Search results for: conformal cooling channels
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1694

Search results for: conformal cooling channels

44 Lean Comic GAN (LC-GAN): a Light-Weight GAN Architecture Leveraging Factorized Convolution and Teacher Forcing Distillation Style Loss Aimed to Capture Two Dimensional Animated Filtered Still Shots Using Mobile Phone Camera and Edge Devices

Authors: Kaustav Mukherjee

Abstract:

In this paper we propose a Neural Style Transfer solution whereby we have created a Lightweight Separable Convolution Kernel Based GAN Architecture (SC-GAN) which will very useful for designing filter for Mobile Phone Cameras and also Edge Devices which will convert any image to its 2D ANIMATED COMIC STYLE Movies like HEMAN, SUPERMAN, JUNGLE-BOOK. This will help the 2D animation artist by relieving to create new characters from real life person's images without having to go for endless hours of manual labour drawing each and every pose of a cartoon. It can even be used to create scenes from real life images.This will reduce a huge amount of turn around time to make 2D animated movies and decrease cost in terms of manpower and time. In addition to that being extreme light-weight it can be used as camera filters capable of taking Comic Style Shots using mobile phone camera or edge device cameras like Raspberry Pi 4,NVIDIA Jetson NANO etc. Existing Methods like CartoonGAN with the model size close to 170 MB is too heavy weight for mobile phones and edge devices due to their scarcity in resources. Compared to the current state of the art our proposed method which has a total model size of 31 MB which clearly makes it ideal and ultra-efficient for designing of camera filters on low resource devices like mobile phones, tablets and edge devices running OS or RTOS. .Owing to use of high resolution input and usage of bigger convolution kernel size it produces richer resolution Comic-Style Pictures implementation with 6 times lesser number of parameters and with just 25 extra epoch trained on a dataset of less than 1000 which breaks the myth that all GAN need mammoth amount of data. Our network reduces the density of the Gan architecture by using Depthwise Separable Convolution which does the convolution operation on each of the RGB channels separately then we use a Point-Wise Convolution to bring back the network into required channel number using 1 by 1 kernel.This reduces the number of parameters substantially and makes it extreme light-weight and suitable for mobile phones and edge devices. The architecture mentioned in the present paper make use of Parameterised Batch Normalization Goodfellow etc al. (Deep Learning OPTIMIZATION FOR TRAINING DEEP MODELS page 320) which makes the network to use the advantage of Batch Norm for easier training while maintaining the non-linear feature capture by inducing the learnable parameters

Keywords: comic stylisation from camera image using GAN, creating 2D animated movie style custom stickers from images, depth-wise separable convolutional neural network for light-weight GAN architecture for EDGE devices, GAN architecture for 2D animated cartoonizing neural style, neural style transfer for edge, model distilation, perceptual loss

Procedia PDF Downloads 100
43 Genome-Wide Analysis Identifies Locus Associated with Parathyroid Hormone Levels

Authors: Antonela Matana, Dubravka Brdar, Vesela Torlak, Marijana Popovic, Ivana Gunjaca, Ozren Polasek, Vesna Boraska Perica, Maja Barbalic, Ante Punda, Caroline Hayward, Tatijana Zemunik

Abstract:

Parathyroid hormone (PTH) plays a critical role in the regulation of bone mineral metabolism and calcium homeostasis. Higher PTH levels are associated with heart failure, hypertension, coronary artery disease, cardiovascular mortality and poorer bone health. A twin study estimated that 60% of the variation in PTH concentrations is genetically determined. Only one GWAS of PTH concentration has been reported to date. Identified loci explained 4.5% of the variance in circulating PTH, suggesting that additional genetic variants remain undiscovered. Therefore, the aim of this study was to identify novel genetic variants associated with PTH levels in a general population. We have performed a GWAS meta-analysis on 2596 individuals originating from three Croatian cohorts: City of Split and the Islands of Korčula and Vis, within a large-scale project of “10,001 Dalmatians”. A total of 7 411 206 variants, imputed using the 1000 Genomes reference panel, with minor allele frequency ≥ 1% and Rsq ≥ 0.5 were analyzed for the association. GWAS within each data set was performed under an additive model, controlling for age, gender and relatedness. Meta-analysis was conducted using the inverse-variance fixed-effects method. Furthermore, to identify sex-specific effects, we have conducted GWAS meta-analyses analyzing males and females separately. In addition, we have performed biological pathway analysis. Four SNPs, representing one locus, reached genome-wide significance. The most significant SNP was rs11099476 on chromosome 4 (P=1.15x10-8), which explained 1.14 % of the variance in PTH. The SNP is located near the protein-coding gene RASGEF1B. Additionally, we detected suggestive association with SNPs, rs77178854 located on chromosome 2 in the DPP10 gene (P=2.46x10-7) and rs481121 located on chromosome 1 (P=3.58x10-7) near the GRIK1 gene. One of the top hits detected in the main meta-analysis, intron variant rs77178854 located within DPP10 gene, reached genome-wide significance in females (P=2.21x10-9). No single locus was identified in the meta-analysis in males. Fifteen biological pathways were functionally enriched at a P<0.01, including muscle contraction, ion homeostasis and cardiac conduction as the most significant pathways. RASGEF1B is the guanine nucleotide exchange factor, known to be associated with height, bone density, and hip. DPP10 encodes a membrane protein that is a member of the serine proteases family, which binds specific voltage-gated potassium channels and alters their expression and biophysical properties. In conclusion, we identified 2 novel loci associated with PTH levels in a general population, providing us with further insights into the genetics of this complex trait.

Keywords: general population, genome-wide association analysis, parathyroid hormone, single nucleotide polymorphisms.

