Search results for: safety glass
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4231

Search results for: safety glass

2581 Solar Still Absorber Plate Modification and Exergy Analysis

Authors: Dudul Das, Pankaj Kalita, Sangeeta Borah

Abstract:

Freshwater availability in the world is as low as 1% of total water available and in many geographical locations dissolved fluoride and arsenic are serious problem. In India availability of freshwater will be stressed by 2025, so the availability saline water from sea is a hope for the people of Indian sub-continent, but saline water is not drinkable it need to be processed, which again require a huge amount of energy. So the most easy and handy option in such situation for all those problems is solar still, this investigation presents various scopes for improvement of its efficiency. Experiments showed that by increasing the absorber plate area through better design can increase the distillate output by two fold and by using jute wicks in the modified absorber plate increases the output up to three times that of conventional solar still available in the Department of Energy, Tezpur University. The experiment is carried out at constant water depth of 8.5 cm and glass cover inclination of 27o facing South. The exergy analysis carried out clearly resulted that with the use of jute wick and baffle plated basin the efficiency achieved more than the simple baffle plated basin. The Instantaneous exergy without jute wick ranges from 2.5% to 4.5% while using jute it ranges from 1.5% to 5.15%.

Keywords: fluoride, absorber plate, jute wick, instantaneous exergy

Procedia PDF Downloads 445
2580 Critical Assessment of Herbal Medicine Usage and Efficacy by Pharmacy Students

Authors: Anton V. Dolzhenko, Tahir Mehmood Khan

Abstract:

An ability to make an evidence-based decision is a critically important skill required for practicing pharmacists. The development of this skill is incorporated into the pharmacy curriculum. We aimed in our study to estimate perception of pharmacy students regarding herbal medicines and their ability to assess information on herbal medicines professionally. The current Monash University curriculum in Pharmacy does not provide comprehensive study material on herbal medicines and students should find their way to find information, assess its quality and make a professional decision. In the Pharmacy course, students are trained how to apply this process to conventional medicines. In our survey of 93 undergraduate students from year 1-4 of Pharmacy course at Monash University Malaysia, we found that students’ view on herbal medicines is sometimes associated with common beliefs, which affect students’ ability to make evidence-based conclusions regarding the therapeutic potential of herbal medicines. The use of herbal medicines is widespread and 95.7% of the participated students have prior experience of using them. In the scale 1 to 10, students rated the importance of acquiring herbal medicine knowledge for them as 8.1±1.6. More than half (54.9%) agreed that herbal medicines have the same clinical significance as conventional medicines in treating diseases. Even more, students agreed that healthcare settings should give equal importance to both conventional and herbal medicine use (80.6%) and that herbal medicines should comply with strict quality control procedures as conventional medicines (84.9%). The latter statement also indicates that students consider safety issues associated with the use of herbal medicines seriously. It was further confirmed by 94.6% of students saying that the safety and toxicity information on herbs and spices are important to pharmacists and 95.7% of students admitting that drug-herb interactions may affect therapeutic outcome. Only 36.5% of students consider herbal medicines as s safer alternative to conventional medicines. The students use information on herbal medicines from various sources and media. Most of the students (81.7%) obtain information on herbal medicines from the Internet and only 20.4% mentioned lectures/workshop/seminars as a source of such information. Therefore, we can conclude that students attained the skills on the critical assessment of therapeutic properties of conventional medicines have a potential to use their skills for evidence-based decisions regarding herbal medicines.

Keywords: evidence-based decision, pharmacy education, student perception, traditional medicines

Procedia PDF Downloads 260
2579 Urban Sustainable Development with Flood Crisis Management Approach

Authors: Ali Liaghat, Navid Tavanpour, Nima Tavanpour

Abstract:

An increase in population and prevalence of urbanity have led plan makers and decision makers put effort into sustainable development of cities at national and local levels. One of the important issues in urban development is compliance with safety issues in cities. Despite natural disasters and unexpected events such as floods, earthquakes, hurricanes, fires, etc., urban development should be regarded as an axiom, or else any form of construction and development is not safe, because it will greatly harm economic growth and development and pose an obstacle to achieving sustainable development, plus a loss to lives and finances of people. Therefore, in line with urban development, it is necessary to identify particular environmental and local issues as determinants and pay attention to them at the top of everything, in that we can call it a good action and factor in urban sustainable developments. Physical structure of each city represents how it has developed or its development shaped and what incidents, changes, natural disasters it has undergone over time. Since any form of development plan should be in accordance with the previous situations of cities, disregarding it, unfortunately, can escalate into uncontrolled urban development, non-resistant and unstable construction against earthquake or invasion of river areas, destruction of agricultural lands or vegetation, periodic floods over time. It has been viewed as serious threats to developing cities, and typically caused destruction of bed and other urban facilities as well as damages to lives and finances. In addition, uncontrolled development has caused cities to look ugly in terms of urban façade, and off and on such unplanned measures caused the country to face countless losses, and it not only vitiates expenses incurred, but it will also impose additional costs of reconstruction, i.e. it is unsustainable development. Thus, in this paper, in addition to a discussion about necessity for a profound attitude toward this subject and making long-term plans, programs for organizing river and its surrounding area, creating open and green urban spaces, retrofitting and flood preventing are presented for sustainable safety and development of cities along with a critique of successful countries.

