Search results for: network monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7522

Search results for: network monitoring

5872 Rangeland Monitoring by Computerized Technologies

Authors: H. Arzani, Z. Arzani

Abstract:

Every piece of rangeland has a different set of physical and biological characteristics. This requires the manager to synthesis various information for regular monitoring to define changes trend to get wright decision for sustainable management. So range managers need to use computerized technologies to monitor rangeland, and select. The best management practices. There are four examples of computerized technologies that can benefit sustainable management: (1) Photographic method for cover measurement: The method was tested in different vegetation communities in semi humid and arid regions. Interpretation of pictures of quadrats was done using Arc View software. Data analysis was done by SPSS software using paired t test. Based on the results, generally, photographic method can be used to measure ground cover in most vegetation communities. (2) GPS application for corresponding ground samples and satellite pixels: In two provinces of Tehran and Markazi, six reference points were selected and in each point, eight GPS models were tested. Significant relation among GPS model, time and location with accuracy of estimated coordinates was found. After selection of suitable method, in Markazi province coordinates of plots along four transects in each 6 sites of rangelands was recorded. The best time of GPS application was in the morning hours, Etrex Vista had less error than other models, and a significant relation among GPS model, time and location with accuracy of estimated coordinates was found. (3) Application of satellite data for rangeland monitoring: Focusing on the long term variation of vegetation parameters such as vegetation cover and production is essential. Our study in grass and shrub lands showed that there were significant correlations between quantitative vegetation characteristics and satellite data. So it is possible to monitor rangeland vegetation using digital data for sustainable utilization. (4) Rangeland suitability classification with GIS: Range suitability assessment can facilitate sustainable management planning. Three sub-models of sensitivity to erosion, water suitability and forage production out puts were entered to final range suitability classification model. GIS was facilitate classification of range suitability and produced suitability maps for sheep grazing. Generally digital computers assist range managers to interpret, modify, calibrate or integrating information for correct management.

Keywords: computer, GPS, GIS, remote sensing, photographic method, monitoring, rangeland ecosystem, management, suitability, sheep grazing

Procedia PDF Downloads 367
5871 An Energy-Balanced Clustering Method on Wireless Sensor Networks

Authors: Yu-Ting Tsai, Chiun-Chieh Hsu, Yu-Chun Chu

Abstract:

In recent years, due to the development of wireless network technology, many researchers have devoted to the study of wireless sensor networks. The applications of wireless sensor network mainly use the sensor nodes to collect the required information, and send the information back to the users. Since the sensed area is difficult to reach, there are many restrictions on the design of the sensor nodes, where the most important restriction is the limited energy of sensor nodes. Because of the limited energy, researchers proposed a number of ways to reduce energy consumption and balance the load of sensor nodes in order to increase the network lifetime. In this paper, we proposed the Energy-Balanced Clustering method with Auxiliary Members on Wireless Sensor Networks(EBCAM)based on the cluster routing. The main purpose is to balance the energy consumption on the sensed area and average the distribution of dead nodes in order to avoid excessive energy consumption because of the increasing in transmission distance. In addition, we use the residual energy and average energy consumption of the nodes within the cluster to choose the cluster heads, use the multi hop transmission method to deliver the data, and dynamically adjust the transmission radius according to the load conditions. Finally, we use the auxiliary cluster members to change the delivering path according to the residual energy of the cluster head in order to its load. Finally, we compare the proposed method with the related algorithms via simulated experiments and then analyze the results. It reveals that the proposed method outperforms other algorithms in the numbers of used rounds and the average energy consumption.

Keywords: auxiliary nodes, cluster, load balance, routing algorithm, wireless sensor network

Procedia PDF Downloads 274
5870 Forecasting Performance Comparison of Autoregressive Fractional Integrated Moving Average and Jordan Recurrent Neural Network Models on the Turbidity of Stream Flows

Authors: Daniel Fulus Fom, Gau Patrick Damulak

Abstract:

In this study, the Autoregressive Fractional Integrated Moving Average (ARFIMA) and Jordan Recurrent Neural Network (JRNN) models were employed to model the forecasting performance of the daily turbidity flow of White Clay Creek (WCC). The two methods were applied to the log difference series of the daily turbidity flow series of WCC. The measurements of error employed to investigate the forecasting performance of the ARFIMA and JRNN models are the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE). The outcome of the investigation revealed that the forecasting performance of the JRNN technique is better than the forecasting performance of the ARFIMA technique in the mean square error sense. The results of the ARFIMA and JRNN models were obtained by the simulation of the models using MATLAB version 8.03. The significance of using the log difference series rather than the difference series is that the log difference series stabilizes the turbidity flow series than the difference series on the ARFIMA and JRNN.

