Search results for: e-content producing algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4962

Search results for: e-content producing algorithm

3312 Optoelectronic Hardware Architecture for Recurrent Learning Algorithm in Image Processing

Authors: Abdullah Bal, Sevdenur Bal

Abstract:

This paper purposes a new type of hardware application for training of cellular neural networks (CNN) using optical joint transform correlation (JTC) architecture for image feature extraction. CNNs require much more computation during the training stage compare to test process. Since optoelectronic hardware applications offer possibility of parallel high speed processing capability for 2D data processing applications, CNN training algorithm can be realized using Fourier optics technique. JTC employs lens and CCD cameras with laser beam that realize 2D matrix multiplication and summation in the light speed. Therefore, in the each iteration of training, JTC carries more computation burden inherently and the rest of mathematical computation realized digitally. The bipolar data is encoded by phase and summation of correlation operations is realized using multi-object input joint images. Overlapping properties of JTC are then utilized for summation of two cross-correlations which provide less computation possibility for training stage. Phase-only JTC does not require data rearrangement, electronic pre-calculation and strict system alignment. The proposed system can be incorporated simultaneously with various optical image processing or optical pattern recognition techniques just in the same optical system.

Keywords: CNN training, image processing, joint transform correlation, optoelectronic hardware

Procedia PDF Downloads 509
3311 Nacre Deposition Rate in Japanese and Hybrid Mother Oysters, Pinctada Fucata, and Its Relationship with Their Respective Pearls

Authors: Gunawan Muhammad, Takashi Atsumi, Akira Komaru

Abstract:

Pinctada fucata has been the most important pearl culture species in Japan and known as Japanese Akoya Pearl Oyster. However, during summer 1994, mass mortality devastated pearl culture in most parts of Japan. Therefore, pearl farmers started to import Chinese Pearl Oysters from Hainan Island that came from the same species because they are believed to be more resistant towards high water temperature, despite their lack of ability in producing high-quality pearls. The local farmers were then hybridized Japanese and Chinese pearl oysters and currently known as Hybrid pearl oysters, as an attempt to produce a new oyster's strain which is more resistant towards high temperature but also able to produce higher quality pearls. However, despite both strains were implanted by mantle tissues from the same group of donors, the thickness of pearl nacre produced by both strains was different, even though tablet thickness shows a rather similar pattern. Hence, this leads to a question of whether mother oysters play a major role in both nacre deposition rate and tablet thickness of pearls or not. This study first describes the nacre deposition rate of the shells of Japanese and Hybrid mother oysters towards the water temperature condition in Ago Bay, Mie Prefecture, Japan. Later, a comparative study was conducted among 4 shell positions that had been chosen according to the mantle tissue location and shell growth directions. A correlative study was then taken between shells and pearls nacre deposition rate to know whether mother oyster ability in depositing nacre on their shells is related to that of pearls. All the four shell positions were significantly different in shell nacre growth rate (Kruskal-Wallis, p-value < 0.05), and the third position have faster nacre growth among the other three both in Japanese and Hybrid strains, especially in warm temperature. The ability to deposit nacre between Japanese and Hybrid during warm water conditions (August and September) is also significantly different in almost all positions (Mann Whitney U, p-value < 0.01), Japanese oyster growth faster than Hybrid in all four positions. This leads to a different total growth among the two strains and a higher possibility of thicker nacre thickness in Japanese shell nacre. Tablet thickness is significantly different among all positions of shells (Kruskal-Wallis, p-value < 0.01), the 2nd position deposited rather thinner tablet thickness than the other three, including on the 6th month of culture which is more desirable in producing pearls with good luster. This result gives us new information that pearl growth rate is highly affected by the mother oysters; however, nacre tablet thickness might be the result of the shell matrix expressed by different mantle position from donor oysters.

Keywords: nacre, deposition, biomineralization, pearl aquaculture, pearl oyster, Akoya pearl, pearl

Procedia PDF Downloads 143
3310 Ischemic Stroke Detection in Computed Tomography Examinations

Authors: Allan F. F. Alves, Fernando A. Bacchim Neto, Guilherme Giacomini, Marcela de Oliveira, Ana L. M. Pavan, Maria E. D. Rosa, Diana R. Pina

Abstract:

Stroke is a worldwide concern, only in Brazil it accounts for 10% of all registered deaths. There are 2 stroke types, ischemic (87%) and hemorrhagic (13%). Early diagnosis is essential to avoid irreversible cerebral damage. Non-enhanced computed tomography (NECT) is one of the main diagnostic techniques used due to its wide availability and rapid diagnosis. Detection depends on the size and severity of lesions and the time spent between the first symptoms and examination. The Alberta Stroke Program Early CT Score (ASPECTS) is a subjective method that increases the detection rate. The aim of this work was to implement an image segmentation system to enhance ischemic stroke and to quantify the area of ischemic and hemorrhagic stroke lesions in CT scans. We evaluated 10 patients with NECT examinations diagnosed with ischemic stroke. Analyzes were performed in two axial slices, one at the level of the thalamus and basal ganglion and one adjacent to the top edge of the ganglionic structures with window width between 80 and 100 Hounsfield Units. We used different image processing techniques such as morphological filters, discrete wavelet transform and Fuzzy C-means clustering. Subjective analyzes were performed by a neuroradiologist according to the ASPECTS scale to quantify ischemic areas in the middle cerebral artery region. These subjective analysis results were compared with objective analyzes performed by the computational algorithm. Preliminary results indicate that the morphological filters actually improve the ischemic areas for subjective evaluations. The comparison in area of the ischemic region contoured by the neuroradiologist and the defined area by computational algorithm showed no deviations greater than 12% in any of the 10 examination tests. Although there is a tendency that the areas contoured by the neuroradiologist are smaller than those obtained by the algorithm. These results show the importance of a computer aided diagnosis software to assist neuroradiology decisions, especially in critical situations as the choice of treatment for ischemic stroke.