Keywords: flood, sustainable development, urbanisation, urban management

Procedia PDF Downloads 257
2578 Simulation of the Effect of Sea Water using Ground Tank to the Flexural Capacity of GFRP Sheet Reinforced Concrete Beams

Authors: Rudy Djamaluddin, Arbain Tata, Rita Irmawaty

Abstract:

The study conducted a simulation of the effect of sea water to the bonding capacity of GFRP sheet on the concrete beams using a simulation tank. As it well known that, fiber reinforced polymer (FRP) has been applied to many purposes for civil engineering structures not only for new structures but also for strengthening of the deteriorated structures. The FRP has advantages such as its corrosion resistance, as well as high tensile strength, to weight ratio. Glass composed FRP (GFRP) sheet is most commonly used due to its relatively lower cost compared to the other FRP materials. GFRP sheet is applied externally by bonding it on the concrete surface. Many studies have been done to investigate the bonding of GFRP sheet. However, it is still very rarely studies on the effect of sea water to the bonding capacity of GFRP sheet on the strengthened beams due to flexural loadings. This is important to be clarified for the wider application of GFRP sheet especially on the flexural structure that directly contact to the sea environment. To achieve the objective of the study, a series of concrete beams strengthened with GFRP sheet on extreme tension surface were prepared. The beams then were stored on the sea water tank for six months. Results indicated the bonding capacity decreased after six months exposed to the sea water.

Keywords: GFRP sheet, sea water, concrete beams, bonding

Procedia PDF Downloads 307
2577 Developing Medical Leaders: A Realistic Evaluation Study for Improving Patient Safety and Maximising Medical Engagement

Authors: Lisa Fox, Jill Aylott

Abstract:

There is a global need to identify ways to engage doctors in non-clinical matters such as medical leadership, service improvement and health system transformation. Using the core principles of Realistic Evaluation (RE), this study examined what works, for doctors of different grades, specialities and experience in an acute NHS Hospital Trust in the UK. Realistic Evaluation is an alternative to more traditional cause and effect evaluation models and seeks to understand the interdependencies of Context, Mechanism and Outcome proposing that Context (C) + Mechanism (M) = Outcome (O). In this study, the context, mechanism and outcome were examined from within individual medical leaders to determine what enables levels of medical engagement in a specific improvement project to reduce hospital inpatient mortality. Five qualitative case studies were undertaken with consultants who had regularly completed mortality reviews over a six month period. The case studies involved semi-structured interviews to test the theory behind the drivers for medical engagement. The interviews were analysed using a theory-driven thematic analysis to identify CMO configurations to explain what works, for whom and in what circumstances. The findings showed that consultants with a longer length of service became more engaged if there were opportunities to be involved in the beginning of an improvement project, with more opportunities to affect the design. Those that are new to a consultant role were more engaged if they felt able to apply any learning directly into their own settings or if they could use it as an opportunity to understand more about the organisation they are working in. This study concludes that RE is a useful methodology for better understanding the complexities of motivation and consultant engagement in a trust wide service improvement project. The study showed that there should be differentiated and bespoke training programmes to maximise each individual doctor’s propensity for medical engagement. The RE identified that there are different ways to ensure that doctors have the right skills to feel confident in service improvement projects.

Keywords: realistic evaluation, medical leadership, medical engagement, patient safety, service improvement

Procedia PDF Downloads 199
2576 Optimum Dimensions of Hydraulic Structures Foundation and Protections Using Coupled Genetic Algorithm with Artificial Neural Network Model

Authors: Dheyaa W. Abbood, Rafa H. AL-Suhaili, May S. Saleh

Abstract:

A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs length sand their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy.The optimization carried out subjected to constraints that ensure a safe structure against the uplift pressure force and sufficient protection length at the downstream side of the structure to overcome an excessive exit gradient. The Geo-studios oft ware, was used to analyze 1200 different cases. For each case the length of protection and volume of structure required to satisfy the safety factors mentioned previously were estimated. An ANN model was developed and verified using these cases input-output sets as its data base. A MatLAB code was written to perform a genetic algorithm optimization modeling coupled with this ANN model using a formulated optimization model. A sensitivity analysis was done for selecting the cross-over probability, the mutation probability and level ,the number of population, the position of the crossover and the weights distribution for all the terms of the objective function. Results indicate that the most factor that affects the optimum solution is the number of population required. The minimum value that gives stable global optimum solution of this parameters is (30000) while other variables have little effect on the optimum solution.

Keywords: inclined cutoff, optimization, genetic algorithm, artificial neural networks, geo-studio, uplift pressure, exit gradient, factor of safety

Procedia PDF Downloads 310
2575 European Standardization in Nanotechnologies and Relation with International Work: The Standardization Can Help Industry and Regulators in Developing Safe Products

Authors: Patrice Conner

Abstract:

Nanotechnologies have enormous potential to contribute to human flourishing in responsible and sustainable ways. They are rapidly developing field of science, technology and innovation. As enabling technologies, their full scope of applications is potentially very wide. Major implications are expected in many areas, e.g. healthcare, information and communication technologies, energy production and storage, materials science/chemical engineering, manufacturing, environmental protection, consumer products, etc. However, nanotechnologies are unlikely to realize their full potential unless their associated societal and ethical issues are adequately attended. Namely nanotechnologies and nanoparticles may expose humans and the environment to new health risks, possibly involving quite different mechanisms of interference with the physiology of human and environmental species. One of the building blocks of the ‘safe, integrated and responsible’ approach is standardization. Both the Economic and Social Committee and the European Parliament have highlighted the importance to be attached to standardization as a means to accompany the introduction on the market of nanotechnologies and nanomaterials, and a means to facilitate the implementation of regulation. ISO and CEN have respectively started in 2005 and 2006 to deal with selected topics related to this emerging and enabling technology. In the beginning of 2010, EC DG ‘Enterprise and Industry’ addressed the mandate M/461 to CEN, CENELEC and ETSI for standardization activities regarding nanotechnologies and nanomaterials. Thus CEN/TC 352 ‘Nanotechnologies’ has been asked to take the leadership for the coordination in the execution of M/461 (46 topics to be standardized) and to contact relevant European and International Technical committees and interested stakeholders as appropriate (56 structures have been identified). Prior requests from M/461 deal with characterization and exposure of nanomaterials and any matters related to Health, Safety and Environment. Answers will be given to: - What are the structures and how they work? - Where are we right now and how work is going from now onwards? - How CEN’s work and targets deal with and interact with global matters in this field?