Keywords: auto regressive, mean absolute error, neural network, root square mean error

Procedia PDF Downloads 268
5869 Improving Recovery Reuse and Irrigation Scheme Efficiency – North Gaza Emergency Sewage Treatment Project as Case Study

Authors: Yaser S. Kishawi, Sadi R. Ali

Abstract:

Part of Palestine, Gaza Strip (365 km2 and 1.8 million inhabitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely cover the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is finding non-conventional water resource from treated wastewater to cover agricultural requirements and serve the population. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line & infiltration basins - IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme – RRS – to capture the spreading plume). Currently, only phase A is functioning. Nearly 23 Mm3 of partially treated wastewater were infiltrated into the aquifer. Phase B and phase C witnessed many delays and this forced a reassessment of the RRS original design. An Environmental Management Plan was conducted from Jul 2013 to Jun 2014 on 13 existing monitoring wells surrounding the project location. This is to measure the efficiency of the SAT system and the spread of the contamination plume with relation to the efficiency of the proposed RRS. Along with the proposed location of the 27 recovery wells as part of the proposed RRS. The results of monitored wells were assessed compared with PWA baseline data. This was put into a groundwater model to simulate the plume to propose the best suitable solution to the delays. The redesign mainly manipulated the pumping rate of wells, proposed locations and functioning schedules (including wells groupings). The proposed simulations were examined using visual MODFLOW V4.2 to simulate the results. The results of monitored wells were assessed based on the location of the monitoring wells related to the proposed recovery wells locations (200m, 500m and 750m away from the IBs). Near the 500m line (the first row of proposed recovery wells), an increase of nitrate (from 30 to 70mg/L) compare to a decrease in Chloride (1500 to below 900mg/L) was found during the monitoring period which indicated an expansion of plume to this distance. On this rate with the required time to construct the recovery scheme, keeping the original design the RRS will fail to capture the plume. Based on that many simulations were conducted leading into three main scenarios. The scenarios manipulated the starting dates, the pumping rate and the locations of recovery wells. A simulation of plume expansion and path-lines were extracted from the model monitoring how to prevent the expansion towards the nearby municipal wells. It was concluded that the location is the most important factor in determining the RRS efficiency. Scenario III was adopted and showed an effective results even with a reduced pumping rates. This scenario proposed adding two additional recovery wells in a location beyond the 750m line to compensate the delays and effectively capture the plume. A continuous monitoring program for current and future monitoring wells should be in place to support the proposed scenario and ensure maximum protection.

Keywords: soil aquifer treatment, recovery and reuse scheme, infiltration basins, north gaza

Procedia PDF Downloads 313
5868 Pion/Muon Identification in a Nuclear Emulsion Cloud Chamber Using Neural Networks

Authors: Kais Manai

Abstract:

The main part of this work focuses on the study of pion/muon separation at low energy using a nuclear Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The work consists of two parts: particle reconstruction algorithm and a Neural Network that assigns to each reconstructed particle the probability to be a muon or a pion. The pion/muon separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data. The algorithm allows to achieve a 60% muon identification efficiency with a pion misidentification smaller than 3%.

Keywords: nuclear emulsion, particle identification, tracking, neural network

Procedia PDF Downloads 506
5867 Applying Neural Networks for Solving Record Linkage Problem via Fuzzy Description Logics

Authors: Mikheil Kalmakhelidze

Abstract:

Record linkage (RL) problem has become more and more important in recent years due to the growing interest towards big data analysis. The problem can be formulated in a very simple way: Given two entries a and b of a database, decide whether they represent the same object or not. There are two classical deterministic and probabilistic ways of solving the RL problem. Using simple Bayes classifier in many cases produces useful results but sometimes they show to be poor. In recent years several successful approaches have been made towards solving specific RL problems by neural network algorithms including single layer perception, multilayer back propagation network etc. In our work, we model the RL problem for specific dataset of student applications in fuzzy description logic (FDL) where linkage of specific pair (a,b) depends on the truth value of corresponding formula A(a,b) in a canonical FDL model. As a main result, we build neural network for deciding truth value of FDL formulas in a canonical model and thus link RL problem to machine learning. We apply the approach to dataset with 10000 entries and also compare to classical RL solving approaches. The results show to be more accurate than standard probabilistic approach.

Keywords: description logic, fuzzy logic, neural networks, record linkage

Procedia PDF Downloads 272
5866 Application of Local Mean Decomposition for Rolling Bearing Fault Diagnosis Based On Vibration Signals

Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine

Abstract:

Vibration analysis has been frequently applied in the condition monitoring and fault diagnosis of rolling element bearings. Unfortunately, the vibration signals collected from a faulty bearing are generally non stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. The results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.

