one of the quality criteria. Texture quality of any product has a strong influence on the sensory evaluation as well as on the acceptability of the product. The main texture characteristics influencing the product acceptability are crispness, elasticity, hardness and softness. In the present work, the authors investigated one of the most important textural characteristics of extrudates i.e. hardness. A five-level, four-factor central composite rotatable design was employed to investigate the effect of temperature, screw speed, feed moisture content and feed composition mainly rice bran content and their interactions, on the mechanical hardness of extrudates. Among these, feed moisture was found to be a prominent factor affecting the product hardness. It was found that with the increase of feed moisture content, the rice bran proportion leads to increase in hardness of extrudates whereas the increase of temperature leads to decrease of hardness of product. A good agreement between the predicted (26.49 N) and actual value (28.73N) of the response confirms the validation of response surface methodology (RSM)-model.

Keywords: deoiled rice bran, extrusion, rheological properties, RSM

Procedia PDF Downloads 376
5225 Detecting Local Clusters of Childhood Malnutrition in the Island Province of Marinduque, Philippines Using Spatial Scan Statistic

Authors: Novee Lor C. Leyso, Maylin C. Palatino

Abstract:

Under-five malnutrition continues to persist in the Philippines, particularly in the island Province of Marinduque, with prevalence of some forms of malnutrition even worsening in recent years. Local spatial cluster detection provides a spatial perspective in understanding this phenomenon as key in analyzing patterns of geographic variation, identification of community-appropriate programs and interventions, and focused targeting on high-risk areas. Using data from a province-wide household-based census conducted in 2014–2016, this study aimed to determine and evaluate spatial clusters of under-five malnutrition, across the province and within each municipality at the individual level using household location. Malnutrition was defined as weight-for-age z-score that fall outside the 2 standard deviations from the median of the WHO reference population. The Kulldorff’s elliptical spatial scan statistic in binomial model was used to locate clusters with high-risk of malnutrition, while adjusting for age and membership to government conditional cash transfer program as proxy for socio-economic status. One large significant cluster of under-five malnutrition was found southwest of the province, in which living in these areas at least doubles the risk of malnutrition. Additionally, at least one significant cluster were identified within each municipality—mostly located along the coastal areas. All these indicate apparent geographical variations across and within municipalities in the province. There were also similarities and disparities in the patterns of risk of malnutrition in each cluster across municipalities, and even within municipality, suggesting underlying causes at work that warrants further investigation. Therefore, community-appropriate programs and interventions should be identified and should be focused on high-risk areas to maximize limited government resources. Further studies are also recommended to determine factors affecting variations in childhood malnutrition considering the evidence of spatial clustering found in this study.

Keywords: Binomial model, Kulldorff’s elliptical spatial scan statistic, Philippines, under-five malnutrition

Procedia PDF Downloads 140
5224 Effective Glosses in Reading to Help L2 Vocabulary Learning for Low-Intermediate Technology University Students in Taiwan

Authors: Pi-Lan Yang

Abstract:

It is controversial which type of gloss condition (i.e., gloss language or gloss position) is more effective in second or foreign language (L2) vocabulary learning. The present study compared the performance on learning ten English words in the conditions of L2 English reading with no glosses and with glosses of Chinese equivalents/translations and L2 English definitions at the side of a page and at an attached sheet for low-intermediate Chinese-speaking learners of English, who were technology university students in Taiwan. It is found first that the performances on the immediate posttest and the delayed posttest were overall better in the gloss condition than those in the no-gloss condition. Next, it is found that the glosses of Chinese translations were more effective and sustainable than those of L2 English definitions. Finally, the effects of L2 English glosses at the side of a page were observed to be less sustainable than those at an attached sheet. In addition, an opinion questionnaire used also showed a preference for the glosses of Chinese translations in L2 English reading. These results would be discussed in terms of automated lexical access, sentence processing mechanisms, and the trade-off nature of storage and processing functions in working memory system, proposed by the capacity theory of language comprehension.

Keywords: glosses of Chinese equivalents/translations, glosses of L2 English definitions, L2 vocabulary learning, L2 English reading

Procedia PDF Downloads 247
5223 Ending Wars Over Water: Evaluating the Extent to Which Artificial Intelligence Can Be Used to Predict and Prevent Transboundary Water Conflicts

Authors: Akhila Potluru

Abstract:

Worldwide, more than 250 bodies of water are transboundary, meaning they cross the political boundaries of multiple countries. This creates a system of hydrological, economic, and social interdependence between communities reliant on these water sources. Transboundary water conflicts can occur as a result of this intense interdependence. Many factors contribute to the sparking of transboundary water conflicts, ranging from natural hydrological factors to hydro-political interactions. Previous attempts to predict transboundary water conflicts by analysing changes or trends in the contributing factors have typically failed because patterns in the data are hard to identify. However, there is potential for artificial intelligence and machine learning to fill this gap and identify future ‘hotspots’ up to a year in advance by identifying patterns in data where humans can’t. This research determines the extent to which AI can be used to predict and prevent transboundary water conflicts. This is done via a critical literature review of previous case studies and datasets where AI was deployed to predict water conflict. This research not only delivered a more nuanced understanding of previously undervalued factors that contribute toward transboundary water conflicts (in particular, culture and disinformation) but also by detecting conflict early, governance bodies can engage in processes to de-escalate conflict by providing pre-emptive solutions. Looking forward, this gives rise to significant policy implications and water-sharing agreements, which may be able to prevent water conflicts from developing into wide-scale disasters. Additionally, AI can be used to gain a fuller picture of water-based conflicts in areas where security concerns mean it is not possible to have staff on the ground. Therefore, AI enhances not only the depth of our knowledge about transboundary water conflicts but also the breadth of our knowledge. With demand for water constantly growing, competition between countries over shared water will increasingly lead to water conflict. There has never been a more significant time for us to be able to accurately predict and take precautions to prevent global water conflicts.