Keywords: characterization, environmental protection, exposure, health risks, nanotechnologies, responsible and sustainable ways, safety

Procedia PDF Downloads 175
2574 Potentiostatic Electrodeposition of Cu₂O Films as P-Type Electrode at Room Temperature

Authors: M. M. Moharam, E. M. Elsayed, M. M. Rashad

Abstract:

Single phase Cu₂O films have been prepared via an electrodeposition technique onto ITO glass substrates at room temperature. Likewise, Cu₂O films were deposited using a potentiostatic process from an alkaline electrolyte containing copper (II) nitrate and 1M sodium citrate. Single phase Cu₂O films were electrodeposited at a cathodic deposition potential of 500mV for a reaction period of 90 min, and pH of 12 to yield a film thickness of 0.49 µm. The mechanism for nucleation of Cu₂O films was found to vary with deposition potential. Applying the Scharifker and Hills model at -500 and -600 mV to describe the mechanism of nucleation for the electrochemical reaction, the nucleation mechanism consisted of a mix between instantaneous and progressive growth mechanisms at -500 mV, while above -600 mV the growth mechanism was instantaneous. Using deposition times from 30 to 90 min at -500 mV deposition potential, pure Cu2O films with different microstructures were electrodeposited. Changing the deposition time from 30 to 90 min varied the microstructure from cubic to more complex polyhedra. The transmittance of electrodeposited Cu₂O films ranged from 20-70% in visible range, and samples exhibited a 2.4 eV band gap. The electrical resistivity for electrodeposited Cu₂O films was found to decrease with increasing deposition time from 0.854 x 105 Ω-cm at 30 min to 0.221 x 105 Ω-cm at 90 min without any thermal treatment following the electrodeposition process.

Keywords: Cu₂O, electrodeposition, film thickness, characterization, optical properties

Procedia PDF Downloads 199
2573 Ubiquitous Life People Informatics Engine (U-Life PIE): Wearable Health Promotion System

Authors: Yi-Ping Lo, Shi-Yao Wei, Chih-Chun Ma

Abstract:

Since Google launched Google Glass in 2012, numbers of commercial wearable devices were released, such as smart belt, smart band, smart shoes, smart clothes ... etc. However, most of these devices perform as sensors to show the readings of measurements and few of them provide the interactive feedback to the user. Furthermore, these devices are single task devices which are not able to communicate with each other. In this paper a new health promotion system, Ubiquitous Life People Informatics Engine (U-Life PIE), will be presented. This engine consists of People Informatics Engine (PIE) and the interactive user interface. PIE collects all the data from the compatible devices, analyzes this data comprehensively and communicates between devices via various application programming interfaces. All the data and informations are stored on the PIE unit, therefore, the user is able to view the instant and historical data on their mobile devices any time. It also provides the real-time hands-free feedback and instructions through the user interface visually, acoustically and tactilely. These feedback and instructions suggest the user to adjust their posture or habits in order to avoid the physical injuries and prevent illness.

Keywords: machine learning, wearable devices, user interface, user experience, internet of things

Procedia PDF Downloads 271
2572 Effect of Gel Concentration on Physical Properties of an Electrochromic Device

Authors: Sharan K. Indrakar, Aakash B. Prasad, Arash Takshi, Sesha Srinivasan, Elias K. Stefanakos

Abstract:

In this work, we present an exclusive study on the effect of the feeding ratio of polyaniline-based redox-active gel layer on electrical and optical properties of innovative electrochromic devices (ECs). An electrochromic device consisting of polyaniline (PANI) has a redox-active gel electrolyte placed between two conducting transparent fluorine-doped tin oxide glass substrates. The redox-active composite gel is a mixture of different concentrations of aniline (monomer), a water-soluble polymer poly (vinyl alcohol), hydrochloric acid, and an oxidant. The EC device shows the color change from dark green to transparent for the applied potential between -0.5 V to +2.0 V. The coloration and decoloration of the ECs were tested for electrochemical behavior using techniques such as cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The optical transparency of the EC devices was examined at two different biasing voltage conditions under UV-visible spectroscopic technique; the result showed 65% transmittance at 564 nm and zero transmittance when the cell was biased at 0.0 V and 2.0 V, the synthesized mol fraction gel was analyzed for surface morphology and structural properties by scanning electron microscopy and Fourier transformer spectroscopy.

Keywords: electrochromic, gel electrolyte, polyaniline, conducting polymer

Procedia PDF Downloads 121
2571 Building Climate Resilience in the Health Sector in Developing Countries: Experience from Tanzania

Authors: Hussein Lujuo Mohamed

Abstract:

Introduction: Public health has always been influenced by climate and weather. Changes in climate and climate variability, particularly changes in weather extremes affect the environment that provides people with clean air, food, water, shelter, and security. Tanzania is not an exception to the threats of climate change. The health sector is mostly affected due to emergence and proliferation of infectious diseases, thereby affecting health of the population and thus impacting achievement of sustainable development goals. Methodology: A desk review on documented issues pertaining to climate change and health in Tanzania was done using Google search engine. Keywords included climate change, link, health, climate initiatives. In cases where information was not available, documents from Ministry of Health, Vice Presidents Office-Environment, Local Government Authority, Ministry of Water, WHO, research, and training institutions were reviewed. Some of the reviewed documents from these institutions include policy brief papers, fieldwork activity reports, training manuals, and guidelines. Results: Six main climate resilience activities were identified in Tanzania. These were development and implementation of climate resilient water safety plans guidelines both for rural and urban water authorities, capacity building of rural and urban water authorities on implementation of climate-resilient water safety plans, and capacity strengthening of local environmental health practitioners on mainstreaming climate change and health into comprehensive council health plans. Others were vulnerability and adaptation assessment for the health sector, mainstreaming climate change in the National Health Policy, and development of risk communication strategy on climate. In addition information, education, and communication materials on climate change and to create awareness were developed aiming to sensitize and create awareness among communities on climate change issues and its effect on public health. Conclusion: Proper implementation of these interventions will help the country become resilient to many impacts of climate change in the health sector and become a good example for other least developed countries.