Keywords: fault diagnosis, condition monitoring, local mean decomposition, rolling element bearing, vibration analysis

Procedia PDF Downloads 397
5865 Improving Axial-Attention Network via Cross-Channel Weight Sharing

Authors: Nazmul Shahadat, Anthony S. Maida

Abstract:

In recent years, hypercomplex inspired neural networks improved deep CNN architectures due to their ability to share weights across input channels and thus improve cohesiveness of representations within the layers. The work described herein studies the effect of replacing existing layers in an Axial Attention ResNet with their quaternion variants that use cross-channel weight sharing to assess the effect on image classification. We expect the quaternion enhancements to produce improved feature maps with more interlinked representations. We experiment with the stem of the network, the bottleneck layer, and the fully connected backend by replacing them with quaternion versions. These modifications lead to novel architectures which yield improved accuracy performance on the ImageNet300k classification dataset. Our baseline networks for comparison were the original real-valued ResNet, the original quaternion-valued ResNet, and the Axial Attention ResNet. Since improvement was observed regardless of which part of the network was modified, there is a promise that this technique may be generally useful in improving classification accuracy for a large class of networks.

Keywords: axial attention, representational networks, weight sharing, cross-channel correlations, quaternion-enhanced axial attention, deep networks

Procedia PDF Downloads 83
5864 Soil Mixed Constructed Permeable Reactive Barrier for Groundwater Remediation: Field Observation

Authors: Ziyda Abunada

Abstract:

In-situ remediation of contaminated land with deep mixing can deliver a multi-technique remedial strategy. A field trail includes permeable reactive barrier (PRB) took place at a severely contaminated site in Yorkshire to the north of the UK through the SMiRT (Soil Mix Remediation Technology) project in May 2011. SMiRT involved the execution of the largest research field trials in the UK to provide field validation. Innovative modified bentonite materials in combination with zeolite and organoclay were used to construct six different walls of a hexagonal PRB. Field monitoring, testing and site cores were collected from the PRB twice: once 2 months after the construction and again in March 2014 (almost 34 months later).This paper presents an overview of the results of the PRB materials’ relative performance with some initial 3-year time-related assessment. Results from the monitoring program and the site cores are presented. Some good correlations are seen together with some clear difference among the materials’ efficiency. These preliminary observations represent a potential for further investigations and highlighted the main lessons learned in a filed scale.

Keywords: in-situ remediation, groundwater, permeable reactive barrier, site cores

Procedia PDF Downloads 203
5863 A Sequential Approach for Random-Effects Meta-Analysis

Authors: Samson Henry Dogo, Allan Clark, Elena Kulinskaya

Abstract:

The objective in meta-analysis is to combine results from several independent studies in order to create generalization and provide evidence based for decision making. But recent studies show that the magnitude of effect size estimates reported in many areas of research finding changed with year publication and this can impair the results and conclusions of meta-analysis. A number of sequential methods have been proposed for monitoring the effect size estimates in meta-analysis. However they are based on statistical theory applicable to fixed effect model (FEM). For random-effects model (REM), the analysis incorporates the heterogeneity variance, tau-squared and its estimation create complications. In this paper proposed the use of Gombay and Serbian (2005) truncated CUSUM-type test with asymptotically valid critical values for sequential monitoring of REM. Simulation results show that the test does not control the Type I error well, and is not recommended. Further work required to derive an appropriate test in this important area of application.

Keywords: meta-analysis, random-effects model, sequential test, temporal changes in effect sizes

Procedia PDF Downloads 467
5862 Multi-Modal Feature Fusion Network for Speaker Recognition Task

Authors: Xiang Shijie, Zhou Dong, Tian Dan

Abstract:

Speaker recognition is a crucial task in the field of speech processing, aimed at identifying individuals based on their vocal characteristics. However, existing speaker recognition methods face numerous challenges. Traditional methods primarily rely on audio signals, which often suffer from limitations in noisy environments, variations in speaking style, and insufficient sample sizes. Additionally, relying solely on audio features can sometimes fail to capture the unique identity of the speaker comprehensively, impacting recognition accuracy. To address these issues, we propose a multi-modal network architecture that simultaneously processes both audio and text signals. By gradually integrating audio and text features, we leverage the strengths of both modalities to enhance the robustness and accuracy of speaker recognition. Our experiments demonstrate significant improvements with this multi-modal approach, particularly in complex environments, where recognition performance has been notably enhanced. Our research not only highlights the limitations of current speaker recognition methods but also showcases the effectiveness of multi-modal fusion techniques in overcoming these limitations, providing valuable insights for future research.