Procedia PDF Downloads 202
42 Thermal Securing of Electrical Contacts inside Oil Power Transformers

Authors: Ioan Rusu

Abstract:

In the operation of power transformers of 110 kV/MV from substations, these are traveled by fault current resulting from MV line damage. Defect electrical contacts are heated when they are travelled from fault currents. In the case of high temperatures when 135 °C is reached, the electrical insulating oil in the vicinity of the electrical faults comes into contact with these contacts releases gases, and activates the electrical protection. To avoid auto-flammability of electro-insulating oil, we designed a security system thermal of electrical contact defects by pouring fire-resistant polyurethane foam, mastic or mortar fire inside a cardboard electro-insulating cylinder. From practical experience, in the exploitation of power transformers of 110 kV/MT in oil electro-insulating were recorded some passing disconnecting commanded by the gas protection at internal defects. In normal operation and in the optimal load, nominal currents do not require thermal secure contacts inside electrical transformers, contacts are made at the fabrication according to the projects or to repair by solder. In the case of external short circuits close to the substation, the contacts inside electrical transformers, even if they are well made in sizes of Rcontact = 10‑6 Ω, are subjected to short-circuit currents of the order of 10 kA-20 kA which lead to the dissipation of some significant second-order electric powers, 100 W-400 W, on contact. At some internal or external factors which action on electrical contacts, including electrodynamic efforts at short-circuits, these factors could be degraded over time to values in the range of 10-4 Ω to 10-5 Ω and if the action time of protection is great, on the order of seconds, power dissipation on electrical contacts achieve high values of 1,0 kW to 40,0 kW. This power leads to strong local heating, hundreds of degrees Celsius and can initiate self-ignition and burning oil in the vicinity of electro-insulating contacts with action the gas relay. Degradation of electrical contacts inside power transformers may not be limited for the duration of their operation. In order to avoid oil burn with gas release near electrical contacts, at short-circuit currents 10 kA-20 kA, we have outlined the following solutions: covering electrical contacts in fireproof materials that would avoid direct burn oil at short circuit and transmission of heat from electrical contact along the conductors with heat dissipation gradually over time, in a large volume of cooling. Flame retardant materials are: polyurethane foam, mastic, cement (concrete). In the normal condition of operation of transformer, insulating of conductors coils is with paper and insulating oil. Ignition points of its two components respectively are approximated: 135 °C heat for oil and 200 0C for paper. In the case of a faulty electrical contact, about 10-3 Ω, at short-circuit; the temperature can reach for a short time, a value of 300 °C-400 °C, which ignite the paper and also the oil. By burning oil, there are local gases that disconnect the power transformer. Securing thermal electrical contacts inside the transformer, in cardboard tube with polyurethane foams, mastik or cement, ensures avoiding gas release and also gas protection working.

Keywords: power transformer, oil insulatation, electric contacts, Bucholtz relay

Procedia PDF Downloads 133
41 Electrical Transport through a Large-Area Self-Assembled Monolayer of Molecules Coupled with Graphene for Scalable Electronic Applications

Authors: Chunyang Miao, Bingxin Li, Shanglong Ning, Christopher J. B. Ford

Abstract:

While it is challenging to fabricate electronic devices close to atomic dimensions in conventional top-down lithography, molecular electronics is promising to help maintain the exponential increase in component densities via using molecular building blocks to fabricate electronic components from the bottom up. It offers smaller, faster, and more energy-efficient electronic and photonic systems. A self-assembled monolayer (SAM) of molecules is a layer of molecules that self-assembles on a substrate. They are mechanically flexible, optically transparent, low-cost, and easy to fabricate. A large-area multi-layer structure has been designed and investigated by the team, where a SAM of designed molecules is sandwiched between graphene and gold electrodes. Each molecule can act as a quantum dot, with all molecules conducting in parallel. When a source-drain bias is applied, significant current flows only if a molecular orbital (HOMO or LUMO) lies within the source-drain energy window. If electrons tunnel sequentially on and off the molecule, the charge on the molecule is well-defined and the finite charging energy causes Coulomb blockade of transport until the molecular orbital comes within the energy window. This produces ‘Coulomb diamonds’ in the conductance vs source-drain and gate voltages. For different tunnel barriers at either end of the molecule, it is harder for electrons to tunnel out of the dot than in (or vice versa), resulting in the accumulation of two or more charges and a ‘Coulomb staircase’ in the current vs voltage. This nanostructure exhibits highly reproducible Coulomb-staircase patterns, together with additional oscillations, which are believed to be attributed to molecular vibrations. Molecules are more isolated than semiconductor dots, and so have a discrete phonon spectrum. When tunnelling into or out of a molecule, one or more vibronic states can be excited in the molecule, providing additional transport channels and resulting in additional peaks in the conductance. For useful molecular electronic devices, achieving the optimum orbital alignment of molecules to the Fermi energy in the leads is essential. To explore it, a drop of ionic liquid is employed on top of the graphene to establish an electric field at the graphene, which screens poorly, gating the molecules underneath. Results for various molecules with different alignments of Fermi energy to HOMO have shown highly reproducible Coulomb-diamond patterns, which agree reasonably with DFT calculations. In summary, this large-area SAM molecular junction is a promising candidate for future electronic circuits. (1) The small size (1-10nm) of the molecules and good flexibility of the SAM lead to the scalable assembly of ultra-high densities of functional molecules, with advantages in cost, efficiency, and power dissipation. (2) The contacting technique using graphene enables mass fabrication. (3) Its well-observed Coulomb blockade behaviour, narrow molecular resonances, and well-resolved vibronic states offer good tuneability for various functionalities, such as switches, thermoelectric generators, and memristors, etc.

Keywords: molecular electronics, Coulomb blokade, electron-phonon coupling, self-assembled monolayer

Procedia PDF Downloads 34
40 An Empirical Study of Determinants Influencing Telemedicine Services Acceptance by Healthcare Professionals: Case of Selected Hospitals in Ghana

Authors: Jonathan Kissi, Baozhen Dai, Wisdom W. K. Pomegbe, Abdul-Basit Kassim

Abstract:

Protecting patient’s digital information is a growing concern for healthcare institutions as people nowadays perpetually live their lives through telemedicine services. These telemedicine services have been confronted with several determinants that hinder their successful implementations, especially in developing countries. Identifying such determinants that influence the acceptance of telemedicine services is also a problem for healthcare professionals. Despite the tremendous increase in telemedicine services, its adoption, and use has been quite slow in some healthcare settings. Generally, it is accepted in today’s globalizing world that the success of telemedicine services relies on users’ satisfaction. Satisfying health professionals and patients are one of the crucial objectives of telemedicine success. This study seeks to investigate the determinants that influence health professionals’ intention to utilize telemedicine services in clinical activities in a sub-Saharan African country in West Africa (Ghana). A hybridized model comprising of health adoption models, including technology acceptance theory, diffusion of innovation theory, and protection of motivation theory, were used to investigate these quandaries. The study was carried out in four government health institutions that apply and regulate telemedicine services in their clinical activities. A structured questionnaire was developed and used for data collection. Purposive and convenience sampling methods were used in the selection of healthcare professionals from different medical fields for the study. The collected data were analyzed based on structural equation modeling (SEM) approach. All selected constructs showed a significant relationship with health professional’s behavioral intention in the direction expected from prior literature including perceived usefulness, perceived ease of use, management strategies, financial sustainability, communication channels, patients security threat, patients privacy risk, self efficacy, actual service use, user satisfaction, and telemedicine services systems securities threat. Surprisingly, user characteristics and response efficacy of health professionals were not significant in the hybridized model. The findings and insights from this research show that health professionals are pragmatic when making choices for technology applications and also their willingness to use telemedicine services. They are, however, anxious about its threats and coping appraisals. The identified significant constructs in the study may help to increase efficiency, quality of services, quality patient care delivery, and satisfactory user satisfaction among healthcare professionals. The implantation and effective utilization of telemedicine services in the selected hospitals will aid as a strategy to eradicate hardships in healthcare services delivery. The service will help attain universal health access coverage to all populace. This study contributes to empirical knowledge by identifying the vital factors influencing health professionals’ behavioral intentions to adopt telemedicine services. The study will also help stakeholders of healthcare to formulate better policies towards telemedicine service usage.

Keywords: telemedicine service, perceived usefulness, perceived ease of use, management strategies, security threats

Procedia PDF Downloads 112
39 Treatment of Neuronal Defects by Bone Marrow Stem Cells Differentiation to Neuronal Cells Cultured on Gelatin-PLGA Scaffolds Coated with Nano-Particles

Authors: Alireza Shams, Ali Zamanian, Atefehe Shamosi, Farnaz Ghorbani

Abstract:

Introduction: Although the application of a new strategy remains a remarkable challenge for treatment of disabilities due to neuronal defects, progress in Nanomedicine and tissue engineering, suggesting the new medical methods. One of the promising strategies for reconstruction and regeneration of nervous tissue is replacing of lost or damaged cells by specific scaffolds after Compressive, ischemic and traumatic injuries of central nervous system. Furthermore, ultrastructure, composition, and arrangement of tissue scaffolds are effective on cell grafts. We followed implantation and differentiation of mesenchyme stem cells to neural cells on Gelatin Polylactic-co-glycolic acid (PLGA) scaffolds coated with iron nanoparticles. The aim of this study was to evaluate the capability of stem cells to differentiate into motor neuron-like cells under topographical cues and morphogenic factors. Methods and Materials: Bone marrow mesenchymal stem cells (BMMSCs) was obtained by primary cell culturing of adult rat bone marrow got from femur bone by flushing method. BMMSCs were incubated with DMEM/F12 (Gibco), 15% FBS and 100 U/ml pen/strep as media. Then, BMMSCs seeded on Gel/PLGA scaffolds and tissue culture (TCP) polystyrene embedded and incorporated by Fe Nano particles (FeNPs) (Fe3o4 oxide (M w= 270.30 gr/mol.). For neuronal differentiation, 2×10 5 BMMSCs were seeded on Gel/PLGA/FeNPs scaffolds was cultured for 7 days and 0.5 µ mol. Retinoic acid, 100 µ mol. Ascorbic acid,10 ng/ml. Basic fibroblast growth factor (Sigma, USA), 250 μM Iso butyl methyl xanthine, 100 μM 2-mercaptoethanol, and 0.2 % B27 (Invitrogen, USA) added to media. Proliferation of BMMSCs was assessed by using MTT assay for cell survival. The morphology of BMMSCs and scaffolds was investigated by scanning electron microscopy analysis. Expression of neuron-specific markers was studied by immunohistochemistry method. Data were analyzed by analysis of variance, and statistical significance was determined by Turkey’s test. Results: Our results revealed that differentiation and survival of BMMSCs into motor neuron-like cells on Gel/PLGA/FeNPs as a biocompatible and biodegradable scaffolds were better than those cultured in Gel/PLGA in absence of FeNPs and TCP scaffolds. FeNPs had raised physical power but decreased capacity absorption of scaffolds. Well defined oriented pores in scaffolds due to FeNPs may activate differentiation and synchronized cells as a mechanoreceptor. Induction effects of magnetic FeNPs by One way flow of channels in scaffolds help to lead the cells and can facilitate direction of their growth processes. Discussion: Progression of biological properties of BMMSCs and the effects of FeNPs spreading under magnetic field was evaluated in this investigation. In vitro study showed that the Gel/PLGA/FeNPs scaffold provided a suitable structure for motor neuron-like cells differentiation. This could be a promising candidate for enhancing repair and regeneration in neural defects. Dynamic and static magnetic field for inducing and construction of cells can provide better results for further experimental studies.

Keywords: differentiation, mesenchymal stem cells, nano particles, neuronal defects, Scaffolds

Procedia PDF Downloads 144
38 A Rapid Assessment of the Impacts of COVID-19 on Overseas Labor Migration: Findings from Bangladesh

Authors: Vaiddehi Bansal, Ridhi Sahai, Kareem Kysia

Abstract:

Overseas labor migration is currently one of the most important contributors to the economy of Bangladesh and is a highly profitable form of labor for Gulf Cooperative Council (GCC) countries. In 2019, 700,159 migrant workers from Bangladeshtraveled abroad for employment. GCC countries are a major destination for Bangladeshi migrant workers, with Saudi Arabia being the most common destination for Bangladeshi migrant workers since 2016. Despite the high rate of migration between these countries every year, the OLR industry remains complex and often leaves migrants susceptible to human trafficking, forced labor, and modern slavery. While the prevalence of forced labor among Bangladeshi migrants in GCC countries is still unknown, the IOM estimates international migrant workers comprise one fourth of the victims of forced labor. Moreover, the onset of the global COVID-19 pandemic has exposed migrant workers to additional adverse situations, making them even more vulnerable to forced labor and health risks. This paper presents findings from a rapid assessment of the impacts of COVID-19 on OLR in Bangladesh, with an emphasis on the increased risk of forced labor among vulnerable migrant worker populations, particularly women.Rapid reviews are a useful approach to swiftly provide actionable evidence for informed decision-making during emergencies, such as the COVID-19 pandemic. The research team conducted semi-structured key information interviews (KIIs) with a range of stakeholders, including government officials, local NGOs, international organizations, migration researchers, and formal and informal recruiting agencies, to obtain insights on the multi-facted impacts of COVID-19 on the OLR sector. The research team also conducted a comprehensive review of available resources, including media articles, blogs, policy briefs, reports, white papers, and other online content, to triangulate findings from the KIIs. After screening for inclusion criteria, a total of 110 grey literature documents were included in the review. A total of 31 KIIs were conducted, data from which was transcribed and translated from Bangla to English, andanalyzed using a detailed codebook. Findings indicate that there was limited reintegration support for returnee migrants. Facing increasing amounts of debt, financial insecurity, and social discrimination, returnee migrants, were extremely vulnerable to forced labor and exploitation. Growing financial debt and limited job opportunities in their home country will likely push migrants to resort to unsafe migration channels. Evidence suggests that women, who are primarily domestic works in GCC countries, were exposed to increased risk of forced labor and workplace violence. Due to stay-at-home measures, women migrant workers were tasked with additional housekeeping working and subjected to longer work hours, wage withholding, and physical abuse. In Bangladesh, returnee women migrant workers also faced an increased risk of domestic violence.

Keywords: forced labor, migration, gender, human trafficking

Procedia PDF Downloads 88
37 An Investigation into the Social Determinants of Crowdfunding Effectiveness in developing, non-Western contexts: Some Evidence from Thailand

Authors: Khin Thi Htun, James Jain, Tim Andrews

Abstract:

This study examines the under-researched phenomenon of crowdfunding use and effectiveness in developing non-western markets. More precisely, using an institutional theoretical lens, the research explores the attitudes, motivations, and practice surrounding the initiation, development, and receipt of crowdfunding campaignsin a business context symptomatic of widely dissimilar regulatory, normative cognitive institutional ‘pillars’ to those studied – and utilized in practice - to date. As, in essence, a form of alternative finance, crowdfunding is used primarily to fund a wide range of projects through the securement of small amounts of money from a large pool of investors/participants. Being tied almost inextricably to e-commerce channels, the practice of crowdfunding typically sources its means and communicates the purpose of each venture mainly, though not exclusively, online. The wide range of projects supported to date span social entrepreneurship, community benefits initiatives, creative and artistic endeavors, assistance to disadvantaged social cohorts, and small business start-ups. Adopting a longitudinal, comparative approach, the study reported here embodies an investigation centered on six case start-up campaigns within the Thai societal context, covering a range of fundings calls and cause choices. Data was sourced from a variety of respondents using semi-structured interviews, observation (direct and participant), and company information. Results suggest that the motives and effectiveness of crowdfunding campaigns differ significantly in non-western consumer contexts from the norms that have evolved to date in mature Western contexts(particularly the US and UK). Specifically, whereas data on the different regulatory pressures showed relatively insignificant variation, the results regarding cognitive and, especially, normative dissimilarities between the Thai and US/UK institutional profiles surfaced potentially important differences with far-reaching implications. Particular issuesto emerge from our data concerned consumer motivation in terms of support and engagement with different types of campaigns. This was found to stem from social norms symptomatic of ‘collectivist’ and ‘relations based/particularist’ cultural assistance behavior, in turn, linked to deeply-held societal values regarding interpersonal network (‘in group’) reciprocity. This research serves to refine and extend the limited body of knowledge to date on crowdfunding by exploring the phenomenon in a non-western, non-developed country contextswhere social norms and values differ. This was achieved through uncovering and explicating the effects of cultural dissimilarity on motivation, decision-making, construed ethics, and general engagement with crowdfunding ideas. Implications for theory into e-marketing and cross-cultural marketing, as well as for practitioners seeking to develop effective crowdfunding campaigns in a Southeast Asian cultural environment, are discussed to conclude the paper.

Keywords: crowdfunding, national culture, e-marketing, cross-cultural business

Procedia PDF Downloads 127
36 Design, Fabrication and Analysis of Molded and Direct 3D-Printed Soft Pneumatic Actuators

Authors: N. Naz, A. D. Domenico, M. N. Huda

Abstract:

Soft Robotics is a rapidly growing multidisciplinary field where robots are fabricated using highly deformable materials motivated by bioinspired designs. The high dexterity and adaptability to the external environments during contact make soft robots ideal for applications such as gripping delicate objects, locomotion, and biomedical devices. The actuation system of soft robots mainly includes fluidic, tendon-driven, and smart material actuation. Among them, Soft Pneumatic Actuator, also known as SPA, remains the most popular choice due to its flexibility, safety, easy implementation, and cost-effectiveness. However, at present, most of the fabrication of SPA is still based on traditional molding and casting techniques where the mold is 3d printed into which silicone rubber is cast and consolidated. This conventional method is time-consuming and involves intensive manual labour with the limitation of repeatability and accuracy in design. Recent advancements in direct 3d printing of different soft materials can significantly reduce the repetitive manual task with an ability to fabricate complex geometries and multicomponent designs in a single manufacturing step. The aim of this research work is to design and analyse the Soft Pneumatic Actuator (SPA) utilizing both conventional casting and modern direct 3d printing technologies. The mold of the SPA for traditional casting is 3d printed using fused deposition modeling (FDM) with the polylactic acid (PLA) thermoplastic wire. Hyperelastic soft materials such as Ecoflex-0030/0050 are cast into the mold and consolidated using a lab oven. The bending behaviour is observed experimentally with different pressures of air compressor to ensure uniform bending without any failure. For direct 3D-printing of SPA fused deposition modeling (FDM) with thermoplastic polyurethane (TPU) and stereolithography (SLA) with an elastic resin are used. The actuator is modeled using the finite element method (FEM) to analyse the nonlinear bending behaviour, stress concentration and strain distribution of different hyperelastic materials after pressurization. FEM analysis is carried out using Ansys Workbench software with a Yeon-2nd order hyperelastic material model. FEM includes long-shape deformation, contact between surfaces, and gravity influences. For mesh generation, quadratic tetrahedron, hybrid, and constant pressure mesh are used. SPA is connected to a baseplate that is in connection with the air compressor. A fixed boundary is applied on the baseplate, and static pressure is applied orthogonally to all surfaces of the internal chambers and channels with a closed continuum model. The simulated results from FEM are compared with the experimental results. The experiments are performed in a laboratory set-up where the developed SPA is connected to a compressed air source with a pressure gauge. A comparison study based on performance analysis is done between FDM and SLA printed SPA with the molded counterparts. Furthermore, the molded and 3d printed SPA has been used to develop a three-finger soft pneumatic gripper and has been tested for handling delicate objects.