Keywords: artificial intelligence, machine learning, transboundary water conflict, water management

Procedia PDF Downloads 105
5222 Wastewater from the Food Industry: Characteristics and Possibilities of Sediments on the Basis of the Dairy Industry

Authors: Monika Gałwa-Widera, Anna Kwarciak–Kozłowska, Lucyna Sławik-Dembiczak

Abstract:

Issues relating to management of sewage sludge from small and medium-sized wastewater treatment plants is a vital issue, which deal with such scholars as well as those directly involved in the issue of wastewater treatment and management of sedimentary. According to the Law on Waste generating waste is responsible for such processing to the product obtained impacted on the environment minimally. In small and medium-sized wastewater treatment plants have to deal with the technology of sludge management technology is far from drying and incineration of sewage sludge. So here you can use other technologies. One of them is the composting of sewage sludge. It is a process of processing and disposal of sewage sludge that effectively their disposal. By composting, we can obtain a product that contains significant amounts of organic matter to assess the fertilizing qualities. Modifications to the ongoing process in biological reactors allow for more rapid receipt of a wholesome product. The research presented and discussed in this publication relate to assist the composting process of sewage sludge and biomass structural material in the shares of rates: 35% biomass, 55% sludge, 10% structural material using a method which involves the re-spawning batch composting physical methods leachate from the composting process.

Keywords: biomass, composting, industry, sewage sludge

Procedia PDF Downloads 440
5221 Indium-Gallium-Zinc Oxide Photosynaptic Device with Alkylated Graphene Oxide for Optoelectronic Spike Processing

Authors: Seyong Oh, Jin-Hong Park

Abstract:

Recently, neuromorphic computing based on brain-inspired artificial neural networks (ANNs) has attracted huge amount of research interests due to the technological abilities to facilitate massively parallel, low-energy consuming, and event-driven computing. In particular, research on artificial synapse that imitate biological synapses responsible for human information processing and memory is in the spotlight. Here, we demonstrate a photosynaptic device, wherein a synaptic weight is governed by a mixed spike consisting of voltage and light spikes. Compared to the device operated only by the voltage spike, ∆G in the proposed photosynaptic device significantly increased from -2.32nS to 5.95nS with no degradation of nonlinearity (NL) (potentiation/depression values were changed from 4.24/8 to 5/8). Furthermore, the Modified National Institute of Standards and Technology (MNIST) digit pattern recognition rates improved from 36% and 49% to 50% and 62% in ANNs consisting of the synaptic devices with 20 and 100 weight states, respectively. We expect that the photosynaptic device technology processed by optoelectronic spike will play an important role in implementing the neuromorphic computing systems in the future.

Keywords: optoelectronic synapse, IGZO (Indium-Gallium-Zinc Oxide) photosynaptic device, optoelectronic spiking process, neuromorphic computing

Procedia PDF Downloads 173
5220 Analysis of the Discursive Dynamics of Preservice Physics Teachers in a Context of Curricular Innovation

Authors: M. A. Barros, M. V. Barros

Abstract:

The aim of this work is to analyze the discursive dynamics of preservice teachers during the implementation of a didactic sequence on topics of Quantum Mechanics for High School. Our research methodology was qualitative, case study type, in which we selected two prospective teachers on the Physics Teacher Training Course of the Sao Carlos Institute of Physics, at the University of Sao Paulo/Brazil. The set of modes of communication analyzed were the intentions and interventions of the teachers, the established communicative approach, the patterns and the contents of the interactions between teachers and students. Data were collected through video recording, interviews and questionnaires conducted before and after an 8 hour mini-course, which was offered to a group of 20 secondary students. As teaching strategy we used an active learning methodology, called: Peer Instruction. The episodes pointed out that both future teachers used interactive dialogic and authoritative communicative approaches to mediate the discussion between peers. In the interactive dialogic dimension the communication pattern was predominantly I-R-F (initiation-response-feedback), in which the future teachers assisted the students in the discussion by providing feedback to their initiations and contributing to the progress of the discussions between peers. Although the interactive dialogic dimension has been preferential during the use of the Peer Instruction method the authoritative communicative approach was also employed. In the authoritative dimension, future teachers used predominantly the type I-R-E (initiation-response-evaluation) communication pattern by asking the students several questions and leading them to the correct answer. Among the main implications the work contributes to the improvement of the practices of future teachers involved in applying active learning methodologies in classroom by identifying the types of communicative approaches and communication patterns used, as well as researches on curriculum innovation in physics in high school.

Keywords: curricular innovation, high school, physics teaching, discursive dynamics

Procedia PDF Downloads 181
5219 Electoral Politics and Voting Behaviour in 2011 Assembly Election in West Bengal, India: A Case Study in Electoral Geography

Authors: Md Motibur Rahman

Abstract:

The present paper attempts to study the electoral politics and voting behavior of 2011 assembly election of West Bengal state in India. Electoral geography is considered as the study of geographical aspects of the organization, conduct, and result of elections. It deals with the spatial voting patterns/behaviour or the study of the spatial distribution of political phenomena of voting. Voting behavior is a form of political psychology which played a great role in political decision-making process. The voting behavior of the electorates is largely influenced by their perception that existing during the time of election. The main focus of the study will be to analyze the electoral politics of the party organizations and political profile of the electorates. The principle objectives of the present work are i) to study the spatial patterns of voting behavior in 2011 assembly election in West Bengal, ii) to analysis the result and finding of 2011 assembly election. The whole study based on the secondary source of data. The electoral data have taken from Election Commission of India, New Delhi and Centre for the study of Developing Societies (CSDS) in New Delhi. In the battle of 2011 Assembly election in West Bengal, the two major parties were Left Front and Trinamool Congress. This election witnessed the remarkable successes of Trinamool Congress and decline of 34 years longest ruler party that is Left Front. Trinamool Congress won a majority of seats that 227 out of 294 but Left Front won only 62 seats out of 294 seats. The significance of the present study is that it helps in understanding the voting pattern, voting behaviour, trends of voting and also helps for further study of electoral geography in West Bengal. The study would be highly significant and helpful to the planners, politicians, and administrators who are involved in the formulation of development plans and programmes for the people of the state.