Keywords: climate, change, Tanzania, health

Procedia PDF Downloads 97
2570 Alumina Nanoparticles in One-Pot Synthesis of Pyrazolopyranopyrimidinones

Authors: Saeed Khodabakhshi, Alimorad Rashidi, Ziba Tavakoli, Sajad Kiani, Sadegh Dastkhoon

Abstract:

Alumina nanoparticles (γ-Al2O3 NPs) were prepared via a new and simple synthetic route and characterized by field emission scanning electron microscope, X-ray diffraction, and Fourier transform infrared spectroscopy. The catalytic activity of prepared γ-Al2O3 NPs was investigated for the one-pot, four-component synthesis of fused tri-heterocyclic compounds containing pyrazole, pyran, and pyrimidine. This procedure has some advantages such as high efficiency, simplicity, high rate and environmental safety.

Keywords: alumina nanoparticles, one-pot, fused tri-heterocyclic compounds, pyran

Procedia PDF Downloads 310
2569 Designing and Simulation of the Rotor and Hub of the Unmanned Helicopter

Authors: Zbigniew Czyz, Ksenia Siadkowska, Krzysztof Skiba, Karol Scislowski

Abstract:

Today’s progress in the rotorcraft is mostly associated with an optimization of aircraft performance achieved by active and passive modifications of main rotor assemblies and a tail propeller. The key task is to improve their performance, improve the hover quality factor for rotors but not change in specific fuel consumption. One of the tasks to improve the helicopter is an active optimization of the main rotor providing for flight stages, i.e., an ascend, flight, a descend. An active interference with the airflow around the rotor blade section can significantly change characteristics of the aerodynamic airfoil. The efficiency of actuator systems modifying aerodynamic coefficients in the current solutions is relatively high and significantly affects the increase in strength. The solution to actively change aerodynamic characteristics assumes a periodic change of geometric features of blades depending on flight stages. Changing geometric parameters of blade warping enables an optimization of main rotor performance depending on helicopter flight stages. Structurally, an adaptation of shape memory alloys does not significantly affect rotor blade fatigue strength, which contributes to reduce costs associated with an adaptation of the system to the existing blades, and gains from a better performance can easily amortize such a modification and improve profitability of such a structure. In order to obtain quantitative and qualitative data to solve this research problem, a number of numerical analyses have been necessary. The main problem is a selection of design parameters of the main rotor and a preliminary optimization of its performance to improve the hover quality factor for rotors. This design concept assumes a three-bladed main rotor with a chord of 0.07 m and radius R = 1 m. The value of rotor speed is a calculated parameter of an optimization function. To specify the initial distribution of geometric warping, a special software has been created that uses a numerical method of a blade element which respects dynamic design features such as fluctuations of a blade in its joints. A number of performance analyses as a function of rotor speed, forward speed, and altitude have been performed. The calculations were carried out for the full model assembly. This approach makes it possible to observe the behavior of components and their mutual interaction resulting from the forces. The key element of each rotor is the shaft, hub and pins holding the joints and blade yokes. These components are exposed to the highest loads. As a result of the analysis, the safety factor was determined at the level of k > 1.5, which gives grounds to obtain certification for the strength of the structure. The construction of the joint rotor has numerous moving elements in its structure. Despite the high safety factor, the places with the highest stresses, where the signs of wear and tear may appear, have been indicated. The numerical analysis carried out showed that the most loaded element is the pin connecting the modular bearing of the blade yoke with the element of the horizontal oscillation joint. The stresses in this element result in a safety factor of k=1.7. The other analysed rotor components have a safety factor of more than 2 and in the case of the shaft, this factor is more than 3. However, it must be remembered that the structure is as strong as the weakest cell is. Designed rotor for unmanned aerial vehicles adapted to work with blades with intelligent materials in its structure meets the requirements for certification testing. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development under the LIDER program, Grant Agreement No. LIDER/45/0177/L-9/17/NCBR/2018.

Keywords: main rotor, rotorcraft aerodynamics, shape memory alloy, materials, unmanned helicopter

Procedia PDF Downloads 136
2568 Energizing Value Added Farming in Agriculture Economic Aspects towards Sustaining Crop Yield, Quality and Food Safety of Small-Scale Cocoa Farmer in Indonesia

Authors: Burmansyah Muhammad, Supriyoto Supriyoto

Abstract:

Crop yield, quality and food safety are three important components that all estate and food crops must put into consideration to lifting the economic value. These measurements should be evaluated because marketplace demand is simultaneously changing and farmers must adapt quickly to remain competitive. The increase in economic value could be done by producing high quality product that aligns with harvest collector preferences. The purpose of this study is to examine the causal effects of value added farming in agriculture economic aspects towards crop yield, quality and food security. This research is using descriptive survey research by employing data from small-scale cocoa farmers listed to off-taker company, located on Sulawesi area of Indonesia. The questionnaire was obtained from 650 cocoa farmers, selected randomly. Major findings of the study indicate that 78% of respondents agree that agriculture inputs have positive effect on crop yield, quality and food safety. The study recommended that cocoa stakeholders should ensure access to agriculture inputs in first priority and then followed by ensuring access to cocoa supply chain trader and micro-financing. Value Added Farming refers to lifting the economic value of a commodity through particular intervention. Regarding access to agriculture inputs, one of significant intervention is fertilization and plant nutrition management, both organic and inorganic fertilizer. Small-scale cocoa farmers can get access to fertilizer intervention through establishment of demo farm. Ordinary demo farm needs large area, selective requirements, lots of field resources and centralization impact. On the contrary, satellite demo farm is developing to wide-spread the impact of agriculture economic aspects and also the involvement in number of farmers. In Sulawesi Project, we develop leveling strata of small-scale demo farm with group of farmers and local cooperative. With this methodology, all of listed small-scale farmers can get access to agriculture input, micro-financing and how to deliver quality output. PT Pupuk Kaltim is member firm of holding company PT Pupuk Indonesia, private company belongs to the government of Indonesia. The company listed as Indonesia's largest producer of urea fertilizers, besides ammonia, Compound Fertilizer (NPK) and biological fertilizers. To achieve strategic objectives, the company has distinguished award such as SNI Platinum, SGS Award IFA Protect and Sustain Stewardship and Gold Rank of Environment Friendly Company. This achievement has become the strategic foundation for our company to energize value added farming in sustaining food security program. Moreover, to ensure cocoa sustainability farming the company has developed partnership with international companies and Non-Government Organization (NGO).