Keywords: ischemic stroke, image processing, CT scans, Fuzzy C-means

Procedia PDF Downloads 370
3309 Cultural Policies, Globalisation of Arts, and Impact on Cultural Heritage: A Contextual Analysis of France

Authors: Nasser AlShawaaf

Abstract:

While previous researchers have attempted to explain art museums commercialisation with reference to cultural policies, they have overlooked the phenomenon of globalisation. This study examines the causes and effects of globalisation of art museums in France. Building on arts literature, we show that the cultural policies of the French government since 1980s of cultural democratisation, cultural decentralisation, and implementing market principles on the cultural sector are leading to arts globalisation. Although globalisation is producing economic benefits and enhancing cultural reach, however, the damages include artistic values and creativity, cultural heritage and representation, and the museum itself. Art museums and host cities could overcome negative consequences through a hybrid collection display and develop local collections gradually.

Keywords: cultural policy, cultural decentralisation, cultural globalisation, art museums, contextual analysis, France

Procedia PDF Downloads 107
3308 Non-Destructive Evaluation for Physical State Monitoring of an Angle Section Thin-Walled Curved Beam

Authors: Palash Dey, Sudip Talukdar

Abstract:

In this work, a cross-breed approach is presented for obtaining both the amount of the damage intensity and location of damage existing in thin-walled members. This cross-breed approach is developed based on response surface methodology (RSM) and genetic algorithm (GA). Theoretical finite element (FE) model of cracked angle section thin walled curved beam has been linked to the developed approach to carry out trial experiments to generate response surface functions (RSFs) of free, forced and heterogeneous dynamic response data. Subsequently, the error between the computed response surface functions and measured dynamic response data has been minimized using GA to find out the optimum damage parameters (amount of the damage intensity and location). A single crack of varying location and depth has been considered in this study. The presented approach has been found to reveal good accuracy in prediction of crack parameters and possess great potential in crack detection as it requires only the current response of a cracked beam.

Keywords: damage parameters, finite element, genetic algorithm, response surface methodology, thin walled curved beam

Procedia PDF Downloads 251
3307 Mobility-Aware Relay Selection in Two Hop Unmanned Aerial Vehicles Network

Authors: Tayyaba Hussain, Sobia Jangsher, Saqib Ali, Saqib Ejaz

Abstract:

Unmanned Aerial vehicles (UAV’s) have gained great popularity due to their remoteness, ease of deployment and high maneuverability in different applications like real-time surveillance, image capturing, weather atmospheric studies, disaster site monitoring and mapping. These applications can involve a real-time communication with the ground station. However, altitude and mobility possess a few challenges for the communication. UAV’s at high altitude usually require more transmit power. One possible solution can be with the use of multi hops (UAV’s acting as relays) and exploiting the mobility pattern of the UAV’s. In this paper, we studied a relay (UAV’s acting as relays) selection for a reliable transmission to a destination UAV. We exploit the mobility information of the UAV’s to propose a Mobility-Aware Relay Selection (MARS) algorithm with the objective of giving improved data rates. The results are compared with Non Mobility-Aware relay selection scheme and optimal values. Numerical results show that our proposed MARS algorithm gives 6% better achievable data rates for the mobile UAV’s as compared with Non MobilityAware relay selection scheme. On average a decrease of 20.2% in data rate is achieved with MARS as compared with SDP solver in Yalmip.

Keywords: mobility aware, relay selection, time division multiple acess, unmanned aerial vehicle

Procedia PDF Downloads 240
3306 Improve Divers Tracking and Classification in Sonar Images Using Robust Diver Wake Detection Algorithm

Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy

Abstract:

Harbor protection systems are so important. The need for automatic protection systems has increased over the last years. Diver detection active sonar has great significance. It used to detect underwater threats such as divers and autonomous underwater vehicle. To automatically detect such threats the sonar image is processed by algorithms. These algorithms used to detect, track and classify of underwater objects. In this work, divers tracking and classification algorithm is improved be proposing a robust wake detection method. To detect objects the sonar images is normalized then segmented based on fixed threshold. Next, the centroids of the segments are found and clustered based on distance metric. Then to track the objects linear Kalman filter is applied. To reduce effect of noise and creation of false tracks, the Kalman tracker is fine tuned. The tuning is done based on our active sonar specifications. After the tracks are initialed and updated they are subjected to a filtering stage to eliminate the noisy and unstable tracks. Also to eliminate object with a speed out of the diver speed range such as buoys and fast boats. Afterwards the result tracks are subjected to a classification stage to deiced the type of the object been tracked. Here the classification stage is to deice wither if the tracked object is an open circuit diver or a close circuit diver. At the classification stage, a small area around the object is extracted and a novel wake detection method is applied. The morphological features of the object with his wake is extracted. We used support vector machine to find the best classifier. The sonar training images and the test images are collected by ARMELSAN Defense Technologies Company using the portable diver detection sonar ARAS-2023. After applying the algorithm to the test sonar data, we get fine and stable tracks of the divers. The total classification accuracy achieved with the diver type is 97%.