Keywords: feature fusion, memory network, multimodal input, speaker recognition

Procedia PDF Downloads 33
5861 Location Choice: The Effects of Network Configuration upon the Distribution of Economic Activities in the Chinese City of Nanning

Authors: Chuan Yang, Jing Bie, Zhong Wang, Panagiotis Psimoulis

Abstract:

Contemporary studies investigating the association between the spatial configuration of the urban network and economic activities at the street level were mostly conducted within space syntax conceptual framework. These findings supported the theory of 'movement economy' and demonstrated the impact of street configuration on the distribution of pedestrian movement and land-use shaping, especially retail activities. However, the effects varied between different urban contexts. In this paper, the relationship between economic activity distribution and the urban configurational characters was examined at the segment level. In the study area, three kinds of neighbourhood types, urban, suburban, and rural neighbourhood, were included. And among all neighbourhoods, three kinds of urban network form, 'tree-like', grid, and organic pattern, were recognised. To investigate the nested effects of urban configuration measured by space syntax approach and urban context, multilevel zero-inflated negative binomial (ZINB) regression models were constructed. Additionally, considering the spatial autocorrelation, spatial lag was also concluded in the model as an independent variable. The random effect ZINB model shows superiority over the ZINB model or multilevel linear (ML) model in the explanation of economic activities pattern shaping over the urban environment. And after adjusting for the neighbourhood type and network form effects, connectivity and syntax centrality significantly affect economic activities clustering. The comparison between accumulative and new established economic activities illustrated the different preferences for economic activity location choice.

Keywords: space syntax, economic activities, multilevel model, Chinese city

Procedia PDF Downloads 124
5860 Enhancing Transit Trade, Facilitation System and Supply Chain Security for Local, Regional and an International Corridor

Authors: Moh’d A. AL-Shboul

Abstract:

Recently, and due to Arab spring and terrorism around the globe, pushing and driving most governments potentially to harmonize their border measures particularly the regional and an international transit trade within and among Customs Unions. The main purpose of this study is to investigate and provide an insight for monitoring and controlling the trade supply chain within and among different countries by using technological advancement (i.e. an electronic tracking system, etc.); furthermore, facilitate the local and intra-regional trade among countries through reviewing the recent trends and practical implementation of an electronic transit traffic and cargo that related to customs measures by introducing and supporting some case studies of several international and landlocked transit trade countries. The research methodology employed in this study was described as qualitative by conducting few interviews with managers, transit truck drivers, and traders and reviewing the related literature to collect qualitative data from secondary sources such as statistical reports, previous studies, etc. The results in this study show that Jordan and other countries around the globe that used an electronic tracking system for monitoring transit trade has led to a significant reduction in cost, effort and time in physical movement of goods internally and crossing through other countries. Therefore, there is no need to escort transit trucks by customs staff; hence, the rate of escort transit trucks is reduced by more than ninety percent, except the bulky and high duty goods. Electronic transit traffic has been increased; the average transit time journey has been reduced by more than seventy percent and has led to decrease in rates of smuggling up to fifty percent. The researcher recommends considering Jordan as regional and international office for tracking electronically and monitoring the transit trade for many considerations.

Keywords: electronic tracking system, facilitation system, regional and international corridor, supply chain security, transit trade

Procedia PDF Downloads 503
5859 Optimization of Feeder Bus Routes at Urban Rail Transit Stations Based on Link Growth Probability

Authors: Yu Song, Yuefei Jin

Abstract:

Urban public transportation can be integrated when there is an efficient connection between urban rail lines, however, there are currently no effective or quick solutions being investigated for this connection. This paper analyzes the space-time distribution and travel demand of passenger connection travel based on taxi track data and data from the road network, excavates potential bus connection stations based on potential connection demand data, and introduces the link growth probability model in the complex network to solve the basic connection bus lines in order to ascertain the direction of the bus lines that are the most connected given the demand characteristics. Then, a tree view exhaustive approach based on constraints is suggested based on graph theory, which can hasten the convergence of findings while doing chain calculations. This study uses WEI QU NAN Station, the Xi'an Metro Line 2 terminal station in Shaanxi Province, as an illustration, to evaluate the model's and the solution method's efficacy. According to the findings, 153 prospective stations have been dug up in total, the feeder bus network for the entire line has been laid out, and the best route adjustment strategy has been found.