Keywords: fertilizer and plant nutrition management, good agriculture practices, agriculture economic aspects, value-added farming

Procedia PDF Downloads 85
2567 Intermittent Effect of Coupled Thermal and Acoustic Sources on Combustion: A Spatial Perspective

Authors: Pallavi Gajjar, Vinayak Malhotra

Abstract:

Rockets have been known to have played a predominant role in spacecraft propulsion. The quintessential aspect of combustion-related requirements of a rocket engine is the minimization of the surrounding risks/hazards. Over time, it has become imperative to understand the combustion rate variation in presence of external energy source(s). Rocket propulsion represents a special domain of chemical propulsion assisted by high speed flows in presence of acoustics and thermal source(s). Jet noise leads to a significant loss of resources and every year a huge amount of financial aid is spent to prevent it. External heat source(s) induce high possibility of fire risk/hazards which can sufficiently endanger the operation of a space vehicle. Appreciable work had been done with justifiable simplification and emphasis on the linear variation of external energy source(s), which yields good physical insight but does not cater to accurate predictions. Present work experimentally attempts to understand the correlation between inter-energy conversions with the non-linear placement of external energy source(s). The work is motivated by the need to have better fire safety and enhanced combustion. The specific objectives of the work are a) To interpret the related energy transfer for combustion in presence of alternate external energy source(s) viz., thermal and acoustic, b) To fundamentally understand the role of key controlling parameters viz., separation distance, the number of the source(s), selected configurations and their non-linear variation to resemble real-life cases. An experimental setup was prepared using incense sticks as potential fuel and paraffin wax candles as the external energy source(s). The acoustics was generated using frequency generator, and source(s) were placed at selected locations. Non-equidistant parametric experimentation was carried out, and the effects were noted on regression rate changes. The results are expected to be very helpful in offering a new perspective into futuristic rocket designs and safety.

Keywords: combustion, acoustic energy, external energy sources, regression rate

Procedia PDF Downloads 131
2566 Air-Coupled Ultrasonic Testing for Non-Destructive Evaluation of Various Aerospace Composite Materials by Laser Vibrometry

Authors: J. Vyas, R. Kazys, J. Sestoke

Abstract:

Air-coupled ultrasonic is the contactless ultrasonic measurement approach which has become widespread for material characterization in Aerospace industry. It is always essential for the requirement of lightest weight, without compromising the durability. To archive the requirements, composite materials are widely used. This paper yields analysis of the air-coupled ultrasonics for composite materials such as CFRP (Carbon Fibre Reinforced Polymer) and GLARE (Glass Fiber Metal Laminate) and honeycombs for the design of modern aircrafts. Laser vibrometry could be the key source of characterization for the aerospace components. The air-coupled ultrasonics fundamentals, including principles, working modes and transducer arrangements used for this purpose is also recounted in brief. The emphasis of this paper is to approach the developed NDT techniques based on the ultrasonic guided waves applications and the possibilities of use of laser vibrometry in different materials with non-contact measurement of guided waves. 3D assessment technique which employs the single point laser head using, automatic scanning relocation of the material to assess the mechanical displacement including pros and cons of the composite materials for aerospace applications with defects and delaminations.

Keywords: air-coupled ultrasonics, contactless measurement, laser interferometry, NDT, ultrasonic guided waves

Procedia PDF Downloads 224
2565 Study and Analysis of the Factors Affecting Road Safety Using Decision Tree Algorithms

Authors: Naina Mahajan, Bikram Pal Kaur

Abstract:

The purpose of traffic accident analysis is to find the possible causes of an accident. Road accidents cannot be totally prevented but by suitable traffic engineering and management the accident rate can be reduced to a certain extent. This paper discusses the classification techniques C4.5 and ID3 using the WEKA Data mining tool. These techniques use on the NH (National highway) dataset. With the C4.5 and ID3 technique it gives best results and high accuracy with less computation time and error rate.

Keywords: C4.5, ID3, NH(National highway), WEKA data mining tool

Procedia PDF Downloads 317
2564 Effect of Stitching Pattern on Composite Tubular Structures Subjected to Quasi-Static Crushing

Authors: Ali Rabiee, Hessam Ghasemnejad

Abstract:

Extensive experimental investigation on the effect of stitching pattern on tubular composite structures was conducted. The effect of stitching reinforcement through thickness on using glass flux yarn on energy absorption of fiber-reinforced polymer (FRP) was investigated under high speed loading conditions at axial loading. Keeping the mass of the structure at 125 grams and applying different pattern of stitching at various locations in theory enables better energy absorption, and also enables the control over the behaviour of force-crush distance curve. The study consists of simple non-stitch absorber comparison with single and multi-location stitching behaviour and its effect on energy absorption capabilities. The locations of reinforcements are 10 mm, 20 mm, 30 mm, 10-20 mm, 10-30 mm, 20-30 mm, 10-20-30 mm and 10-15-20-25-30-35 mm from the top of the specimen. The effect of through the thickness reinforcements has shown increase in energy absorption capabilities and crushing load. The significance of this is that as the stitching locations are closer, the crushing load increases and consequently energy absorption capabilities are also increased. The implementation of this idea would improve the mean force by applying stitching and controlling the behaviour of force-crush distance curve.