Keywords: harbor protection, diver detection, active sonar, wake detection, diver classification

Procedia PDF Downloads 239
3305 Comparision of Bioleaching of Metals from Spent Petroleum Catalyst Using Acidithiobacillus Ferrooxidans and Acidthiobacillus Thiooxidans

Authors: Haragobinda Srichandan, Ashish Pathak, Dong Jin Kim, Seoung-Won Lee

Abstract:

The present investigation deals with bioleaching of spent petroleum catalyst using At. ferrooxidans and At. thiooxidans. The spent catalyst used in the present study was pretreated with acetone to remove the oily hydrocarbons. FESEM and XPS analysis indicated the presence of metals in sulfide and oxide forms in spent catalyst. Both At. ferrooxidans and At. thiooxidans were found to be highly effective in producing the acid. Bioleaching with At. ferrooxidans and At. thiooxidans led to higher recovery of metals compare to control. During bioleaching similar recoveries of metals were obtained using At. ferrooxidans and At. thiooxidans. This might be due to the presence of metals as soluble oxides and sulphides in the spent catalyst. At the end of bioleaching, about 87-90% Ni, 34% Al, 65-73% Mo and 92-97% V were leached using above bacteria. It is elucidated that bioleaching with At. thiooxidans is comparatively more advantageous due to lower cost of sulphur.

Keywords: At. ferrooxidans, bioleaching, metal recovery, spent catalyst

Procedia PDF Downloads 296
3304 Friend or Foe: Decoding the Legal Challenges Posed by Artificial Intellegence in the Era of Intellectual Property

Authors: Latika Choudhary

Abstract:

“The potential benefits of Artificial Intelligence are huge, So are the dangers.” - Dave Water. Artificial intelligence is one of the facet of Information technology domain which despite several attempts does not have a clear definition or ambit. However it can be understood as technology to solve problems via automated decisions and predictions. Artificial intelligence is essentially an algorithm based technology which analyses the large amounts of data and then solves problems by detecting useful patterns. Owing to its automated feature it will not be wrong to say that humans & AI have more utility than humans alone or computers alone.1 For many decades AI experienced enthusiasm as well as setbacks, yet it has today become part and parcel of our everyday life, making it convenient or at times problematic. AI and related technology encompass Intellectual Property in multiple ways, the most important being AI technology for management of Intellectual Property, IP for protecting AI and IP as a hindrance to the transparency of AI systems. Thus the relationship between the two is of reciprocity as IP influences AI and vice versa. While AI is a recent concept, the IP laws for protection or even dealing with its challenges are relatively older, raising the need for revision to keep up with the pace of technological advancements. This paper will analyze the relationship between AI and IP to determine how beneficial or conflictual the same is, address how the old concepts of IP are being stretched to its maximum limits so as to accommodate the unwanted consequences of the Artificial Intelligence and propose ways to mitigate the situation so that AI becomes the friend it is and not turn into a potential foe it appears to be.

Keywords: intellectual property rights, information technology, algorithm, artificial intelligence

Procedia PDF Downloads 89
3303 Distributed Control Strategy for Dispersed Energy Storage Units in the DC Microgrid Based on Discrete Consensus

Authors: Hanqing Yang, Xiang Meng, Qi Li, Weirong Chen

Abstract:

The SOC (state of charge) based droop control has limitations on the load power sharing among different energy storage units, due to the line impedance. In this paper, a distributed control strategy for dispersed energy storage units in the DC microgrid based on discrete consensus is proposed. Firstly, a sparse information communication network is built. Thus, local controllers can communicate with its neighbors using voltage, current and SOC information. An average voltage of grid can be evaluated to compensate voltage offset by droop control, and an objective virtual resistance fulfilling above requirement can be dynamically calculated to distribute load power according to the SOC of the energy storage units. Then, the stability of the whole system and influence of communication delay are analyzed. It can be concluded that this control strategy can improve the robustness and flexibility, because of having no center controller. Finally, a model of DC microgrid with dispersed energy storage units and loads is built, the discrete distributed algorithm is established and communication protocol is developed. The co-simulation between Matlab/Simulink and JADE (Java agent development framework) has verified the effectiveness of proposed control strategy.