Keywords: feeder bus, route optimization, link growth probability, the graph theory

Procedia PDF Downloads 77
5858 Virtualization and Visualization Based Driver Configuration in Operating System

Authors: Pavan Shah

Abstract:

In an Embedded system, Virtualization and visualization technology can provide us an effective response and measurable work in a software development environment. In addition to work of virtualization and virtualization can be easily deserved to provide the best resource sharing between real-time hardware applications and a healthy environment. However, the virtualization is noticeable work to minimize the I/O work and utilize virtualization & virtualization technology for either a software development environment (SDE) or a runtime environment of real-time embedded systems (RTMES) or real-time operating system (RTOS) eras. In this Paper, we particularly focus on virtualization and visualization overheads data of network which generates the I/O and implementation of standardized I/O (i.e., Virto), which can work as front-end network driver in a real-time operating system (RTOS) hardware module. Even there have been several work studies are available based on the virtualization operating system environment, but for the Virto on a general-purpose OS, my implementation is on the open-source Virto for a real-time operating system (RTOS). In this paper, the measurement results show that implementation which can improve the bandwidth and latency of memory management of the real-time operating system environment (RTMES) for getting more accuracy of the trained model.

Keywords: virtualization, visualization, network driver, operating system

Procedia PDF Downloads 133
5857 Enhancement of Capacity in a MC-CDMA based Cognitive Radio Network Using Non-Cooperative Game Model

Authors: Kalyani Kulkarni, Bharat Chaudhari

Abstract:

This paper addresses the issue of resource allocation in the emerging cognitive technology. Focusing the quality of service (QoS) of primary users (PU), a novel method is proposed for the resource allocation of secondary users (SU). In this paper, we propose the unique utility function in the game theoretic model of Cognitive Radio which can be maximized to increase the capacity of the cognitive radio network (CRN) and to minimize the interference scenario. The utility function is formulated to cater the need of PUs by observing Signal to Noise ratio. The existence of Nash equilibrium is for the postulated game is established.

Keywords: cognitive networks, game theory, Nash equilibrium, resource allocation

Procedia PDF Downloads 480
5856 [Keynote Speech]: Bridge Damage Detection Using Frequency Response Function

Authors: Ahmed Noor Al-Qayyim

Abstract:

During the past decades, the bridge structures are considered very important portions of transportation networks, due to the fast urban sprawling. With the failure of bridges that under operating conditions lead to focus on updating the default bridge inspection methodology. The structures health monitoring (SHM) using the vibration response appeared as a promising method to evaluate the condition of structures. The rapid development in the sensors technology and the condition assessment techniques based on the vibration-based damage detection made the SHM an efficient and economical ways to assess the bridges. SHM is set to assess state and expects probable failures of designated bridges. In this paper, a presentation for Frequency Response function method that uses the captured vibration test information of structures to evaluate the structure condition. Furthermore, the main steps of the assessment of bridge using the vibration information are presented. The Frequency Response function method is applied to the experimental data of a full-scale bridge.

Keywords: bridge assessment, health monitoring, damage detection, frequency response function (FRF), signal processing, structure identification

Procedia PDF Downloads 348
5855 Network Governance and Renewable Energy Transition in Sub-Saharan Africa: Contextual Evidence from Ghana

Authors: Kyere Francis, Sun Dongying, Asante Dennis, Nkrumah Nana Kwame Edmund, Naana Yaa Gyamea Kumah

Abstract:

With a focus on renewable energy to achieve low-carbon transition objectives, there is a greater demand for effective collaborative strategies for planning, strategic decision mechanisms, and long-term policy designs to steer the transitions. Government agencies, NGOs, the private sector, and individual citizens play an important role in sustainable energy production. In Ghana, however, such collaboration is fragile in the fight against climate change. This current study seeks to re-examine the position or potential of network governance in Ghana's renewable energy transition. The study adopted a qualitative approach and employed semi-structured interviews for data gathering. To explore network governance and low carbon transitions in Ghana, we examine key themes such as political environment and impact, actor cooperation and stakeholder interactions, financing and the transition, market design and renewable energy integration, existing regulation and policy gaps for renewable energy transition, clean cooking accessibility, and affordability. The findings reveal the following; Lack of comprehensive consultations with relevant stakeholders leads to lower acceptance of the policy model and sometimes lack of policy awareness. Again, the unavailability and affordability of renewable energy technologies and access to credit facilities is a significant hurdle to long-term renewable transition. Ghana's renewable energy transitions require strong networking and interaction among the public, private, and non-governmental organizations. The study participants believe that the involvement of relevant energy experts and stakeholders devoid of any political biases is instrumental in accelerating renewable energy transitions, as emphasized in the proposed framework. The study recommends that the national renewable energy transition plan be evident to all stakeholders and political administrators. Such policy may encourage renewable energy investment through stable and fixed lending rates by the financial institutions and build a network with international organizations and corporations. These findings could serve as valuable information for the transition-based energy process, primarily aiming to govern sustainability changes through network governance.