Keywords: finite element method, fused deposition modeling, hyperelastic, soft pneumatic actuator

Procedia PDF Downloads 60
35 Forming-Free Resistive Switching Effect in ZnₓTiᵧHfzOᵢ Nanocomposite Thin Films for Neuromorphic Systems Manufacturing

Authors: Vladimir Smirnov, Roman Tominov, Vadim Avilov, Oleg Ageev

Abstract:

The creation of a new generation micro- and nanoelectronics elements opens up unlimited possibilities for electronic devices parameters improving, as well as developing neuromorphic computing systems. Interest in the latter is growing up every year, which is explained by the need to solve problems related to the unstructured classification of data, the construction of self-adaptive systems, and pattern recognition. However, for its technical implementation, it is necessary to fulfill a number of conditions for the basic parameters of electronic memory, such as the presence of non-volatility, the presence of multi-bitness, high integration density, and low power consumption. Several types of memory are presented in the electronics industry (MRAM, FeRAM, PRAM, ReRAM), among which non-volatile resistive memory (ReRAM) is especially distinguished due to the presence of multi-bit property, which is necessary for neuromorphic systems manufacturing. ReRAM is based on the effect of resistive switching – a change in the resistance of the oxide film between low-resistance state (LRS) and high-resistance state (HRS) under an applied electric field. One of the methods for the technical implementation of neuromorphic systems is cross-bar structures, which are ReRAM cells, interconnected by cross data buses. Such a structure imitates the architecture of the biological brain, which contains a low power computing elements - neurons, connected by special channels - synapses. The choice of the ReRAM oxide film material is an important task that determines the characteristics of the future neuromorphic system. An analysis of literature showed that many metal oxides (TiO2, ZnO, NiO, ZrO2, HfO2) have a resistive switching effect. It is worth noting that the manufacture of nanocomposites based on these materials allows highlighting the advantages and hiding the disadvantages of each material. Therefore, as a basis for the neuromorphic structures manufacturing, it was decided to use ZnₓTiᵧHfzOᵢ nanocomposite. It is also worth noting that the ZnₓTiᵧHfzOᵢ nanocomposite does not need an electroforming, which degrades the parameters of the formed ReRAM elements. Currently, this material is not well studied, therefore, the study of the effect of resistive switching in forming-free ZnₓTiᵧHfzOᵢ nanocomposite is an important task and the goal of this work. Forming-free nanocomposite ZnₓTiᵧHfzOᵢ thin film was grown by pulsed laser deposition (Pioneer 180, Neocera Co., USA) on the SiO2/TiN (40 nm) substrate. Electrical measurements were carried out using a semiconductor characterization system (Keithley 4200-SCS, USA) with W probes. During measurements, TiN film was grounded. The analysis of the obtained current-voltage characteristics showed a resistive switching from HRS to LRS resistance states at +1.87±0.12 V, and from LRS to HRS at -2.71±0.28 V. Endurance test shown that HRS was 283.21±32.12 kΩ, LRS was 1.32±0.21 kΩ during 100 measurements. It was shown that HRS/LRS ratio was about 214.55 at reading voltage of 0.6 V. The results can be useful for forming-free nanocomposite ZnₓTiᵧHfzOᵢ films in neuromorphic systems manufacturing. This work was supported by RFBR, according to the research project № 19-29-03041 mk. The results were obtained using the equipment of the Research and Education Center «Nanotechnologies» of Southern Federal University.

Keywords: nanotechnology, nanocomposites, neuromorphic systems, RRAM, pulsed laser deposition, resistive switching effect

Procedia PDF Downloads 103
34 Political Communication in Twitter Interactions between Government, News Media and Citizens in Mexico

Authors: Jorge Cortés, Alejandra Martínez, Carlos Pérez, Anaid Simón

Abstract:

The presence of government, news media, and general citizenry in social media allows considering interactions between them as a form of political communication (i.e. the public exchange of contradictory discourses about politics). Twitter’s asymmetrical following model (users can follow, mention or reply to other users that do not follow them) could foster alternative democratic practices and have an impact on Mexican political culture, which has been marked by a lack of direct communication channels between these actors. The research aim is to assess Twitter’s role in political communication practices through the analysis of interaction dynamics between government, news media, and citizens by extracting and visualizing data from Twitter’s API to observe general behavior patterns. The hypothesis is that regardless the fact that Twitter’s features enable direct and horizontal interactions between actors, users repeat traditional dynamics of interaction, without taking full advantage of the possibilities of this medium. Through an interdisciplinary team including Communication Strategies, Information Design, and Interaction Systems, the activity on Twitter generated by the controversy over the presence of Uber in Mexico City was analysed; an issue of public interest, involving aspects such as public opinion, economic interests and a legal dimension. This research includes techniques from social network analysis (SNA), a methodological approach focused on the comprehension of the relationships between actors through the visual representation and measurement of network characteristics. The analysis of the Uber event comprised data extraction, data categorization, corpus construction, corpus visualization and analysis. On the recovery stage TAGS, a Google Sheet template, was used to extract tweets that included the hashtags #UberSeQueda and #UberSeVa, posts containing the string Uber and tweets directed to @uber_mx. Using scripts written in Python, the data was filtered, discarding tweets with no interaction (replies, retweets or mentions) and locations outside of México. Considerations regarding bots and the omission of anecdotal posts were also taken into account. The utility of graphs to observe interactions of political communication in general was confirmed by the analysis of visualizations generated with programs such as Gephi and NodeXL. However, some aspects require improvements to obtain more useful visual representations for this type of research. For example, link¬crossings complicates following the direction of an interaction forcing users to manipulate the graph to see it clearly. It was concluded that some practices prevalent in political communication in Mexico are replicated in Twitter. Media actors tend to group together instead of interact with others. The political system tends to tweet as an advertising strategy rather than to generate dialogue. However, some actors were identified as bridges establishing communication between the three spheres, generating a more democratic exercise and taking advantage of Twitter’s possibilities. Although interactions in Twitter could become an alternative to political communication, this potential depends on the intentions of the participants and to what extent they are aiming for collaborative and direct communications. Further research is needed to get a deeper understanding on the political behavior of Twitter users and the possibilities of SNA for its analysis.