Keywords: dispersed energy storage units, discrete consensus algorithm, state of charge, communication delay

Procedia PDF Downloads 282
3302 Automatic Content Curation of Visual Heritage

Authors: Delphine Ribes Lemay, Valentine Bernasconi, André Andrade, Lara DéFayes, Mathieu Salzmann, FréDéRic Kaplan, Nicolas Henchoz

Abstract:

Digitization and preservation of large heritage induce high maintenance costs to keep up with the technical standards and ensure sustainable access. Creating impactful usage is instrumental to justify the resources for long-term preservation. The Museum für Gestaltung of Zurich holds one of the biggest poster collections of the world from which 52’000 were digitised. In the process of building a digital installation to valorize the collection, one objective was to develop an algorithm capable of predicting the next poster to show according to the ones already displayed. The work presented here describes the steps to build an algorithm able to automatically create sequences of posters reflecting associations performed by curator and professional designers. The exposed challenge finds similarities with the domain of song playlist algorithms. Recently, artificial intelligence techniques and more specifically, deep-learning algorithms have been used to facilitate their generations. Promising results were found thanks to Recurrent Neural Networks (RNN) trained on manually generated playlist and paired with clusters of extracted features from songs. We used the same principles to create the proposed algorithm but applied to a challenging medium, posters. First, a convolutional autoencoder was trained to extract features of the posters. The 52’000 digital posters were used as a training set. Poster features were then clustered. Next, an RNN learned to predict the next cluster according to the previous ones. RNN training set was composed of poster sequences extracted from a collection of books from the Gestaltung Museum of Zurich dedicated to displaying posters. Finally, within the predicted cluster, the poster with the best proximity compared to the previous poster is selected. The mean square distance between features of posters was used to compute the proximity. To validate the predictive model, we compared sequences of 15 posters produced by our model to randomly and manually generated sequences. Manual sequences were created by a professional graphic designer. We asked 21 participants working as professional graphic designers to sort the sequences from the one with the strongest graphic line to the one with the weakest and to motivate their answer with a short description. The sequences produced by the designer were ranked first 60%, second 25% and third 15% of the time. The sequences produced by our predictive model were ranked first 25%, second 45% and third 30% of the time. The sequences produced randomly were ranked first 15%, second 29%, and third 55% of the time. Compared to designer sequences, and as reported by participants, model and random sequences lacked thematic continuity. According to the results, the proposed model is able to generate better poster sequencing compared to random sampling. Eventually, our algorithm is sometimes able to outperform a professional designer. As a next step, the proposed algorithm should include a possibility to create sequences according to a selected theme. To conclude, this work shows the potentiality of artificial intelligence techniques to learn from existing content and provide a tool to curate large sets of data, with a permanent renewal of the presented content.

Keywords: Artificial Intelligence, Digital Humanities, serendipity, design research

Procedia PDF Downloads 188
3301 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation Using Physics-Informed Neural Network

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics-informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on a strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary conditions to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of the Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful in studying various optical phenomena.

Keywords: deep learning, optical soliton, physics informed neural network, partial differential equation

Procedia PDF Downloads 76
3300 Medium Design and Optimization for High Β-Galactosidase Producing Microbial Strains from Dairy Waste through Fermentation

Authors: Ashish Shukla, K. P. Mishra, Pushplata Tripathi

Abstract:

This paper investigates the production and optimization of β-galactosidase enzyme using synthetic medium by isolated wild strains (S1, S2) mutated strains (M1, M2) through SSF and SmF. Among the different cell disintegration methods used, the highest specific activity was obtained when the cells were permeabilized using isoamyl alcohol. Wet lab experiments were performed to investigate the effects of carbon and nitrogen substrates present in Vogel’s medium on β-galactosidase enzyme activity using S1, S2, and M1, M2 strains through SSF. SmF experiments were performed for effects of carbon and nitrogen sources in YLK2Mg medium on β-galactosidase enzyme activity using S1, S2 and M1, M2 strains. Effect of pH on β-galactosidase enzyme production was also done using S1, S2, and M1, M2 strains. Results were found to be very appreciable in all the cases.

Keywords: β-galactosidase, cell disintegration, permeabilized, SSF, SmF

Procedia PDF Downloads 275
3299 Embedded Digital Image System

Authors: Dawei Li, Cheng Liu, Yiteng Liu

Abstract:

This paper introduces an embedded digital image system for Chinese space environment vertical exploration sounding rocket. In order to record the flight status of the sounding rocket as well as the payloads, an onboard embedded image processing system based on ADV212, a JPEG2000 compression chip, is designed in this paper. Since the sounding rocket is not designed to be recovered, all image data should be transmitted to the ground station before the re-entry while the downlink band used for the image transmission is only about 600 kbps. Under the same condition of compression ratio compared with other algorithm, JPEG2000 standard algorithm can achieve better image quality. So JPEG2000 image compression is applied under this condition with a limited downlink data band. This embedded image system supports lossless to 200:1 real time compression, with two cameras to monitor nose ejection and motor separation, and two cameras to monitor boom deployment. The encoder, ADV7182, receives PAL signal from the camera, then output the ITU-R BT.656 signal to ADV212. ADV7182 switches between four input video channels as the program sequence. Two SRAMs are used for Ping-pong operation and one 512 Mb SDRAM for buffering high frame-rate images. The whole image system has the characteristics of low power dissipation, low cost, small size and high reliability, which is rather suitable for this sounding rocket application.