Keywords: assembly election, electoral geography, electoral politics, voting behaviour

Procedia PDF Downloads 232
5218 Corpus-Based Neural Machine Translation: Empirical Study Multilingual Corpus for Machine Translation of Opaque Idioms - Cloud AutoML Platform

Authors: Khadija Refouh

Abstract:

Culture bound-expressions have been a bottleneck for Natural Language Processing (NLP) and comprehension, especially in the case of machine translation (MT). In the last decade, the field of machine translation has greatly advanced. Neural machine translation NMT has recently achieved considerable development in the quality of translation that outperformed previous traditional translation systems in many language pairs. Neural machine translation NMT is an Artificial Intelligence AI and deep neural networks applied to language processing. Despite this development, there remain some serious challenges that face neural machine translation NMT when translating culture bounded-expressions, especially for low resources language pairs such as Arabic-English and Arabic-French, which is not the case with well-established language pairs such as English-French. Machine translation of opaque idioms from English into French are likely to be more accurate than translating them from English into Arabic. For example, Google Translate Application translated the sentence “What a bad weather! It runs cats and dogs.” to “يا له من طقس سيء! تمطر القطط والكلاب” into the target language Arabic which is an inaccurate literal translation. The translation of the same sentence into the target language French was “Quel mauvais temps! Il pleut des cordes.” where Google Translate Application used the accurate French corresponding idioms. This paper aims to perform NMT experiments towards better translation of opaque idioms using high quality clean multilingual corpus. This Corpus will be collected analytically from human generated idiom translation. AutoML translation, a Google Neural Machine Translation Platform, is used as a custom translation model to improve the translation of opaque idioms. The automatic evaluation of the custom model will be compared to the Google NMT using Bilingual Evaluation Understudy Score BLEU. BLEU is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Human evaluation is integrated to test the reliability of the Blue Score. The researcher will examine syntactical, lexical, and semantic features using Halliday's functional theory.

Keywords: multilingual corpora, natural language processing (NLP), neural machine translation (NMT), opaque idioms

Procedia PDF Downloads 149
5217 Optimization of Cacao Fermentation in Davao Philippines Using Sustainable Method

Authors: Ian Marc G. Cabugsa, Kim Ryan Won, Kareem Mamac, Manuel Dee, Merlita Garcia

Abstract:

An optimized cacao fermentation technique was developed for the cacao farmers of Davao City Philippines. Cacao samples with weights ranging from 150-250 kilograms were collected from various cacao farms in Davao City and Zamboanga City Philippines. Different fermentation techniques were used starting with design of the sweat box, prefermentation conditionings, number of days for fermentation and number of turns. As the beans are being fermented, its temperature was regularly monitored using a digital thermometer. The resultant cacao beans were assessed using physical and chemical means. For the physical assessment, the bean cut test, bean count tests, and sensory test were used. Quantification of theobromine, caffeine, and antioxidants in the form of equivalent quercetin was used for chemical assessment. Both the theobromine and caffeine were analyzed using HPLC method while the antioxidant was analyzed spectrometrically. To come up with the best fermentation procedure, the different assessment were given priority coefficients wherein the physical tests – taste test, cut, and bean count tests were given priority over the results of the chemical test. The result of the study was an optimized fermentation protocol that is readily adaptable and transferable to any cacao cooperatives or groups in Mindanao or even Philippines as a whole.

Keywords: cacao, fermentation, HPLC, optimization, Philippines

Procedia PDF Downloads 452
5216 Local Procurement in Ghana's Hotel Industry: A Study of the Driving Forces, Perceptions and Procurement Patterns

Authors: Adu-Ampomah Yaw Junior

Abstract:

Local procurement has become one of the latest trends in the discourse of sustainable tourism due to the economic benefits it generates for tourist destinations in developing countries. Local procurement helps in creating jobs which consequently helps in alleviating poverty. However, there have been limited studies on local procurement patterns in developing countries. Research on hotel procurement practices has mainly emphasized the challenges that hoteliers face when procuring locally, leaving questions regarding their motivations to engage in local procurement unanswered. The institutional theory provides a suitable framework to better understand these motivations as it underlines the importance of individual cognitive perceptions on issues in shaping organizational response strategies. More specifically, the extent to which an issue is perceived to belong to the organization’s responsibility. Also the organizational actors’ belief of losses or gains resultant from acting or not acting on an issue (degree of importance). Furthermore the organizational actors’ belief of the probability of resolving an issue (degree of feasibility). These factors influence how an organization will act on this issue. Hence, this paper adopts an institutional perspective to examine local procurement patterns of food by hoteliers in Ghana. Qualitative interviews with 20 procurement managers about their procurement practices and motivations, as well as interviews with different stakeholders for data triangulation purposes, indicated that most hotels sourced their food from middlemen who imported most of their products. However, direct importation was more prevalent foreign owned hotels as opposed to locally owned ones. Notwithstanding, the importation and the usage of foreign foods as opposed to local ones can be explained by the lack of pressure from NGOs and trade associations on hotels to act responsibly. Though guests’ menu preferences were perceived as important to hoteliers business operations, western tourists demand foreign food primarily with the foreign owned hotels make it less important to procure local produce. Lastly hoteliers, particularly those in foreign owned ones, perceive local procurement to be less feasible, raising concerns about quality and variety of local produce. The paper outlines strategies to improve the perception and degree of local Firstly, there is the need for stakeholder engagement in order to make hoteliers feel responsible for acting on the issue.Again it is crucial for Ghana government to promote and encourage hotels to buy local produce. Also, the government has to also make funds and storage facilities available for farmers to impact on the quality and quantity of local produce. Moreover, Sites need to be secured for farmers to engage in sustained farming.Furthermore, there is the need for collaborations between various stakeholders to organize training programs for farmers. Notwithstanding hotels need to market local produce to their guests. Finally, the Ghana hotels association has to encourage hotels to indulge in local procurement.

Keywords: sustainable tourism, feasible, important, local procurement

Procedia PDF Downloads 197
5215 Times2D: A Time-Frequency Method for Time Series Forecasting

Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan

Abstract:

Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.

Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation

Procedia PDF Downloads 42
5214 The Role of Artificial Intelligence in Creating Personalized Health Content for Elderly People: A Systematic Review Study

Authors: Mahnaz Khalafehnilsaz, Rozina Rahnama

Abstract:

Introduction: The elderly population is growing rapidly, and with this growth comes an increased demand for healthcare services. Artificial intelligence (AI) has the potential to revolutionize the delivery of healthcare services to the elderly population. In this study, the various ways in which AI is used to create health content for elderly people and its transformative impact on the healthcare industry will be explored. Method: A systematic review of the literature was conducted to identify studies that have investigated the role of AI in creating health content specifically for elderly people. Several databases, including PubMed, Scopus, and Web of Science, were searched for relevant articles published between 2000 and 2022. The search strategy employed a combination of keywords related to AI, personalized health content, and the elderly. Studies that utilized AI to create health content for elderly individuals were included, while those that did not meet the inclusion criteria were excluded. A total of 20 articles that met the inclusion criteria were identified. Finding: The findings of this review highlight the diverse applications of AI in creating health content for elderly people. One significant application is the use of natural language processing (NLP), which involves the creation of chatbots and virtual assistants capable of providing personalized health information and advice to elderly patients. AI is also utilized in the field of medical imaging, where algorithms analyze medical images such as X-rays, CT scans, and MRIs to detect diseases and abnormalities. Additionally, AI enables the development of personalized health content for elderly patients by analyzing large amounts of patient data to identify patterns and trends that can inform healthcare providers in developing tailored treatment plans. Conclusion: AI is transforming the healthcare industry by providing a wide range of applications that can improve patient outcomes and reduce healthcare costs. From creating chatbots and virtual assistants to analyzing medical images and developing personalized treatment plans, AI is revolutionizing the way healthcare is delivered to elderly patients. Continued investment in this field is essential to ensure that elderly patients receive the best possible care.

Keywords: artificial intelligence, health content, older adult, healthcare

Procedia PDF Downloads 69
5213 PsyVBot: Chatbot for Accurate Depression Diagnosis using Long Short-Term Memory and NLP

Authors: Thaveesha Dheerasekera, Dileeka Sandamali Alwis

Abstract:

The escalating prevalence of mental health issues, such as depression and suicidal ideation, is a matter of significant global concern. It is plausible that a variety of factors, such as life events, social isolation, and preexisting physiological or psychological health conditions, could instigate or exacerbate these conditions. Traditional approaches to diagnosing depression entail a considerable amount of time and necessitate the involvement of adept practitioners. This underscores the necessity for automated systems capable of promptly detecting and diagnosing symptoms of depression. The PsyVBot system employs sophisticated natural language processing and machine learning methodologies, including the use of the NLTK toolkit for dataset preprocessing and the utilization of a Long Short-Term Memory (LSTM) model. The PsyVBot exhibits a remarkable ability to diagnose depression with a 94% accuracy rate through the analysis of user input. Consequently, this resource proves to be efficacious for individuals, particularly those enrolled in academic institutions, who may encounter challenges pertaining to their psychological well-being. The PsyVBot employs a Long Short-Term Memory (LSTM) model that comprises a total of three layers, namely an embedding layer, an LSTM layer, and a dense layer. The stratification of these layers facilitates a precise examination of linguistic patterns that are associated with the condition of depression. The PsyVBot has the capability to accurately assess an individual's level of depression through the identification of linguistic and contextual cues. The task is achieved via a rigorous training regimen, which is executed by utilizing a dataset comprising information sourced from the subreddit r/SuicideWatch. The diverse data present in the dataset ensures precise and delicate identification of symptoms linked with depression, thereby guaranteeing accuracy. PsyVBot not only possesses diagnostic capabilities but also enhances the user experience through the utilization of audio outputs. This feature enables users to engage in more captivating and interactive interactions. The PsyVBot platform offers individuals the opportunity to conveniently diagnose mental health challenges through a confidential and user-friendly interface. Regarding the advancement of PsyVBot, maintaining user confidentiality and upholding ethical principles are of paramount significance. It is imperative to note that diligent efforts are undertaken to adhere to ethical standards, thereby safeguarding the confidentiality of user information and ensuring its security. Moreover, the chatbot fosters a conducive atmosphere that is supportive and compassionate, thereby promoting psychological welfare. In brief, PsyVBot is an automated conversational agent that utilizes an LSTM model to assess the level of depression in accordance with the input provided by the user. The demonstrated accuracy rate of 94% serves as a promising indication of the potential efficacy of employing natural language processing and machine learning techniques in tackling challenges associated with mental health. The reliability of PsyVBot is further improved by the fact that it makes use of the Reddit dataset and incorporates Natural Language Toolkit (NLTK) for preprocessing. PsyVBot represents a pioneering and user-centric solution that furnishes an easily accessible and confidential medium for seeking assistance. The present platform is offered as a modality to tackle the pervasive issue of depression and the contemplation of suicide.

Keywords: chatbot, depression diagnosis, LSTM model, natural language process

Procedia PDF Downloads 69
5212 Epidemiology and Jeopardy Aspect of Febrile Neutropenia Patients by Means of Infectious Maladies

Authors: Pouya Karimi, Ramin Ghasemi Shayan

Abstract:

Conclusions of the sort and setting of observational treatment for immunocompromised patients with fever are confused by the qualities of the hidden disease and the impacts of medications previously got, just as by changing microbiological examples and patterns in sedate obstruction at national and institutional levels. A few frameworks have been proposed to recognize patients who could profit by outpatient anti-infection treatment from patients who require hospitalization. Useful contemplations may choose whether the fundamental checking during the time of neutropenia can be accomplished.

Keywords: microbiology, infectious, neutropenia, epidemiology

Procedia PDF Downloads 162
5211 Multiscale Process Modeling of Ceramic Matrix Composites

Authors: Marianna Maiaru, Gregory M. Odegard, Josh Kemppainen, Ivan Gallegos, Michael Olaya

Abstract:

Ceramic matrix composites (CMCs) are typically used in applications that require long-term mechanical integrity at elevated temperatures. CMCs are usually fabricated using a polymer precursor that is initially polymerized in situ with fiber reinforcement, followed by a series of cycles of pyrolysis to transform the polymer matrix into a rigid glass or ceramic. The pyrolysis step typically generates volatile gasses, which creates porosity within the polymer matrix phase of the composite. Subsequent cycles of monomer infusion, polymerization, and pyrolysis are often used to reduce the porosity and thus increase the durability of the composite. Because of the significant expense of such iterative processing cycles, new generations of CMCs with improved durability and manufacturability are difficult and expensive to develop using standard Edisonian approaches. The goal of this research is to develop a computational process-modeling-based approach that can be used to design the next generation of CMC materials with optimized material and processing parameters for maximum strength and efficient manufacturing. The process modeling incorporates computational modeling tools, including molecular dynamics (MD), to simulate the material at multiple length scales. Results from MD simulation are used to inform the continuum-level models to link molecular-level characteristics (material structure, temperature) to bulk-level performance (strength, residual stresses). Processing parameters are optimized such that process-induced residual stresses are minimized and laminate strength is maximized. The multiscale process modeling method developed with this research can play a key role in the development of future CMCs for high-temperature and high-strength applications. By combining multiscale computational tools and process modeling, new manufacturing parameters can be established for optimal fabrication and performance of CMCs for a wide range of applications.