Keywords: interaction, political communication, social network analysis, Twitter

Procedia PDF Downloads 195
33 Nuclear Powered UAV for Surveillances and Aerial Photography

Authors: Rajasekar Elangopandian, Anand Shanmugam

Abstract:

Now-a-days for surveillances unmanned aerial vehicle plays a vital role. Not only for surveillances, aerial photography disaster management and the notice of earth behavior UAV1s envisages meticulously. To reduce the maintenance and fuel nuclear powered Vehicles are greater support. The design consideration is much important for the UAV manufacturing industry and Research and development agency. Eventually design is looking like a pentagon shaped fuselage and black rubber coated paint in order to escape from the enemy radar and other targets. The pentagon shape fuselage has large space to keep the mini nuclear reactor inside and the material is carbon – carbon fiber specially designed by the software called cosmol and hyper mesh 14.2. So the weight consideration will produce the positive result for productivity. The walls of the fuselage are coated with lead and protective shield. A double layer of W/Bi sheet is proposed for radiation protection at the energy range of 70 Kev to 90 Kev. The designed W/bi sheet, only 0.14 mm thick and is 36% light. The properties of the fillers were determined from zeta potential and particle size measurements. The Exposes of the radiation can be attenuated by 3 ways such as minimizing exposure time, Maximizing distance from the radiation source and shielding the whole vehicle. The inside reactor will be switched ON when the UAV starts its cruise. The moderators and the control rods can be inserted by automation technique by newly developed software. The heat generated by the reactor will be used to run the turbine which is fixed inside the UAV called mini turbine with natural rubber composite Shaft radiation shield. Cooling system will be in two mode such as liquid and air cooled. Liquid coolant for the heat regeneration is ordinary water, liquid sodium, helium and the walls are made up of regenerative and radiation protective material. The other components like camera and arms bay will be located at the bottom of the UAV high are specially made products in order to escape from the radiation. They are coated with lead Pb and natural rubber composite material. This technique provides the long rang and endurance for eternal flight mission until we need any changeability of parts or product. This UAV has the special advantage of ` land on String` means it`ll land at electric line to charge the automated electronics. Then the fuel is enriched uranium (< 5% U - 235) contains hundreds of fuel pins. This technique provides eternal duty for surveillances and aerial photography. The landing of the vehicle is ease of operation likewise the takeoff is also easier than any other mechanism which present in nowadays. This UAV gives great immense and immaculate technology for surveillance and target detecting and smashing the target.

Keywords: mini turbine, liquid coolant for the heat regeneration, in order to escape from the radiation, eternal flight mission, it`ll land at electric line

Procedia PDF Downloads 385
32 Analysis of Fish Preservation Methods for Traditional Fishermen Boat

Authors: Kusno Kamil, Andi Asni, Sungkono

Abstract:

According to a report of the World Food and Agriculture Agency (FAO): the post-harvest fish losses in Indonesia reaches 30 percent from 170 trillion rupiahs of marine fisheries reserves, then the potential loss reaches 51 trillion rupiahs (end of 2016 data). This condition is caused by traditionally vulnerable fish catches damaged due to disruption of the cold chain of preservation. The physical and chemical changes in fish flesh increase rapidly, especially if exposed to the scorching heat in the middle of the sea, exacerbated by the low awareness of catch hygiene; many unclean catches which contain blood are often treated without special attention and mixed with freshly caught fish, thereby increasing the potential for faster fish spoilage. This background encourages research on traditional fisherman catch preservation methods that aim to find the best and most affordable methods and/or combinations of fish preservation methods so that they can help fishermen increase their fishing duration without worrying that their catch will be damaged, thereby reducing their economic value when returning to the beach to sell their catches. This goal is expected to be achieved through experimental methods of treatment of fresh fish catches in containers with the addition of anti-bacterial copper, liquid smoke solution, and the use of vacuum containers. The other three treatments combined the three previous treatment variables with an electrically powered cooler (temperature 0~4 ᵒC). As a control specimen, the untreated fresh fish (placed in the open air and in the refrigerator) were also prepared for comparison for 1, 3, and 6 days. To test the level of freshness of fish for each treatment, physical observations were used, which were complemented by tests for bacterial content in a trusted laboratory. The content of copper (Cu) in fish meat (which is suspected of having a negative impact on consumers) was also part of the examination on the 6th day of experimentation. The results of physical observations on the test specimens (organoleptic method) showed that preservation assisted by the use of coolers was still better for all treatment variables. The specimens, without cooling, sequentially showed that the best preservation effectiveness was the addition of copper plates, the use of vacuum containers, and then liquid smoke immersion. Especially for liquid smoke, soaking for 6 days of preservation makes the fish meat soft and easy to crumble, even though it doesn't have a bad odor. The visual observation was then complemented by the results of testing the amount of growth (or retardation) of putrefactive bacteria in each treatment of test specimens within similar observation periods. Laboratory measurements report that the minimum amount of putrefactive bacteria achieved by preservation treatment combining cooler with liquid smoke (sample A+), then cooler only (D+), copper layer inside cooler (B+), vacuum container inside cooler (C+), respectively. Other treatments in open air produced a hundred times more putrefactive bacteria. In addition, treatment of the copper layer contaminated the preserved fresh fish more than a thousand times bigger compared to the initial amount, from 0.69 to 1241.68 µg/g.