Keywords: ADV212, image system, JPEG2000, sounding rocket

Procedia PDF Downloads 423
3298 Non-intrusive Hand Control of Drone Using an Inexpensive and Streamlined Convolutional Neural Network Approach

Authors: Evan Lowhorn, Rocio Alba-Flores

Abstract:

The purpose of this work is to develop a method for classifying hand signals and using the output in a drone control algorithm. To achieve this, methods based on Convolutional Neural Networks (CNN) were applied. CNN's are a subset of deep learning, which allows grid-like inputs to be processed and passed through a neural network to be trained for classification. This type of neural network allows for classification via imaging, which is less intrusive than previous methods using biosensors, such as EMG sensors. Classification CNN's operate purely from the pixel values in an image; therefore they can be used without additional exteroceptive sensors. A development bench was constructed using a desktop computer connected to a high-definition webcam mounted on a scissor arm. This allowed the camera to be pointed downwards at the desk to provide a constant solid background for the dataset and a clear detection area for the user. A MATLAB script was created to automate dataset image capture at the development bench and save the images to the desktop. This allowed the user to create their own dataset of 12,000 images within three hours. These images were evenly distributed among seven classes. The defined classes include forward, backward, left, right, idle, and land. The drone has a popular flip function which was also included as an additional class. To simplify control, the corresponding hand signals chosen were the numerical hand signs for one through five for movements, a fist for land, and the universal “ok” sign for the flip command. Transfer learning with PyTorch (Python) was performed using a pre-trained 18-layer residual learning network (ResNet-18) to retrain the network for custom classification. An algorithm was created to interpret the classification and send encoded messages to a Ryze Tello drone over its 2.4 GHz Wi-Fi connection. The drone’s movements were performed in half-meter distance increments at a constant speed. When combined with the drone control algorithm, the classification performed as desired with negligible latency when compared to the delay in the drone’s movement commands.

Keywords: classification, computer vision, convolutional neural networks, drone control

Procedia PDF Downloads 214
3297 A Statistical-Algorithmic Approach for the Design and Evaluation of a Fresnel Solar Concentrator-Receiver System

Authors: Hassan Qandil

Abstract:

Using a statistical algorithm incorporated in MATLAB, four types of non-imaging Fresnel lenses are designed; spot-flat, linear-flat, dome-shaped and semi-cylindrical-shaped. The optimization employs a statistical ray-tracing methodology of the incident light, mainly considering effects of chromatic aberration, varying focal lengths, solar inclination and azimuth angles, lens and receiver apertures, and the optimum number of prism grooves. While adopting an equal-groove-width assumption of the Poly-methyl-methacrylate (PMMA) prisms, the main target is to maximize the ray intensity on the receiver’s aperture and therefore achieving higher values of heat flux. The algorithm outputs prism angles and 2D sketches. 3D drawings are then generated via AutoCAD and linked to COMSOL Multiphysics software to simulate the lenses under solar ray conditions, which provides optical and thermal analysis at both the lens’ and the receiver’s apertures while setting conditions as per the Dallas-TX weather data. Once the lenses’ characterization is finalized, receivers are designed based on its optimized aperture size. Several cavity shapes; including triangular, arc-shaped and trapezoidal, are tested while coupled with a variety of receiver materials, working fluids, heat transfer mechanisms, and enclosure designs. A vacuum-reflective enclosure is also simulated for an enhanced thermal absorption efficiency. Each receiver type is simulated via COMSOL while coupled with the optimized lens. A lab-scale prototype for the optimum lens-receiver configuration is then fabricated for experimental evaluation. Application-based testing is also performed for the selected configuration, including that of a photovoltaic-thermal cogeneration system and solar furnace system. Finally, some future research work is pointed out, including the coupling of the collector-receiver system with an end-user power generator, and the use of a multi-layered genetic algorithm for comparative studies.

Keywords: COMSOL, concentrator, energy, fresnel, optics, renewable, solar

Procedia PDF Downloads 156
3296 Accelerated Structural Reliability Analysis under Earthquake-Induced Tsunamis by Advanced Stochastic Simulation

Authors: Sai Hung Cheung, Zhe Shao

Abstract:

Recent earthquake-induced tsunamis in Padang, 2004 and Tohoku, 2011 brought huge losses of lives and properties. Maintaining vertical evacuation systems is the most crucial strategy to effectively reduce casualty during the tsunami event. Thus, it is of our great interest to quantify the risk to structural dynamic systems due to earthquake-induced tsunamis. Despite continuous advancement in computational simulation of the tsunami and wave-structure interaction modeling, it still remains computationally challenging to evaluate the reliability (or its complement failure probability) of a structural dynamic system when uncertainties related to the system and its modeling are taken into account. The failure of the structure in a tsunami-wave-structural system is defined as any response quantities of the system exceeding specified thresholds during the time when the structure is subjected to dynamic wave impact due to earthquake-induced tsunamis. In this paper, an approach based on a novel integration of the Subset Simulation algorithm and a recently proposed moving least squares response surface approach for stochastic sampling is proposed. The effectiveness of the proposed approach is discussed by comparing its results with those obtained from the Subset Simulation algorithm without using the response surface approach.