Keywords: through-thickness stitching, 3D enforcement​, energy absorption, tubular composite structures

Procedia PDF Downloads 243
2563 Some Tips for Increasing Online Services Safety

Authors: Mohsen Rezaee

Abstract:

Although robust security softwares, including anti-viruses, anti-spywares, anti-spam and firewalls are amalgamated with new technologies such as safe zone, hybrid cloud, sand box and etc., and although it can be said that they have managed to prepare highest level of security against viruses, spywares and other malwares in 2012, in fact, hacker attacks to websites are increasingly becoming more and more complicated. Because of security matters developments it can be said it was expected to happen so. Here in this work we try to point out some functional and vital notes to enhance security on the web, enabling the user to browse safely in unlimited web world and to use virtual space securely.

Keywords: firewalls, security, web services, computer science

Procedia PDF Downloads 384
2562 Health Impacts of Size Segregated Particulate Matter and Black Carbon in Industrial Area of Firozabad

Authors: Kalpana Rajouriya, Ajay Taneja

Abstract:

Particulates are ubiquitous in the air environment and cause serious threats to human beings, such as lung cancer, Chronic obstructive pulmonary disease (COPD), and Asthma. Particulates mainly arise from industrial effluent, vehicular emission, and other anthropogenic activities. In the glass industrial city Firozabad, real-time monitoring (mass as well as a number) of size segregated Particulate Matter (PM) and black carbon was done by Aerosol Black Carbon Detector (ABCD) and GRIMM portable aerosol Spectrometer at two different sites in which one site is urban, and another is rural. The average mass concentration of size segregated PM during the study period (March & April 2022) was recorded as PM₁₀ (223.73 g/m-³), PM₅.₀ (44.955 g/m-³), PM₂.₅ (59.275 g/m-³), PM₁.₀ (33.02 g/m-³), PM₀.₅ (2.05 g/m-³), and PM₀.₂₅ (2.99 g/m- ³). In number mode, PM concentration was found as PM₁₀ (27.46g/m-³), PM₅.₀ (233.48g/m-³), PM₂.₅ (646.61g/m-³), PM₁.₀ (1134.94 g/m-³), PM₀.₅ (14056.04g/m-³), and PM₀.₂₅ (182906.4 g/m-³). The highest concentration of BC was found in Urban due to the emissions from diesel engines and wood burning while NO2 was highest at the rural sites. The concentrations of PM₁₀ and PM₂.₅ exceeded the NAAQS and WHO guidelines. The sensitive, exposed population may be at risk of developing health-related problems from exposure to size-segregated PM and BC.

Keywords: particulate matter, black carbon, NO2, health risk

Procedia PDF Downloads 24
2561 Intelligent Control Design of Car Following Behavior Using Fuzzy Logic

Authors: Abdelkader Merah, Kada Hartani

Abstract:

A reference model based control approach for improving behavior following car is proposed in this paper. The reference model is nonlinear and provides dynamic solutions consistent with safety constraints and comfort specifications. a robust fuzzy logic based control strategy is further proposed in this paper. A set of simulation results showing the suitability of the proposed technique for various demanding cenarios is also included in this paper.

Keywords: reference model, longitudinal control, fuzzy logic, design of car

Procedia PDF Downloads 411
2560 Earthquake Preparedness of School Community and E-PreS Project

Authors: A. Kourou, A. Ioakeimidou, S. Hadjiefthymiades, V. Abramea

Abstract:

During the last decades, the task of engaging governments, communities and citizens to reduce risk and vulnerability of the populations has made variable progress. Experience has demonstrated that lack of awareness, education and preparedness may result in significant material and other losses both on the onset of the disaster. Schools play a vital role in the community and are important elements of values and culture of the society. A proper school education not only teaches children, but also is a key factor in the promotion of a safety culture into the wider community. In Greece School Earthquake Safety Initiative has been undertaken by Earthquake Planning and Protection Ogranization with specific actions (seminars, lectures, guidelines, educational material, campaigns, national or EU projects, drills etc.). The objective of this initiative is to develop disaster-resilient school communities through awareness, self-help, cooperation and education. School preparedness requires the participation of Principals, teachers, students, parents, and competent authorities. Preparation and earthquake readiness involves: a) learning what should be done before, during, and after earthquake; b) doing or preparing to do these things now, before the next earthquake; and c) developing teachers’ and students’ skills to cope efficiently in case of an earthquake. In the above given framework this paper presents the results of a survey aimed to identify the level of education and preparedness of school community in Greece. More specifically, the survey questionnaire investigates issues regarding earthquake protection actions, appropriate attitudes and behaviors during an earthquake and existence of contingency plans at elementary and secondary schools. The questionnaires were administered to Principals and teachers from different regions of the country that attend the EPPO national training project 'Earthquake Safety at Schools'. A closed-form questionnaire was developed for the survey, which contained questions regarding the following: a) knowledge of self protective actions b) existence of emergency planning at home and c) existence of emergency planning at school (hazard mitigation actions, evacuation plan, and performance of drills). Survey results revealed that a high percentage of teachers have taken the appropriate preparedness measures concerning non-structural hazards at schools, emergency school plan and simulation drills every year. In order to improve the action-planning for ongoing school disaster risk reduction, the implementation of earthquake drills, the involvement of students with disabilities and the evaluation of school emergency plans, EPPO participates in E-PreS project. The main objective of this project is to create smart tools which define, simulate and evaluate all hazards emergency steps customized to the unique district and school. The project comes up with a holistic methodology using real-time evaluation involving different categories of actors, districts, steps and metrics. The project is supported by EU Civil Protection Financial Instrument with a duration of two years. Coordinator is the Kapodistrian University of Athens and partners are from four countries; Greece, Italy, Romania and Bulgaria.