Keywords: actors, development, sustainable energy, network governance, renewable energy transition

Procedia PDF Downloads 89
5854 Analyzing the Impact of DCF and PCF on WLAN Network Standards 802.11a, 802.11b, and 802.11g

Authors: Amandeep Singh Dhaliwal

Abstract:

Networking solutions, particularly wireless local area networks have revolutionized the technological advancement. Wireless Local Area Networks (WLANs) have gained a lot of popularity as they provide location-independent network access between computing devices. There are a number of access methods used in Wireless Networks among which DCF and PCF are the fundamental access methods. This paper emphasizes on the impact of DCF and PCF access mechanisms on the performance of the IEEE 802.11a, 802.11b and 802.11g standards. On the basis of various parameters viz. throughput, delay, load etc performance is evaluated between these three standards using above mentioned access mechanisms. Analysis revealed a superior throughput performance with low delays for 802.11g standard as compared to 802.11 a/b standard using both DCF and PCF access methods.

Keywords: DCF, IEEE, PCF, WLAN

Procedia PDF Downloads 425
5853 The Assessment of Infiltrated Wastewater on the Efficiency of Recovery Reuse and Irrigation Scheme: North Gaza Emergency Sewage Treatment Project as a Case Study

Authors: Yaser S. Kishawi, Sadi R. Ali

Abstract:

Part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely covers the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is finding non-conventional water resource from treated wastewater to cover agricultural requirements and serve the population. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line and infiltration basins-IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme–RRS– to capture the spreading plume). Currently, only phase A is functioning. Nearly 23 Mm3 of partially treated wastewater were infiltrated into the aquifer. Phase B and phase C witnessed many delays and this forced a reassessment of the RRS original design. An Environmental Management Plan was conducted from Jul 2013 to Jun 2014 on 13 existing monitoring wells surrounding the project location. This is to measure the efficiency of the SAT system and the spread of the contamination plume with relation to the efficiency of the proposed RRS. Along with the proposed location of the 27 recovery wells as part of the proposed RRS. The results of monitored wells were assessed compared with PWA baseline data. This was put into a groundwater model to simulate the plume to propose the best suitable solution to the delays. The redesign mainly manipulated the pumping rate of wells, proposed locations and functioning schedules (including wells groupings). The proposed simulations were examined using visual MODFLOW V4.2 to simulate the results. The results of monitored wells were assessed based on the location of the monitoring wells related to the proposed recovery wells locations (200m, 500m, and 750m away from the IBs). Near the 500m line (the first row of proposed recovery wells), an increase of nitrate (from 30 to 70mg/L) compare to a decrease in Chloride (1500 to below 900mg/L) was found during the monitoring period which indicated an expansion of plume to this distance. On this rate with the required time to construct the recovery scheme, keeping the original design the RRS will fail to capture the plume. Based on that many simulations were conducted leading into three main scenarios. The scenarios manipulated the starting dates, the pumping rate and the locations of recovery wells. A simulation of plume expansion and path-lines were extracted from the model monitoring how to prevent the expansion towards the nearby municipal wells. It was concluded that the location is the most important factor in determining the RRS efficiency. Scenario III was adopted and showed effective results even with a reduced pumping rates. This scenario proposed adding two additional recovery wells in a location beyond the 750m line to compensate the delays and effectively capture the plume. A continuous monitoring program for current and future monitoring wells should be in place to support the proposed scenario and ensure maximum protection.

Keywords: soil aquifer treatment, recovery reuse scheme, infiltration basins, North Gaza

Procedia PDF Downloads 204
5852 Determining Fire Resistance of Wooden Construction Elements through Experimental Studies and Artificial Neural Network

Authors: Sakir Tasdemir, Mustafa Altin, Gamze Fahriye Pehlivan, Sadiye Didem Boztepe Erkis, Ismail Saritas, Selma Tasdemir

Abstract:

Artificial intelligence applications are commonly used in industry in many fields in parallel with the developments in the computer technology. In this study, a fire room was prepared for the resistance of wooden construction elements and with the mechanism here, the experiments of polished materials were carried out. By utilizing from the experimental data, an artificial neural network (ANN) was modeled in order to evaluate the final cross sections of the wooden samples remaining from the fire. In modelling, experimental data obtained from the fire room were used. In the system developed, the first weight of samples (ws-gr), preliminary cross-section (pcs-mm2), fire time (ft-minute), fire temperature (t-oC) as input parameters and final cross-section (fcs-mm2) as output parameter were taken. When the results obtained from ANN and experimental data are compared after making statistical analyses, the data of two groups are determined to be coherent and seen to have no meaning difference between them. As a result, it is seen that ANN can be safely used in determining cross sections of wooden materials after fire and it prevents many disadvantages.

Keywords: artificial neural network, final cross-section, fire retardant polishes, fire safety, wood resistance.