Keywords: response surface model, subset simulation, structural reliability, Tsunami risk

Procedia PDF Downloads 389
3295 Modeling Continuous Flow in a Curved Channel Using Smoothed Particle Hydrodynamics

Authors: Indri Mahadiraka Rumamby, R. R. Dwinanti Rika Marthanty, Jessica Sjah

Abstract:

Smoothed particle hydrodynamics (SPH) was originally created to simulate nonaxisymmetric phenomena in astrophysics. However, this method still has several shortcomings, namely the high computational cost required to model values with high resolution and problems with boundary conditions. The difficulty of modeling boundary conditions occurs because the SPH method is influenced by particle deficiency due to the integral of the kernel function being truncated by boundary conditions. This research aims to answer if SPH modeling with a focus on boundary layer interactions and continuous flow can produce quantifiably accurate values with low computational cost. This research will combine algorithms and coding in the main program of meandering river, continuous flow algorithm, and solid-fluid algorithm with the aim of obtaining quantitatively accurate results on solid-fluid interactions with the continuous flow on a meandering channel using the SPH method. This study uses the Fortran programming language for modeling the SPH (Smoothed Particle Hydrodynamics) numerical method; the model is conducted in the form of a U-shaped meandering open channel in 3D, where the channel walls are soil particles and uses a continuous flow with a limited number of particles.

Keywords: smoothed particle hydrodynamics, computational fluid dynamics, numerical simulation, fluid mechanics

Procedia PDF Downloads 134
3294 Bioinformatic Strategies for the Production of Glycoproteins in Algae

Authors: Fadi Saleh, Çığdem Sezer Zhmurov

Abstract:

Biopharmaceuticals represent one of the wildest developing fields within biotechnology, and the biological macromolecules being produced inside cells have a variety of applications for therapies. In the past, mammalian cells, especially CHO cells, have been employed in the production of biopharmaceuticals. This is because these cells can achieve human-like completion of PTM. These systems, however, carry apparent disadvantages like high production costs, vulnerability to contamination, and limitations in scalability. This research is focused on the utilization of microalgae as a bioreactor system for the synthesis of biopharmaceutical glycoproteins in relation to PTMs, particularly N-glycosylation. The research points to a growing interest in microalgae as a potential substitute for more conventional expression systems. A number of advantages exist in the use of microalgae, including rapid growth rates, the lack of common human pathogens, controlled scalability in bioreactors, and the ability of some PTMs to take place. Thus, the potential of microalgae to produce recombinant proteins with favorable characteristics makes this a promising platform in order to produce biopharmaceuticals. The study focuses on the examination of the N-glycosylation pathways across different species of microalgae. This investigation is important as N-glycosylation—the process by which carbohydrate groups are linked to proteins—profoundly influences the stability, activity, and general performance of glycoproteins. Additionally, bioinformatics methodologies are employed to explain the genetic pathways implicated in N-glycosylation within microalgae, with the intention of modifying these organisms to produce glycoproteins suitable for human consumption. In this way, the present comparative analysis of the N-glycosylation pathway in humans and microalgae can be used to bridge both systems in order to produce biopharmaceuticals with humanized glycosylation profiles within the microalgal organisms. The results of the research underline microalgae's potential to help improve some of the limitations associated with traditional biopharmaceutical production systems. The study may help in the creation of a cost-effective and scale-up means of producing quality biopharmaceuticals by modifying microalgae genetically to produce glycoproteins with N-glycosylation that is compatible with humans. Improvements in effectiveness will benefit biopharmaceutical production and the biopharmaceutical sector with this novel, green, and efficient expression platform. This thesis, therefore, is thorough research into the viability of microalgae as an efficient platform for producing biopharmaceutical glycoproteins. Based on the in-depth bioinformatic analysis of microalgal N-glycosylation pathways, a platform for their engineering to produce human-compatible glycoproteins is set out in this work. The findings obtained in this research will have significant implications for the biopharmaceutical industry by opening up a new way of developing safer, more efficient, and economically more feasible biopharmaceutical manufacturing platforms.

Keywords: microalgae, glycoproteins, post-translational modification, genome

Procedia PDF Downloads 30
3293 Remote Assessment and Change Detection of GreenLAI of Cotton Crop Using Different Vegetation Indices

Authors: Ganesh B. Shinde, Vijaya B. Musande

Abstract:

Cotton crop identification based on the timely information has significant advantage to the different implications of food, economic and environment. Due to the significant advantages, the accurate detection of cotton crop regions using supervised learning procedure is challenging problem in remote sensing. Here, classifiers on the direct image are played a major role but the results are not much satisfactorily. In order to further improve the effectiveness, variety of vegetation indices are proposed in the literature. But, recently, the major challenge is to find the better vegetation indices for the cotton crop identification through the proposed methodology. Accordingly, fuzzy c-means clustering is combined with neural network algorithm, trained by Levenberg-Marquardt for cotton crop classification. To experiment the proposed method, five LISS-III satellite images was taken and the experimentation was done with six vegetation indices such as Simple Ratio, Normalized Difference Vegetation Index, Enhanced Vegetation Index, Green Atmospherically Resistant Vegetation Index, Wide-Dynamic Range Vegetation Index, Green Chlorophyll Index. Along with these indices, Green Leaf Area Index is also considered for investigation. From the research outcome, Green Atmospherically Resistant Vegetation Index outperformed with all other indices by reaching the average accuracy value of 95.21%.