Keywords: fish, preservation, traditional, fishermen, boat

Procedia PDF Downloads 49
31 The Role of Creative Works Dissemination Model in EU Copyright Law Modernization

Authors: Tomas Linas Šepetys

Abstract:

In online content-sharing service platforms, the ability of creators to restrict illicit use of audiovisual creative works has effectively been abolished, largely due to specific infrastructure where a huge volume of copyrighted audiovisual content can be made available to the public. The European Union legislator has attempted to strengthen the positions of creators in the realm of online content-sharing services. Article 17 of the new Digital Single Market Directive considers online content-sharing service providers to carry out acts of communication to the public of any creative content uploaded to their platforms by users and posits requirements to obtain licensing agreements. While such regulation intends to assert authors‘ ability to effectively control the dissemination of their creative works, it also creates threats of parody content overblocking through automated content monitoring. Such potentially paradoxical outcome of the efforts of the EU legislator to deliver economic safeguards for the creators in the online content-sharing service platforms leads to presume lack of informity on legislator‘s part regarding creative works‘ economic exploitation opportunities provided to creators in the online content-sharing infrastructure. Analysis conducted in this scientific research discloses that the aforementioned irregularities of parody and other creative content dissemination are caused by EU legislators‘ lack of assessment of value extraction conditions for parody creators in the online content-sharing service platforms. Historical and modeling research method application reveals the existence of two creative content dissemination models and their unique mechanisms of commercial value creation. Obligations to obtain licenses and liability over creative content uploaded to their platforms by users set in Article 17 of the Digital Single Market Directive represent technological replication of the proprietary dissemination model where the creator is able to restrict access to creative content apart from licensed retail channels. The online content-sharing service platforms represent an open dissemination model where the economic potential of creative content is based on the infrastructure of unrestricted access by users and partnership with advertising services offered by the platform. Balanced modeling of proprietary dissemination models in such infrastructure requires not only automated content monitoring measures but also additional regulatory monitoring solutions to separate parody and other types of creative content. An example of the Digital Single Market Directive proves that regulation can dictate not only the technological establishment of a proprietary dissemination model but also a partial reduction of the open dissemination model and cause a disbalance between the economic interests of creators relying on such models. The results of this scientific research conclude an informative role of the creative works dissemination model in the EU copyright law modernization process. A thorough understanding of the commercial prospects of the open dissemination model intrinsic to the online content-sharing service platform structure requires and encourages EU legislators to regulate safeguards for parody content dissemination. Implementing such safeguards would result in a common application of proprietary and open dissemination models in the online content-sharing service platforms and balanced protection of creators‘ economic interests explicitly based on those creative content dissemination models.

Keywords: copyright law, creative works dissemination model, digital single market directive, online content-sharing services

Procedia PDF Downloads 48
30 Deep Learning for SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network

Procedia PDF Downloads 45
29 Deep Learning Based Polarimetric SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry

Procedia PDF Downloads 53
28 Governance of Climate Adaptation Through Artificial Glacier Technology: Lessons Learnt from Leh (Ladakh, India) In North-West Himalaya

Authors: Ishita Singh

Abstract:

Social-dimension of Climate Change is no longer peripheral to Science, Technology and Innovation (STI). Indeed, STI is being mobilized to address small farmers’ vulnerability and adaptation to Climate Change. The experiences from the cold desert of Leh (Ladakh) in North-West Himalaya illustrate the potential of STI to address the challenges of Climate Change and the needs of small farmers through the use of Artificial Glacier Techniques. Small farmers have a unique technique of water harvesting to augment irrigation, called “Artificial Glaciers” - an intricate network of water channels and dams along the upper slope of a valley that are located closer to villages and at lower altitudes than natural glaciers. It starts to melt much earlier and supplements additional irrigation to small farmers’ improving their livelihoods. Therefore, the issue of vulnerability, adaptive capacity and adaptation strategy needs to be analyzed in a local context and the communities as well as regions where people live. Leh (Ladakh) in North-West Himalaya provides a Case Study for exploring the ways in which adaptation to Climate Change is taking place at a community scale using Artificial Glacier Technology. With the above backdrop, an attempt has been made to analyze the rural poor households' vulnerability and adaptation practices to Climate Change using this technology, thereby drawing lessons on vulnerability-livelihood interactions in the cold desert of Leh (Ladakh) in North-West Himalaya, India. The study is based on primary data and information collected from 675 households confined to 27 villages of Leh (Ladakh) in North-West Himalaya, India. It reveals that 61.18% of the population is driving livelihoods from agriculture and allied activities. With increased irrigation potential due to the use of Artificial Glaciers, food security has been assured to 77.56% of households and health vulnerability has been reduced in 31% of households. Seasonal migration as a livelihood diversification mechanism has declined in nearly two-thirds of households, thereby improving livelihood strategies. Use of tactical adaptations by small farmers in response to persistent droughts, such as selling livestock, expanding agriculture lands, and use of relief cash and foods, have declined to 20.44%, 24.74% and 63% of households. However, these measures are unsustainable on a long-term basis. The role of policymakers and societal stakeholders becomes important in this context. To address livelihood challenges, the role of technology is critical in a multidisciplinary approach involving multilateral collaboration among different stakeholders. The presence of social entrepreneurs and new actors on the adaptation scene is necessary to bring forth adaptation measures. Better linkage between Science and Technology policies, together with other policies, should be encouraged. Better health care, access to safe drinking water, better sanitary conditions, and improved standards of education and infrastructure are effective measures to enhance a community’s adaptive capacity. However, social transfers for supporting climate adaptive capacity require significant amounts of additional investment. Developing institutional mechanisms for specific adaptation interventions can be one of the most effective ways of implementing a plan to enhance adaptation and build resilience.