Procedia PDF Downloads 385
5851 Design of Labview Based DAQ System

Authors: Omar A. A. Shaebi, Matouk M. Elamari, Salaheddin Allid

Abstract:

The Information Computing System of Monitoring (ICSM) for the Research Reactor of Tajoura Nuclear Research Centre (TNRC) stopped working since early 1991. According to the regulations, the computer is necessary to operate the reactor up to its maximum power (10 MW). The fund is secured via IAEA to develop a modern computer based data acquisition system to replace the old computer. This paper presents the development of the Labview based data acquisition system to allow automated measurements using National Instruments Hardware and its labview software. The developed system consists of SCXI 1001 chassis, the chassis house four SCXI 1100 modules each can maintain 32 variables. The chassis is interfaced with the PC using NI PCI-6023 DAQ Card. Labview, developed by National Instruments, is used to run and operate the DAQ System. Labview is graphical programming environment suited for high level design. It allows integrating different signal processing components or subsystems within a graphical framework. The results showed system capabilities in monitoring variables, acquiring and saving data. Plus the capability of the labview to control the DAQ.

Keywords: data acquisition, labview, signal conditioning, national instruments

Procedia PDF Downloads 494
5850 Remote Sensing through Deep Neural Networks for Satellite Image Classification

Authors: Teja Sai Puligadda

Abstract:

Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.

Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss

Procedia PDF Downloads 159
5849 A Global Business Network Built on Hive: Two Use Cases: Buying and Selling of Products and Services and Carrying Out of Social Impact Projects

Authors: Gheyzer Villegas, Edgardo Cedeño, Veruska Mata, Edmundo Chauran

Abstract:

One of the most significant changes that occurred in global commerce was the emergence of cryptocurrencies and blockchain technology. There is still much debate about the adoption of the economic model based on crypto assets, and myriad international projects and initiatives are being carried out to try and explore the potential that this new field offers. The Hive blockchain is a prime example of this, featuring two use cases: of how trade based on its native currencies can give successful results in the exchange of goods and services and in the financing of social impact projects. Its decentralized management model and visionary administration of its development fund have become a key part of its success.

Keywords: Hive, business, network, blockchain

Procedia PDF Downloads 68
5848 Mobility of Metallic Trace Elements (MTE) in Water and Sediment of the Rivers: Case of Nil River, North-Eastern Algerian

Authors: S. Benessam, T. H. Debieche, S. Amiour, A. Chine, S. Khelili

Abstract:

The metallic trace elements (MTE) are present in water and sediments of the rivers with weak concentrations. Several physicochemical parameters (Eh, pH and oxygen dissolved) and chemical processes (adsorption, absorption, complexation and precipitation) as well as nature of the sediments control their mobility. In order to determine the effect of these factors on the mobility of some MTE (Cd, Cr, Cu, Fe, Pb and Zn) in water of the rivers, a two-monthly monitoring of the physicochemical parameters and chemistry of water and sediments of the Nil wadi (Algeria) was carried out during the period from November 2013 to January 2015. The results show that each MTE has its own conditions of mobility and generally are very influence by the variations of the pH and Eh. Under the natural conditions, neutral pH with basic and medium oxidizing, only the lead presented in water with raised values, indicating its solubility in water and its salting out of the sediments. The other MTE present raised concentrations in the sediments, indicating their trapping by adsorption and/or chemical precipitation. The chemical form of each ETM was given by Eh-pH diagrams. The spatio-temporal monitoring of these ETM shows the effect of the rains, the dry periods and the rejects in the variation of their concentrations.

Keywords: chemistry, metallic trace elements, sediment, water

Procedia PDF Downloads 289
5847 RNA-Seq Analysis of Coronaviridae Family and SARS-Cov-2 Prediction Using Proposed ANN

Authors: Busra Mutlu Ipek, Merve Mutlu, Ahmet Mutlu

Abstract:

Novel coronavirus COVID-19, which has recently influenced the world, poses a great threat to humanity. In order to overcome this challenging situation, scientists are working on developing effective vaccine against coronavirus. Many experts and researchers have also produced articles and done studies on this highly important subject. In this direction, this special topic was chosen for article to make a contribution to this area. The purpose of this article is to perform RNA sequence analysis of selected virus forms in the Coronaviridae family and predict/classify SARS-CoV-2 (COVID-19) from other selected complete genomes in coronaviridae family using proposed Artificial Neural Network(ANN) algorithm.