Keywords: drills, earthquake, emergency plans, E-PreS project

Procedia PDF Downloads 220
2559 The Influence of Environmental Attributes on Children's Pedestrian-Crash Risk in School Zones

Authors: Jeongwoo Lee

Abstract:

Children are the most vulnerable travelers and they are at risk for pedestrian injury. Creating a safe route to school is important because walking to school is one of the main opportunities for promotion of needed physical exercise among children. This study examined how the built environmental attributes near an elementary school influence traffic accidents among school-aged children. The study used two complementary data sources including the locations of police-reported pedestrian crashes and the built environmental characteristics of school areas. The environmental attributes of road segments were collected through GIS measurements of local data and actual site audits using the inventory developed for measuring pedestrian-crash risk scores. The inventory data collected at 840 road segments near 32 elementary schools in the city of Ulsan. We observed all segments in a 300-meter-radius area from the entrance of an elementary school. Segments are street block faces. The inventory included 50 items, organized into four domains: accessibility (17items), pleasurability (11items), perceived safety from traffic (9items), and traffic and land-use measures (13items). Elementary schools were categorized into two groups based on the distribution of the pedestrian-crash hazard index scores. A high pedestrian-crash zone was defined as an school area within the eighth, ninth, and tenth deciles, while no pedestrian-crash zone was defined as a school zone with no pedestrian-crash accident among school-aged children between 2013 and 2016. No- and high pedestrian-crash zones were compared to determine whether different settings of the built environment near the school lead to a different rate of pedestrian-crash incidents. The results showed that a crash risk can be influenced by several environmental factors such as a shape of school-route, number of intersections, visibility and land-use in a street, and a type of sidewalk. The findings inform policy for creating safe routes to school to reduce the pedestrian-crash risk among children by focusing on school zones.

Keywords: active school travel, school zone, pedestrian crash, safety route to school

Procedia PDF Downloads 234
2558 Shear Buckling of a Large Pultruded Composite I-Section under Asymmetric Loading

Authors: Jin Y. Park, Jeong Wan Lee

Abstract:

An experimental and analytical research on shear buckling of a comparably large polymer composite I-section is presented. It is known that shear buckling load of a large span composite beam is difficult to determine experimentally. In order to sensitively detect shear buckling of the tested I-section, twenty strain rosettes and eight displacement sensors were applied and attached on the web and flange surfaces. The tested specimen was a pultruded composite beam made of vinylester resin, E-glass, carbon fibers and micro-fillers. Various coupon tests were performed before the shear buckling test to obtain fundamental material properties of the I-section. An asymmetric four-point bending loading scheme was utilized for the shear test. The loading scheme resulted a high shear and almost zeros moment condition at the center of the web panel. The shear buckling load was successfully determined after analyzing the obtained test data from strain rosettes and displacement sensors. An analytical approach was also performed to verify the experimental results and to support the discussed experimental program.

Keywords: strain sensor, displacement sensor, shear buckling, polymer composite I-section, asymmetric loading

Procedia PDF Downloads 434
2557 Effect of Chlorophyll Concentration Variations from Extract of Papaya Leaves on Dye-Sensitized Solar Cell

Authors: Eka Maulana, Sholeh Hadi Pramono, Dody Fanditya, M. Julius

Abstract:

In this paper, extract of papaya leaves are used as a natural dye and combined by variations of solvent concentration applied on DSSC (Dye-Sensitized Solar Cell). Indonesian geographic located on the equator line occasions the magnitude of the potential to develop organic solar cells made from extracts of chlorophyll as a substitute for inorganic materials or synthetic dye on DSSC material. Dye serves as absorbing photons which are then converted into electrical energy. A conductive coated glass layer called TCO (Transparent Conductive Oxide) is used as a substrate of electrode. TiO2 nanoparticles as binding dye molecules, redox couple iodide/ tri-iodide as the electrolyte and carbon as the counter electrode in the DSSC are used. TiO2 nanoparticles, organic dyes, electrolytes and counter electrode are arranged and combined with the layered structure of the photo-catalyst absorption layer. Dye absorption measurements using a spectrophotometer at 200-800 nm light spectrum produces a total amount of chlorophyll 80.076 mg/l. The test cell at 7 watt LED light with 5000 lux luminescence were obtained Voc and Isc of 235.5 mV and 14 μA, respectively.

Keywords: DSSC (Dye-Sensitized Solar Cell), natural dye, chlorophyll, absorption

Procedia PDF Downloads 484
2556 The Influence of Fiber Volume Fraction on Thermal Conductivity of Pultruded Profile

Authors: V. Lukášová, P. Peukert, V. Votrubec

Abstract:

Thermal conductivity in the x, y and z-directions was measured on a pultruded profile that was manufactured by the technology of pulling from glass fibers and a polyester matrix. The results of measurements of thermal conductivity showed considerable variability in different directions. The caused variability in thermal conductivity was expected due fraction variations. The cross-section of the pultruded profile was scanned. An image analysis illustrated an uneven distribution of the fibers and the matrix in the cross-section. The distribution of these inequalities was processed into a Voronoi diagram in the observed area of the pultruded profile cross-section. In order to verify whether the variation of the fiber volume fraction in the pultruded profile can affect its thermal conductivity, the numerical simulations in the ANSYS Fluent were performed. The simulation was based on the geometry reconstructed from image analysis. The aim is to quantify thermal conductivity numerically. Above all, images with different volume fractions were chosen. The results of the measured thermal conductivity were compared with the calculated thermal conductivity. The evaluated data proved a strong correlation between volume fraction and thermal conductivity of the pultruded profile. Based on presented results, a modification of production technology may be proposed.

Keywords: pultrusion profile, volume fraction, thermal conductivity, numerical simulation

Procedia PDF Downloads 330
2555 Aerogel Fabrication Via Modified Rapid Supercritical Extraction (RSCE) Process - Needle Valve Pressure Release

Authors: Haibo Zhao, Thomas Andre, Katherine Avery, Alper Kiziltas, Deborah Mielewski

Abstract:

Silica aerogels were fabricated through a modified rapid supercritical extraction (RSCE) process. The silica aerogels were made using a tetramethyl orthosilicate precursor and then placed in a hot press and brought to the supercritical point of the solvent, ethanol. In order to control the pressure release without a pressure controller, a needle valve was used. The resulting aerogels were then characterized for their physical and chemical properties and compared to silica aerogels created using similar methods. The aerogels fabricated using this modified RSCE method were found to have similar properties to those in other papers using the unmodified RSCE method. Silica aerogel infused glass blanket composite, graphene reinforced silica aerogel composite were also successfully fabricated by this new method. The modified RSCE process and system is a prototype for better gas outflow control with a lower cost of equipment setup. Potentially, this process could be evolved to a continuous low-cost high-volume production process to meet automotive requirements.