Keywords: digital engineering, finite elements, manufacturing, molecular dynamics

Procedia PDF Downloads 98
5210 Strengthening Strategy across Languages: A Cognitive and Grammatical Universal Phenomenon

Authors: Behnam Jay

Abstract:

In this study, the phenomenon called “Strengthening” in human language refers to the strategic use of multiple linguistic elements to intensify specific grammatical or semantic functions. This study explores cross-linguistic evidence demonstrating how strengthening appears in various grammatical structures. In French and Spanish, double negatives are used not to cancel each other out but to intensify the negation, challenging the conventional understanding that double negatives result in an affirmation. For example, in French, il ne sait pas (He dosn't know.) uses both “ne” and “pas” to strengthen the negation. Similarly, in Spanish, No vio a nadie. (He didn't see anyone.) uses “no” and “nadie” to achieve a stronger negative meaning. In Japanese, double honorifics, often perceived as erroneous, are reinterpreted as intentional efforts to amplify politeness, as seen in forms like ossharareru (to say, (honorific)). Typically, an honorific morpheme appears only once in a predicate, but native speakers often use double forms to reinforce politeness. In Turkish, the word eğer (indicating a condition) is sometimes used together with the conditional suffix -se(sa) within the same sentence to strengthen the conditional meaning, as in Eğer yağmur yağarsa, o gelmez. (If it rains, he won't come). Furthermore, the combination of question words with rising intonation in various languages serves to enhance interrogative force. These instances suggest that strengthening is a cross-linguistic strategy that may reflect a broader cognitive mechanism in language processing. This paper investigates these cases in detail, providing insights into why languages may adopt such strategies. No corpus was used for collecting examples from different languages. Instead, the examples were gathered from languages the author encountered during their research, focusing on specific grammatical and morphological phenomena relevant to the concept of strengthening. Due to the complexity of employing a comparative method across multiple languages, this approach was chosen to illustrate common patterns of strengthening based on available data. It is acknowledged that different languages may have different strengthening strategies in various linguistic domains. While the primary focus is on grammar and morphology, it is recognized that the strengthening phenomenon may also appear in phonology. Future research should aim to include a broader range of languages and utilize more comprehensive comparative methods where feasible to enhance methodological rigor and explore this phenomenon more thoroughly.

Keywords: strengthening, cross-linguistic analysis, syntax, semantics, cognitive mechanism

Procedia PDF Downloads 24
5209 Harnessing the Power of Artificial Intelligence: Advancements and Ethical Considerations in Psychological and Behavioral Sciences

Authors: Nayer Mofidtabatabaei

Abstract:

Advancements in artificial intelligence (AI) have transformed various fields, including psychology and behavioral sciences. This paper explores the diverse ways in which AI is applied to enhance research, diagnosis, therapy, and understanding of human behavior and mental health. We discuss the potential benefits and challenges associated with AI in these fields, emphasizing the ethical considerations and the need for collaboration between AI researchers and psychological and behavioral science experts. Artificial Intelligence (AI) has gained prominence in recent years, revolutionizing multiple industries, including healthcare, finance, and entertainment. One area where AI holds significant promise is the field of psychology and behavioral sciences. AI applications in this domain range from improving the accuracy of diagnosis and treatment to understanding complex human behavior patterns. This paper aims to provide an overview of the various AI applications in psychological and behavioral sciences, highlighting their potential impact, challenges, and ethical considerations. Mental Health Diagnosis AI-driven tools, such as natural language processing and sentiment analysis, can analyze large datasets of text and speech to detect signs of mental health issues. For example, chatbots and virtual therapists can provide initial assessments and support to individuals suffering from anxiety or depression. Autism Spectrum Disorder (ASD) Diagnosis AI algorithms can assist in early ASD diagnosis by analyzing video and audio recordings of children's behavior. These tools help identify subtle behavioral markers, enabling earlier intervention and treatment. Personalized Therapy AI-based therapy platforms use personalized algorithms to adapt therapeutic interventions based on an individual's progress and needs. These platforms can provide continuous support and resources for patients, making therapy more accessible and effective. Virtual Reality Therapy Virtual reality (VR) combined with AI can create immersive therapeutic environments for treating phobias, PTSD, and social anxiety. AI algorithms can adapt VR scenarios in real-time to suit the patient's progress and comfort level. Data Analysis AI aids researchers in processing vast amounts of data, including survey responses, brain imaging, and genetic information. Privacy Concerns Collecting and analyzing personal data for AI applications in psychology and behavioral sciences raise significant privacy concerns. Researchers must ensure the ethical use and protection of sensitive information. Bias and Fairness AI algorithms can inherit biases present in training data, potentially leading to biased assessments or recommendations. Efforts to mitigate bias and ensure fairness in AI applications are crucial. Transparency and Accountability AI-driven decisions in psychology and behavioral sciences should be transparent and subject to accountability. Patients and practitioners should understand how AI algorithms operate and make decisions. AI applications in psychological and behavioral sciences have the potential to transform the field by enhancing diagnosis, therapy, and research. However, these advancements come with ethical challenges that require careful consideration. Collaboration between AI researchers and psychological and behavioral science experts is essential to harness AI's full potential while upholding ethical standards and privacy protections. The future of AI in psychology and behavioral sciences holds great promise, but it must be navigated with caution and responsibility.