Keywords: Coronaviridae family, COVID-19, RNA sequencing, ANN, neural network

Procedia PDF Downloads 144
5846 Application of Deep Neural Networks to Assess Corporate Credit Rating

Authors: Parisa Golbayani, Dan Wang, Ionut¸ Florescu

Abstract:

In this work we implement machine learning techniques to financial statement reports in order to asses company’s credit rating. Specifically, the work analyzes the performance of four neural network architectures (MLP, CNN, CNN2D, LSTM) in predicting corporate credit rating as issued by Standard and Poor’s. The paper focuses on companies from the energy, financial, and healthcare sectors in the US. The goal of this analysis is to improve application of machine learning algorithms to credit assessment. To accomplish this, the study investigates three questions. First, we investigate if the algorithms perform better when using a selected subset of important features or whether better performance is obtained by allowing the algorithms to select features themselves. Second, we address the temporal aspect inherent in financial data and study whether it is important for the results obtained by a machine learning algorithm. Third, we aim to answer if one of the four particular neural network architectures considered consistently outperforms the others, and if so under which conditions. This work frames the problem as several case studies to answer these questions and analyze the results using ANOVA and multiple comparison testing procedures.

Keywords: convolutional neural network, long short term memory, multilayer perceptron, credit rating

Procedia PDF Downloads 235
5845 Multi Tier Data Collection and Estimation, Utilizing Queue Model in Wireless Sensor Networks

Authors: Amirhossein Mohajerzadeh, Abolghasem Mohajerzadeh

Abstract:

In this paper, target parameter is estimated with desirable precision in hierarchical wireless sensor networks (WSN) while the proposed algorithm also tries to prolong network lifetime as much as possible, using efficient data collecting algorithm. Target parameter distribution function is considered unknown. Sensor nodes sense the environment and send the data to the base station called fusion center (FC) using hierarchical data collecting algorithm. FC builds underlying phenomena based on collected data. Considering the aggregation level, x, the goal is providing the essential infrastructure to find the best value for aggregation level in order to prolong network lifetime as much as possible, while desirable accuracy is guaranteed (required sample size is fully depended on desirable precision). First, the sample size calculation algorithm is discussed, second, the average queue length based on M/M[x]/1/K queue model is determined and it is used for energy consumption calculation. Nodes can decrease transmission cost by aggregating incoming data. Furthermore, the performance of the new algorithm is evaluated in terms of lifetime and estimation accuracy.

Keywords: aggregation, estimation, queuing, wireless sensor network

Procedia PDF Downloads 186
5844 An Application of Graph Theory to The Electrical Circuit Using Matrix Method

Authors: Samai'la Abdullahi

Abstract:

A graph is a pair of two set and so that a graph is a pictorial representation of a system using two basic element nodes and edges. A node is represented by a circle (either hallo shade) and edge is represented by a line segment connecting two nodes together. In this paper, we present a circuit network in the concept of graph theory application and also circuit models of graph are represented in logical connection method were we formulate matrix method of adjacency and incidence of matrix and application of truth table.

Keywords: euler circuit and path, graph representation of circuit networks, representation of graph models, representation of circuit network using logical truth table

Procedia PDF Downloads 561
5843 An Advanced Automated Brain Tumor Diagnostics Approach

Authors: Berkan Ural, Arif Eser, Sinan Apaydin

Abstract:

Medical image processing is generally become a challenging task nowadays. Indeed, processing of brain MRI images is one of the difficult parts of this area. This study proposes a hybrid well-defined approach which is consisted from tumor detection, extraction and analyzing steps. This approach is mainly consisted from a computer aided diagnostics system for identifying and detecting the tumor formation in any region of the brain and this system is commonly used for early prediction of brain tumor using advanced image processing and probabilistic neural network methods, respectively. For this approach, generally, some advanced noise removal functions, image processing methods such as automatic segmentation and morphological operations are used to detect the brain tumor boundaries and to obtain the important feature parameters of the tumor region. All stages of the approach are done specifically with using MATLAB software. Generally, for this approach, firstly tumor is successfully detected and the tumor area is contoured with a specific colored circle by the computer aided diagnostics program. Then, the tumor is segmented and some morphological processes are achieved to increase the visibility of the tumor area. Moreover, while this process continues, the tumor area and important shape based features are also calculated. Finally, with using the probabilistic neural network method and with using some advanced classification steps, tumor area and the type of the tumor are clearly obtained. Also, the future aim of this study is to detect the severity of lesions through classes of brain tumor which is achieved through advanced multi classification and neural network stages and creating a user friendly environment using GUI in MATLAB. In the experimental part of the study, generally, 100 images are used to train the diagnostics system and 100 out of sample images are also used to test and to check the whole results. The preliminary results demonstrate the high classification accuracy for the neural network structure. Finally, according to the results, this situation also motivates us to extend this framework to detect and localize the tumors in the other organs.

Keywords: image processing algorithms, magnetic resonance imaging, neural network, pattern recognition

Procedia PDF Downloads 418