Keywords: aerogel, automotive, rapid supercritical extraction process, low cost production

Procedia PDF Downloads 167
2554 Decommissioning of Nuclear Power Plants: The Current Position and Requirements

Authors: A. Stifi, S. Gentes

Abstract:

Undoubtedly from construction's perspective, the use of explosives will remove a large facility such as a 40-storey building , that took almost 3 to 4 years for construction, in few minutes. Usually, the reconstruction or decommissioning, the last phase of life cycle of any facility, is considered to be the shortest. However, this is proved to be wrong in the case of nuclear power plant. Statistics says that in the last 30 years, the construction of a nuclear power plant took an average time of 6 years whereas it is estimated that decommissioning of such plants may take even a decade or more. This paper is all about the decommissioning phase of a nuclear power plant which needs to be given more attention and encouragement from the research institutes as well as the nuclear industry. Currently, there are 437 nuclear power reactors in operation and 70 reactors in construction. With around 139 nuclear facilities already been shut down and are in different decommissioning stages and approximately 347 nuclear reactors will be in decommissioning phase in the next 20 years (assuming the operation time of a reactor as 40 years), This fact raises the following two questions (1) How far is the nuclear and construction Industry ready to face the challenges of decommissioning project? (2) What is required for a safety and reliable decommissioning project delivery? The decommissioning of nuclear facilities across the global have severe time and budget overruns. Largely the decommissioning processes are being executed by the force of manual labour where the change in regulations is respectively observed. In term of research and development, some research projects and activities are being carried out in this area, but the requirement seems to be much more. The near future of decommissioning shall be better through a sustainable development strategy where all stakeholders agree to implement innovative technologies especially for dismantling and decontamination processes and to deliever a reliable and safety decommissioning. The scope of technology transfer from other industries shall be explored. For example, remotery operated robotic technologies used in automobile and production industry to reduce time and improve effecincy and saftey shall be tried here. However, the innovative technologies are highly requested but they are alone not enough, the implementation of creative and innovative management methodologies should be also investigated and applied. Lean Management with it main concept "elimination of waste within process", is a suitable example here. Thus, the cooperation between international organisations and related industries and the knowledge-sharing may serve as a key factor for the successful decommissioning projects.

Keywords: decommissioning of nuclear facilities, innovative technology, innovative management, sustainable development

Procedia PDF Downloads 457
2553 Biological Hazards and Laboratory inflicted Infections in Sub-Saharan Africa

Authors: Godfrey Muiya Mukala

Abstract:

This research looks at an array of fields in Sub-Saharan Africa comprising agriculture, food enterprises, medicine, organisms genetically modified, microbiology, and nanotechnology that can be gained from biotechnological research and development. Findings into dangerous organisms, mainly bacterial germs, rickettsia, fungi, parasites, or organisms that are genetically engineered, have immensely posed questions attributed to the biological danger they bring forth to human beings and the environment because of their uncertainties. In addition, the recurrence of previously managed diseases or the inception of new diseases are connected to biosafety challenges, especially in rural set-ups in low and middle-income countries. Notably, biotechnology laboratories are required to adopt biosafety measures to protect their workforce, community, environment, and ecosystem from unforeseen materials and organisms. Sensitization and inclusion of educational frameworks for laboratory workers are essential to acquiring a solid knowledge of harmful biological agents. This is in addition to human pathogenicity, susceptibility, and epidemiology to the biological data used in research and development. This article reviews and analyzes research intending to identify the proper implementation of universally accepted practices in laboratory safety and biological hazards. This research identifies ideal microbiological methods, adequate containment equipment, sufficient resources, safety barriers, specific training, and education of the laboratory workforce to decrease and contain biological hazards. Subsequently, knowledge of standardized microbiological techniques and processes, in addition to the employment of containment facilities, protective barriers, and equipment, is far-reaching in preventing occupational infections. Similarly, reduction of risks and prevention may be attained by training, education, and research on biohazards, pathogenicity, and epidemiology of the relevant microorganisms. In this technique, medical professionals in rural setups may adopt the knowledge acquired from the past to project possible concerns in the future.

Keywords: sub-saharan africa, biotechnology, laboratory, infections, health

Procedia PDF Downloads 63
2552 Study Of Cu Doped Zns Thin Films Nanocrystalline by Chemical Bath Deposition Method

Authors: H. Merzouka, D. T. Talantikitea, S. Fettouchib, L. Nessarkb

Abstract:

Recently New nanosized materials studies are in huge expansion worldwide. They play a fundamental role in various industrial applications thanks their unique and functional properties. Moreover, in recent years, a great effort has been made in design and control fabrication of nano-structured semiconductors such as zinc sulphide. In recent years, much attention has been accorded in doped and co-doped ZnS to improve the ZnS films quality. We present in this work preparation and characterization of ZnS and Cu doped ZnS thin films. Nanoparticles ZnS and Cu doped ZnS films are prepared by chemical bath deposition method (CBD), for various dopant concentrations. Thin films are deposed onto commercial microscope glass slides substrates. Thiourea is used as sulfide ion source, zinc acetate as zinc ion source and copper acetate as Cu ion source in alkaline bath at 90 °C. X-ray diffraction (XRD) analyses are carried out at room temperature on films and powders with a powder diffractometer, using CuK radiation. The average grain size obtained from the Debye–Scherrer’s formula is around 10 nm. Films morphology is examined by scanning electron microscopy. IR spectra of representative sample are recorded with the FTIR between 400 and 4000 cm-1. The transmittance is more than 70 % is performed with the UV–VIS spectrometer in the wavelength range 200–800 nm. This value is enhanced by Cu doping.

Keywords: Cu doped ZnS, nanostructured, thin films, CBD, XRD, FTIR

Procedia PDF Downloads 430