Keywords: artificial intelligence, psychological sciences, behavioral sciences, diagnosis and therapy, ethical considerations

Procedia PDF Downloads 71
5208 Attention and Creative Problem-Solving: Cognitive Differences between Adults with and without Attention Deficit Hyperactivity Disorder

Authors: Lindsey Carruthers, Alexandra Willis, Rory MacLean

Abstract:

Introduction: It has been proposed that distractibility, a key diagnostic criterion of Attention Deficit Hyperactivity Disorder (ADHD), may be associated with higher creativity levels in some individuals. Anecdotal and empirical evidence has shown that ADHD is therefore beneficial to creative problem-solving, and the generation of new ideas and products. Previous studies have only used one or two measures of attention, which is insufficient given that it is a complex cognitive process. The current study aimed to determine in which ways performance on creative problem-solving tasks and a range of attention tests may be related, and if performance differs between adults with and without ADHD. Methods: 150 adults, 47 males and 103 females (mean age=28.81 years, S.D.=12.05 years), were tested at Edinburgh Napier University. Of this set, 50 participants had ADHD, and 100 did not, forming the control group. Each participant completed seven attention tasks, assessing focussed, sustained, selective, and divided attention. Creative problem-solving was measured using divergent thinking tasks, which require multiple original solutions for one given problem. Two types of divergent thinking task were used: verbal (requires written responses) and figural (requires drawn responses). Each task is scored for idea originality, with higher scores indicating more creative responses. Correlational analyses were used to explore relationships between attention and creative problem-solving, and t-tests were used to study the between group differences. Results: The control group scored higher on originality for figural divergent thinking (t(148)= 3.187, p< .01), whereas the ADHD group had more original ideas for the verbal divergent thinking task (t(148)= -2.490, p < .05). Within the control group, figural divergent thinking scores were significantly related to both selective (r= -.295 to -.285, p < .01) and divided attention (r= .206 to .290, p < .05). Alternatively, within the ADHD group, both selective (r= -.390 to -.356, p < .05) and divided (r= .328 to .347, p < .05) attention are related to verbal divergent thinking. Conclusions: Selective and divided attention are both related to divergent thinking, however the performance patterns are different between each group, which may point to cognitive variance in the processing of these problems and how they are managed. The creative differences previously found between those with and without ADHD may be dependent on task type, which to the author’s knowledge, has not been distinguished previously. It appears that ADHD does not specifically lead to higher creativity, but may provide explanation for creative differences when compared to those without the disorder.

Keywords: ADHD, attention, creativity, problem-solving

Procedia PDF Downloads 456
5207 Amniotic Fluid Mesenchymal Stem Cells Selected for Neural Specificity Ameliorates Chemotherapy Induced Hearing Loss and Pain Perception

Authors: Jan F. Talts, Amit Saxena, Kåre Engkilde

Abstract:

Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most frequent side effects caused by anti-neoplastic agents, with a prevalence from 19 % to 85 %. Clinically, CIPN is a mostly sensory neuropathy leading to pain and to motor and autonomic changes. Due to its high prevalence among cancer patients, CIPN constitutes a major problem for both cancer patients and survivors, especially because currently, there is no single effective method of preventing CIPN. Hearing loss is the most common form of sensory impairment in humans and can be caused by ototoxic chemical compounds such as chemotherapy (platinum-based antineoplastic agents).In rodents, single or repeated cisplatin injections induce peripheral neuropathy and hearing impairment mimicking human disorder, allowing studying the efficacy of new pharmacological candidates in chemotherapy-induced hearing loss and peripheral neuropathy. RNA sequencing data from full term amniotic fluid (TAF) mesenchymal stemcell (MSC) clones was used to identify neural-specific markers present on TAF-MSC. Several prospective neural markers were tested by flow cytometry on cultured TAF-MSC. One of these markers was used for cell-sorting using Tyto MACSQuant cell sorter, and the neural marker positive cell population was expanded for several passages to the final therapeutic product stage. Peripheral neuropathy and hearing loss was induced in mice by administration of cisplatin in three week-long cycles. The efficacy of neural-specific TAF-MSC in treating hearing loss and pain perception was evaluated by administration of three injections of 3 million cells/kg by intravenous route or three injections of 3 million cells/kg by intra-arterial route after each cisplatin cycle treatment. Auditory brainstem responses (ABR) are electric potentials recorded from scalp electrodes, and the first ABR wave represents the summed activity of the auditory nerve fibers contacting the inner hair cells. For ABR studies, mice were anesthetized, then earphones were placed in the left ear of each mouse, an active electrode was placed in the vertex of the skull, a reference electrode under the skin of the mastoid bone, and a ground electrode in the neck skin. The stimuli consisted of tone pips of five frequencies (2, 4, 6, 12, 16, and 24 kHz) at various sound levels (from 0 to 90 dB) ranging to cover the mouse auditory frequency range. The von Frey test was used to assess the onset and maintenance of mechanical allodynia over time. Mice were placed in clear plexiglass cages on an elevated mesh floor and tested after 30 min of habituation. Mechanical paw withdrawal threshold was examined using an electronic von Frey anesthesiometer. Cisplatin groups treated with three injections of 3 million cells/kg by intravenous route and three injections of 3 million cells/kg by intra-arterial route after each cisplatin cycle treatment presented, a significant increase of hearing acuity characterized by a decrease of ABR threshold and a decrease of neuropathic pain characterized by an increase of von Frey paw withdrawal threshold compared to controls only receiving cisplatin. This study shows that treatment with MSCselected for neural specificity presents significant positive efficacy on the chemotherapy-induced neuropathic pain and the chemotherapy-induced hearing loss.

Keywords: mesenchymal stem cell, peripheral neuropathy, amniotic fluid, regenerative medicine

Procedia PDF Downloads 166
5206 Mutations in the GJB2 Gene Are the Cause of an Important Number of Non-Syndromic Deafness Cases

Authors: Habib Onsori, Somayeh Akrami, Mohammad Rahmati

Abstract:

Deafness is the most common sensory disorder with the frequency of 1/1000 in many populations. Mutations in the GJB2 (CX26) gene at the DFNB1 locus on chromosome 13q12 are associated with congenital hearing loss. Approximately 80% of congenital hearing loss cases are recessively inherited and 15% dominantly inherited. Mutations of the GJB2 gene, encoding gap junction protein Connexin 26 (Cx26), are the most common cause of hereditary congenital hearing loss in many countries. This report presents two cases of different mutations from Iranian patients with bilateral hearing loss. DNA studies were performed for the GJB2 gene by PCR and sequencing methods. In one of them, direct sequencing of the gene showed a heterozygous T→C transition at nucleotide 604 resulting in a cysteine to arginine amino acid substitution at codon 202 (C202R) in the fourth extracellular domain (TM4) of the protein. The analyses indicate that the C202R mutation appeared de novo in the proband with a possible dominant effect (GenBank: KF 638275). In the other one, DNA sequencing revealed a compound heterozygous mutation (35delG, 363delC) in the Cx26 gene that is strongly associated with congenital non-syndromic hearing loss (NSHL). So screening the mutations for hearing loss individuals referring to genetics counseling centers before marriage and or pregnancy is recommended.