Keywords: Fuzzy C-Means clustering (FCM), neural network, Levenberg-Marquardt (LM) algorithm, vegetation indices

Procedia PDF Downloads 321
3292 Effect of Removing Hub Domain on Human CaMKII Isoforms Sensitivity to Calcium/Calmodulin

Authors: Ravid Inbar

Abstract:

CaMKII (calcium-calmodulin dependent protein kinase II) makes up 2% of the protein in our brain and has a critical role in memory formation and long-term potentiation of neurons. Despite this, research has yet to uncover the role of one of the domains on the activation of this kinase. The following proposes to express the protein without the hub domain in E. coli, leaving only the kinase and regulatory segment of the protein. Next, a series of kinase assays will be conducted to elucidate the role the hub domain plays on CaMKII sensitivity to calcium/calmodulin activation. The hub domain may be important for activation; however, it may also be a variety of domains working together to influence protein activation and not the hub alone. Characterization of a protein is critical to the future understanding of the protein's function, as well as for producing pharmacological targets in cases of patients with diseases.

Keywords: CaMKII, hub domain, kinase assays, kinase + reg seg

Procedia PDF Downloads 94
3291 A Review on Big Data Movement with Different Approaches

Authors: Nay Myo Sandar

Abstract:

With the growth of technologies and applications, a large amount of data has been producing at increasing rate from various resources such as social media networks, sensor devices, and other information serving devices. This large collection of massive, complex and exponential growth of dataset is called big data. The traditional database systems cannot store and process such data due to large and complexity. Consequently, cloud computing is a potential solution for data storage and processing since it can provide a pool of resources for servers and storage. However, moving large amount of data to and from is a challenging issue since it can encounter a high latency due to large data size. With respect to big data movement problem, this paper reviews the literature of previous works, discusses about research issues, finds out approaches for dealing with big data movement problem.

Keywords: Big Data, Cloud Computing, Big Data Movement, Network Techniques

Procedia PDF Downloads 89
3290 Evolving Credit Scoring Models using Genetic Programming and Language Integrated Query Expression Trees

Authors: Alexandru-Ion Marinescu

Abstract:

There exist a plethora of methods in the scientific literature which tackle the well-established task of credit score evaluation. In its most abstract form, a credit scoring algorithm takes as input several credit applicant properties, such as age, marital status, employment status, loan duration, etc. and must output a binary response variable (i.e. “GOOD” or “BAD”) stating whether the client is susceptible to payment return delays. Data imbalance is a common occurrence among financial institution databases, with the majority being classified as “GOOD” clients (clients that respect the loan return calendar) alongside a small percentage of “BAD” clients. But it is the “BAD” clients we are interested in since accurately predicting their behavior is crucial in preventing unwanted loss for loan providers. We add to this whole context the constraint that the algorithm must yield an actual, tractable mathematical formula, which is friendlier towards financial analysts. To this end, we have turned to genetic algorithms and genetic programming, aiming to evolve actual mathematical expressions using specially tailored mutation and crossover operators. As far as data representation is concerned, we employ a very flexible mechanism – LINQ expression trees, readily available in the C# programming language, enabling us to construct executable pieces of code at runtime. As the title implies, they model trees, with intermediate nodes being operators (addition, subtraction, multiplication, division) or mathematical functions (sin, cos, abs, round, etc.) and leaf nodes storing either constants or variables. There is a one-to-one correspondence between the client properties and the formula variables. The mutation and crossover operators work on a flattened version of the tree, obtained via a pre-order traversal. A consequence of our chosen technique is that we can identify and discard client properties which do not take part in the final score evaluation, effectively acting as a dimensionality reduction scheme. We compare ourselves with state of the art approaches, such as support vector machines, Bayesian networks, and extreme learning machines, to name a few. The data sets we benchmark against amount to a total of 8, of which we mention the well-known Australian credit and German credit data sets, and the performance indicators are the following: percentage correctly classified, area under curve, partial Gini index, H-measure, Brier score and Kolmogorov-Smirnov statistic, respectively. Finally, we obtain encouraging results, which, although placing us in the lower half of the hierarchy, drive us to further refine the algorithm.

Keywords: expression trees, financial credit scoring, genetic algorithm, genetic programming, symbolic evolution

Procedia PDF Downloads 121
3289 Silicon Nanostructure Based on Metal-Nanoparticle-Assisted Chemical Etching for Photovoltaic Application

Authors: B. Bouktif, M. Gaidi, M. Benrabha

Abstract:

Metal-nano particle-assisted chemical etching is an extraordinary developed wet etching method of producing uniform semiconductor nanostructure (nanowires) from the patterned metallic film on the crystalline silicon surface. The metal films facilitate the etching in HF and H2O2 solution and produce silicon nanowires (SiNWs). Creation of different SiNWs morphologies by changing the etching time and its effects on optical and optoelectronic properties was investigated. Combination effect of formed SiNWs and stain etching treatment in acid (HF/HNO3/H2O) solution on the surface morphology of Si wafers as well as on the optical and optoelectronic properties are presented in this paper.