Keywords: CX26, deafness, GJB2, mutation

Procedia PDF Downloads 488
5205 Performance of an Improved Fluidized System for Processing Green Tea

Authors: Nickson Kipng’etich Lang’at, Thomas Thoruwa, John Abraham, John Wanyoko

Abstract:

Green tea is made from the top two leaves and buds of a shrub, Camellia sinensis, of the family Theaceae and the order Theales. The green tea leaves are picked and immediately sent to be dried or steamed to prevent fermentation. Fluid bed drying technique is a common drying method used in drying green tea because of its ease in design and construction and fluidization of fine tea particles. Major problems in this method are significant loss of chemical content of the leaf and green appearance of tea, retention of high moisture content in the leaves and bed channeling and defluidization. The energy associated with the drying technology has been shown to be a vital factor in determining the quality of green tea. As part of the implementation, prototype dryer was built that facilitated sequence of operations involving steaming, cooling, pre-drying and final drying. The major findings of the project were in terms of quality characteristics of tea leaves and energy consumption during processing. The optimal design achieved a moisture content of 4.2 ± 0.84%. With the optimum drying temperature of 100 ºC, the specific energy consumption was 1697.8 kj.Kg-1 and evaporation rate of 4.272 x 10-4 Kg.m-2.s-1. The energy consumption in a fluidized system can be further reduced by focusing on energy saving designs.

Keywords: evaporation rate, fluid bed dryer, maceration, specific energy consumption

Procedia PDF Downloads 313
5204 Efficacy of a Wiener Filter Based Technique for Speech Enhancement in Hearing Aids

Authors: Ajish K. Abraham

Abstract:

Hearing aid is the most fundamental technology employed towards rehabilitation of persons with sensory neural hearing impairment. Hearing in noise is still a matter of major concern for many hearing aid users and thus continues to be a challenging issue for the hearing aid designers. Several techniques are being currently used to enhance the speech at the hearing aid output. Most of these techniques, when implemented, result in reduction of intelligibility of the speech signal. Thus the dissatisfaction of the hearing aid user towards comprehending the desired speech amidst noise is prevailing. Multichannel Wiener Filter is widely implemented in binaural hearing aid technology for noise reduction. In this study, Wiener filter based noise reduction approach is experimented for a single microphone based hearing aid set up. This method checks the status of the input speech signal in each frequency band and then selects the relevant noise reduction procedure. Results showed that the Wiener filter based algorithm is capable of enhancing speech even when the input acoustic signal has a very low Signal to Noise Ratio (SNR). Performance of the algorithm was compared with other similar algorithms on the basis of improvement in intelligibility and SNR of the output, at different SNR levels of the input speech. Wiener filter based algorithm provided significant improvement in SNR and intelligibility compared to other techniques.

Keywords: hearing aid output speech, noise reduction, SNR improvement, Wiener filter, speech enhancement

Procedia PDF Downloads 247
5203 Retrofitting Cement Plants with Oxyfuel Technology for Carbon Capture

Authors: Peloriadi Konstantina, Fakis Dimitris, Grammelis Panagiotis

Abstract:

Methods for carbon capture and storage (CCS) can play a key role in the reduction of industrial CO₂ emissions, especially in the cement industry, which accounts for 7% of global emissions. Cement industries around the world have committed to address this problem by reaching carbon neutrality by the year 2050. The aim of the work to be presented was to contribute to the decarbonization strategy by integrating the 1st generation oxyfuel technology in cement production plants. This technology has been shown to improve fuel efficiency while providing one of the most cost-effective solutions when compared to other capture methods. A validated simulation of the cement plant was thus used as a basis to develop an oxyfuel retrofitted cement process. The process model for the oxyfuel technology is developed on the ASPEN (Advanced System for Process Engineering) PLUSTM simulation software. This process consists of an Air Separation Unit (ASU), an oxyfuel cement plant with coal and alternative solid fuel (ASF) as feedstock, and a carbon dioxide processing unit (CPU). A detailed description and analysis of the CPU will be presented, including the findings of a literature review and simulation results, regarding the effects of flue gas impurities during operation. Acknowledgment: This research has been conducted in the framework of the EU funded AC2OCEM project, which investigates first and the second generation oxyfuel concepts.

Keywords: oxyfuel technology, carbon capture and storage, CO₂ processing unit, cement, aspen plus

Procedia PDF Downloads 193
5202 A Simple Device for Characterizing High Power Electron Beams for Welding

Authors: Aman Kaur, Colin Ribton, Wamadeva Balachandaran

Abstract:

Electron beam welding due to its inherent advantages is being extensively used for material processing where high precision is required. Especially in aerospace or nuclear industries, there are high quality requirements and the cost of materials and processes is very high which makes it very important to ensure the beam quality is maintained and checked prior to carrying out the welds. Although the processes in these industries are highly controlled, however, even the minor changes in the operating parameters of the electron gun can make large enough variations in the beam quality that can result in poor welding. To measure the beam quality a simple device has been designed that can be used at high powers. The device consists of two slits in x and y axis which collects a small portion of the beam current when the beam is deflected over the slits. The signals received from the device are processed in data acquisition hardware and the dedicated software developed for the device. The device has been used in controlled laboratory environments to analyse the signals and the weld quality relationships by varying the focus current. The results showed matching trends in the weld dimensions and the beam characteristics. Further experimental work is being carried out to determine the ability of the device and signal processing software to detect subtle changes in the beam quality and to relate these to the physical weld quality indicators.

Keywords: electron beam welding, beam quality, high power, weld quality indicators

Procedia PDF Downloads 324
5201 Timescape-Based Panoramic View for Historic Landmarks

Authors: H. Ali, A. Whitehead

Abstract:

Providing a panoramic view of famous landmarks around the world offers artistic and historic value for historians, tourists, and researchers. Exploring the history of famous landmarks by presenting a comprehensive view of a temporal panorama merged with geographical and historical information presents a unique challenge of dealing with images that span a long period, from the 1800’s up to the present. This work presents the concept of temporal panorama through a timeline display of aligned historic and modern images for many famous landmarks. Utilization of this panorama requires a collection of hundreds of thousands of landmark images from the Internet comprised of historic images and modern images of the digital age. These images have to be classified for subset selection to keep the more suitable images that chronologically document a landmark’s history. Processing of historic images captured using older analog technology under various different capturing conditions represents a big challenge when they have to be used with modern digital images. Successful processing of historic images to prepare them for next steps of temporal panorama creation represents an active contribution in cultural heritage preservation through the fulfillment of one of UNESCO goals in preservation and displaying famous worldwide landmarks.

Keywords: cultural heritage, image registration, image subset selection, registered image similarity, temporal panorama, timescapes

Procedia PDF Downloads 165
5200 A Study to Assess the Energy Saving Potential and Economic Analysis of an Agro Based Industry in Karnataka, India

Authors: Sangamesh G. Sakri, Akash N. Patil, Sadashivappa M. Kotli

Abstract:

Agro based industries in India are considered as the micro, small and medium enterprises (MSME). In India, MSMEs contribute approximately 8 percent of the country’s GDP, 42 percent of the manufacturing output and 40 percent of exports. The toor dal (scientific name Cajanus cajan, commonly known as yellow gram, pigeon pea) is the second largest pulse crop in India accounting for about 20% of total pulse production. The toor dal milling industry in India is one of the major agro-processing industries in the country. Most of the dal mills are concentrated in pulse producing areas, which are spread all over the country. In Karnataka state, Gulbarga is a district, where toor dal is the main crop and is grown extensively. There are more than 500 dal mills in and around the Gulbarga district to process dal. However, the majority of these dal milling units use traditional methods of processing which are energy and capital intensive. There exists a huge energy saving potential in these mills. An energy audit is conducted on a dal mill in Gulbarga to understand the energy consumption pattern to assess the energy saving potential, and an economic analysis is conducted to identify energy conservation opportunities.

Keywords: conservation, demand side management, load curve, toor dal

Procedia PDF Downloads 272
5199 Development of Cathode for Hybrid Zinc Ion Supercapacitor Using Secondary Marigold Floral Waste for Green Energy Application

Authors: Syali Pradhan, Neetu Jha

Abstract:

The Marigold flower is used in religious places for offering and decoration purpose every day. The flowers are discarded near trees or in aquatic bodies. This floral waste can be used for extracting dyes or oils. Still the secondary waste remains after processing which need to be addressed. This research aims to provide green and clean power using secondary floral waste available after processing. The carbonization of floral waste produce carbon material with high surface area and enhance active site for more reaction. The Hybrid supercapacitors are more stable, offer improved operating temperature and use less toxic material compared to battery. They provide enhanced energy density compared to supercapacitors. Hence, hybrid supercapacitor designed using waste material would be more practicable for future energy application. Here, we present the utilization of carbonized floral waste as supercapacitor electrode material. This material after carbonization gets graphitized and shows high surface area, optimum porosity along with high conductivity. Hence, this material has been tested as cathode electrode material for high performance zinc storage hybrid supercapacitor. High energy storage along with high stability has been obtained using this cathodic waste material as electrode.

Keywords: marigold, flower waste, energy storage, cathode, supercapacitor

Procedia PDF Downloads 74
5198 Enhancing Seawater Desalination Efficiency with Combined Reverse Osmosis and Vibratory Shear-Enhanced Processing for Higher Conversion Rates and Reduced Energy Consumption

Authors: Reda Askouri, Mohamed Moussetad, Rhma Adhiri

Abstract:

Reverse osmosis (RO) is one of the most widely used techniques for seawater desalination. However, the conversion rate of this method is generally limited to 35-45% due to the high-pressure capacity of the membranes. Additionally, the specific energy consumption (SEC) for seawater desalination is high, necessitating energy recovery systems to minimise energy consumption. This study aims to enhance the performance of seawater desalination by combining RO with a vibratory shear-enhanced processing (VSEP) technique. The RO unit in this study comprises two stages, each powered by a hydraulic turbocharger that increases the pressure in both stages. The concentrate from the second stage is then directly processed by VSEP technology. The results demonstrate that the permeate water obtained exhibits high quality and that the conversion rate is significantly increased, reaching high percentages with low SEC. Furthermore, the high concentration of total solids in the concentrate allows for potential exploitation within the environmental protection framework. By valorising the concentrated waste, it’s possible to reduce the environmental impact while increasing the overall efficiency of the desalination process.

Keywords: specific energy consumption, vibratory shear enhanced process, environmental challenge, water recovery

Procedia PDF Downloads 12
5197 Recommendations for Teaching Word Formation for Students of Linguistics Using Computer Terminology as an Example

Authors: Svetlana Kostrubina, Anastasia Prokopeva

Abstract:

This research presents a comprehensive study of the word formation processes in computer terminology within English and Russian languages and provides listeners with a system of exercises for training these skills. The originality is that this study focuses on a comparative approach, which shows both general patterns and specific features of English and Russian computer terms word formation. The key point is the system of exercises development for training computer terminology based on Bloom’s taxonomy. Data contain 486 units (228 English terms from the Glossary of Computer Terms and 258 Russian terms from the Terminological Dictionary-Reference Book). The objective is to identify the main affixation models in the English and Russian computer terms formation and to develop exercises. To achieve this goal, the authors employed Bloom’s Taxonomy as a methodological framework to create a systematic exercise program aimed at enhancing students’ cognitive skills in analyzing, applying, and evaluating computer terms. The exercises are appropriate for various levels of learning, from basic recall of definitions to higher-order thinking skills, such as synthesizing new terms and critically assessing their usage in different contexts. Methodology also includes: a method of scientific and theoretical analysis for systematization of linguistic concepts and clarification of the conceptual and terminological apparatus; a method of nominative and derivative analysis for identifying word-formation types; a method of word-formation analysis for organizing linguistic units; a classification method for determining structural types of abbreviations applicable to the field of computer communication; a quantitative analysis technique for determining the productivity of methods for forming abbreviations of computer vocabulary based on the English and Russian computer terms, as well as a technique of tabular data processing for a visual presentation of the results obtained. a technique of interlingua comparison for identifying common and different features of abbreviations of computer terms in the Russian and English languages. The research shows that affixation retains its productivity in the English and Russian computer terms formation. Bloom’s taxonomy allows us to plan a training program and predict the effectiveness of the compiled program based on the assessment of the teaching methods used.

Keywords: word formation, affixation, computer terms, Bloom's taxonomy

Procedia PDF Downloads 14