Keywords: semiconductor nanostructure, chemical etching, optoelectronic property, silicon surface

Procedia PDF Downloads 391
3288 Lip Localization Technique for Myanmar Consonants Recognition Based on Lip Movements

Authors: Thein Thein, Kalyar Myo San

Abstract:

Lip reading system is one of the different supportive technologies for hearing impaired, or elderly people or non-native speakers. For normal hearing persons in noisy environments or in conditions where the audio signal is not available, lip reading techniques can be used to increase their understanding of spoken language. Hearing impaired persons have used lip reading techniques as important tools to find out what was said by other people without hearing voice. Thus, visual speech information is important and become active research area. Using visual information from lip movements can improve the accuracy and robustness of a speech recognition system and the need for lip reading system is ever increasing for every language. However, the recognition of lip movement is a difficult task because of the region of interest (ROI) is nonlinear and noisy. Therefore, this paper proposes method to detect the accurate lips shape and to localize lip movement towards automatic lip tracking by using the combination of Otsu global thresholding technique and Moore Neighborhood Tracing Algorithm. Proposed method shows how accurate lip localization and tracking which is useful for speech recognition. In this work of study and experiments will be carried out the automatic lip localizing the lip shape for Myanmar consonants using the only visual information from lip movements which is useful for visual speech of Myanmar languages.

Keywords: lip reading, lip localization, lip tracking, Moore neighborhood tracing algorithm

Procedia PDF Downloads 353
3287 Delineation of Green Infrastructure Buffer Areas with a Simulated Annealing: Consideration of Ecosystem Services Trade-Offs in the Objective Function

Authors: Andres Manuel Garcia Lamparte, Rocio Losada Iglesias, Marcos BoullóN Magan, David Miranda Barros

Abstract:

The biodiversity strategy of the European Union for 2030, mentions climate change as one of the key factors for biodiversity loss and considers green infrastructure as one of the solutions to this problem. In this line, the European Commission has developed a green infrastructure strategy which commits members states to consider green infrastructure in their territorial planning. This green infrastructure is aimed at granting the provision of a wide number of ecosystem services to support biodiversity and human well-being by countering the effects of climate change. Yet, there are not too many tools available to delimit green infrastructure. The available ones consider the potential of the territory to provide ecosystem services. However, these methods usually aggregate several maps of ecosystem services potential without considering possible trade-offs. This can lead to excluding areas with a high potential for providing ecosystem services which have many trade-offs with other ecosystem services. In order to tackle this problem, a methodology is proposed to consider ecosystem services trade-offs in the objective function of a simulated annealing algorithm aimed at delimiting green infrastructure multifunctional buffer areas. To this end, the provision potential maps of the regulating ecosystem services considered to delimit the multifunctional buffer areas are clustered in groups, so that ecosystem services that create trade-offs are excluded in each group. The normalized provision potential maps of the ecosystem services in each group are added to obtain a potential map per group which is normalized again. Then the potential maps for each group are combined in a raster map that shows the highest provision potential value in each cell. The combined map is then used in the objective function of the simulated annealing algorithm. The algorithm is run both using the proposed methodology and considering the ecosystem services individually. The results are analyzed with spatial statistics and landscape metrics to check the number of ecosystem services that the delimited areas produce, as well as their regularity and compactness. It has been observed that the proposed methodology increases the number of ecosystem services produced by delimited areas, improving their multifunctionality and increasing their effectiveness in preventing climate change impacts.

Keywords: ecosystem services trade-offs, green infrastructure delineation, multifunctional buffer areas, climate change

Procedia PDF Downloads 176
3286 An Approach to Specify Software Requirements in Semantic Form

Authors: Deepa Vijay, Chellammal Surianarayanan, Gopinath Ganapathy

Abstract:

Requirements of a software project serve as a guideline for the entire project team which enable the team towards producing the right outcome. As requirements are the key in deciding the success of the project, it should be specified in an unambiguous manner. Also, the requirements should be complete and consistent. It should be interpreted in the same way by the entire software project team as the customer interprets. Specifying requirements in textual manner is common in software development. This leads to poor understanding of the requirements which results in more errors and degraded quality. There are some literatures which focus on semantic way of specifying functional requirement which ensure the consistency and completeness of requirements. Alternately in the work, a method is proposed to map the syntactic requirements with corresponding semantics in the form of ontologies. This improves the understanding of requirements, prevents errors and improves quality.

Keywords: functional requirement, ontology, requirements management, semantics

Procedia PDF Downloads 366
3285 Influence of Recycled Glass Content on the Properties of Concrete and Mortar

Authors: Bourmatte Nadjoua, Houari Hacène

Abstract:

The effect of replacement of fine aggregates with recycled glass on the fresh and hardened properties of concrete and mortar is studied. Percentages of replacement are 0–25% and 50% of aggregates with fine waste glass to produce concrete and percentage of replacement of 100% to produce mortar. As a result of the conducted study, the slump flow increased with the increase of recycled glass content. On the other hand, the compressive strength and tensile strength of recycled glass mixtures were decreased with the increase in the recycled glass content. The results showed that recycled glass aggregate can successfully be used with limited level for producing concrete. Mortar based on glass shows a compressive strength with 50% lower than that of control mortar.

Keywords: compressive strength, concrete, mortar, recycled glass

Procedia PDF Downloads 452
3284 Random Forest Classification for Population Segmentation

Authors: Regina Chua

Abstract:

To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.

Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling

Procedia PDF Downloads 98
3283 Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms

Authors: Shaik Ayesha Fathima, Shaik Noor Jahan, Duvvada Rajeswara Rao

Abstract:

Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.

Keywords: area calculation, atrous convolution, deep globe land cover classification, deepLabv3, land cover classification, resnet 50

Procedia PDF Downloads 142