Keywords: climate change, adaptation, livelihood, stakeholders

Procedia PDF Downloads 38
27 Optical-Based Lane-Assist System for Rowing Boats

Authors: Stephen Tullis, M. David DiDonato, Hong Sung Park

Abstract:

Rowing boats (shells) are often steered by a small rudder operated by one of the backward-facing rowers; the attention required of that athlete then slightly decreases the power that that athlete can provide. Reducing the steering distraction would then increase the overall boat speed. Races are straight 2000 m courses with each boat in a 13.5 m wide lane marked by small (~15 cm) widely-spaced (~10 m) buoys, and the boat trajectory is affected by both cross-currents and winds. An optical buoy recognition and tracking system has been developed that provides the boat’s location and orientation with respect to the lane edges. This information is provided to the steering athlete as either: a simple overlay on a video display, or fed to a simplified autopilot system giving steering directions to the athlete or directly controlling the rudder. The system is then effectively a “lane-assist” device but with small, widely-spaced lane markers viewed from a very shallow angle due to constraints on camera height. The image is captured with a lightweight 1080p webcam, and most of the image analysis is done in OpenCV. The colour RGB-image is converted to a grayscale using the difference of the red and blue channels, which provides good contrast between the red/yellow buoys and the water, sky, land background and white reflections and noise. Buoy detection is done with thresholding within a tight mask applied to the image. Robust linear regression using Tukey’s biweight estimator of the previously detected buoy locations is used to develop the mask; this avoids the false detection of noise such as waves (reflections) and, in particular, buoys in other lanes. The robust regression also provides the current lane edges in the camera frame that are used to calculate the displacement of the boat from the lane centre (lane location), and its yaw angle. The interception of the detected lane edges provides a lane vanishing point, and yaw angle can be calculated simply based on the displacement of this vanishing point from the camera axis and the image plane distance. Lane location is simply based on the lateral displacement of the vanishing point from any horizontal cut through the lane edges. The boat lane position and yaw are currently fed what is essentially a stripped down marine auto-pilot system. Currently, only the lane location is used in a PID controller of a rudder actuator with integrator anti-windup to deal with saturation of the rudder angle. Low Kp and Kd values decrease unnecessarily fast return to lane centrelines and response to noise, and limiters can be used to avoid lane departure and disqualification. Yaw is not used as a control input, as cross-winds and currents can cause a straight course with considerable yaw or crab angle. Mapping of the controller with rudder angle “overall effectiveness” has not been finalized - very large rudder angles stall and have decreased turning moments, but at less extreme angles the increased rudder drag slows the boat and upsets boat balance. The full system has many features similar to automotive lane-assist systems, but with the added constraints of the lane markers, camera positioning, control response and noise increasing the challenge.

Keywords: auto-pilot, lane-assist, marine, optical, rowing

Procedia PDF Downloads 106
26 Calpains; Insights Into the Pathogenesis of Heart Failure

Authors: Mohammadjavad Sotoudeheian

Abstract:

Heart failure (HF) prevalence, as a global cardiovascular problem, is increasing gradually. A variety of molecular mechanisms contribute to HF. Proteins involved in cardiac contractility regulation, such as ion channels and calcium handling proteins, are altered. Additionally, epigenetic modifications and gene expression can lead to altered cardiac function. Moreover, inflammation and oxidative stress contribute to HF. The progression of HF can be attributed to mitochondrial dysfunction that impairs energy production and increases apoptosis. Molecular mechanisms such as these contribute to the development of cardiomyocyte defects and HF and can be therapeutically targeted. The heart's contractile function is controlled by cardiomyocytes. Calpain, and its related molecules, including Bax, VEGF, and AMPK, are among the proteins involved in regulating cardiomyocyte function. Apoptosis is facilitated by Bax. Cardiomyocyte apoptosis is regulated by this protein. Furthermore, cardiomyocyte survival, contractility, wound healing, and proliferation are all regulated by VEGF, which is produced by cardiomyocytes during inflammation and cytokine stress. Cardiomyocyte proliferation and survival are also influenced by AMPK, an enzyme that plays an active role in energy metabolism. They all play key roles in apoptosis, angiogenesis, hypertrophy, and metabolism during myocardial inflammation. The role of calpains has been linked to several molecular pathways. The calpain pathway plays an important role in signal transduction and apoptosis, as well as autophagy, endocytosis, and exocytosis. Cell death and survival are regulated by these calcium-dependent cysteine proteases that cleave proteins. As a result, protein fragments can be used for various cellular functions. By cleaving adhesion and motility proteins, calcium proteins also contribute to cell migration. HF may be brought about by calpain-mediated pathways. Many physiological processes are mediated by the calpain molecular pathways. Signal transduction, cell death, and cell migration are all regulated by these molecular pathways. Calpain is activated by calcium binding to calmodulin. In the presence of calcium, calmodulin activates calpain. Calpains are stimulated by calcium, which increases matrix metalloproteinases (MMPs). In order to develop novel treatments for these diseases, we must understand how this pathway works. A variety of myocardial remodeling processes involve calpains, including remodeling of the extracellular matrix and hypertrophy of cardiomyocytes. Calpains also play a role in maintaining cardiac homeostasis through apoptosis and autophagy. The development of HF may be in part due to calpain-mediated pathways promoting cardiomyocyte death. Numerous studies have suggested the importance of the Ca2+ -dependent protease calpain in cardiac physiology and pathology. Therefore, it is important to consider this pathway to develop and test therapeutic options in humans that targets calpain in HF. Apoptosis, autophagy, endocytosis, exocytosis, signal transduction, and disease progression all involve calpain molecular pathways. Therefore, it is conceivable that calpain inhibitors might have therapeutic potential as they have been investigated in preclinical models of several conditions in which the enzyme has been implicated that might be treated with them. Ca 2+ - dependent proteases and calpains contribute to adverse ventricular remodeling and HF in multiple experimental models. In this manuscript, we will discuss the calpain molecular pathway's important roles in HF development.

Keywords: calpain, heart failure, autophagy, apoptosis, cardiomyocyte

Procedia PDF Downloads 48
25 Heritage, Cultural Events and Promises for Better Future: Media Strategies for Attracting Tourism during the Arab Spring Uprisings

Authors: Eli Avraham

Abstract:

The Arab Spring was widely covered in the global media and the number of Western tourists traveling to the area began to fall. The goal of this study was to analyze which media strategies marketers in Middle Eastern countries chose to employ in their attempts to repair the negative image of the area in the wake of the Arab Spring. Several studies were published concerning image-restoration strategies of destinations during crises around the globe; however, these strategies were not part of an overarching theory, conceptual framework or model from the fields of crisis communication and image repair. The conceptual framework used in the current study was the ‘multi-step model for altering place image’, which offers three types of strategies: source, message and audience. Three research questions were used: 1.What public relations crisis techniques and advertising campaign components were used? 2. What media policies and relationships with the international media were adopted by Arab officials? 3. Which marketing initiatives (such as cultural and sports events) were promoted? This study is based on qualitative content analysis of four types of data: 1) advertising components (slogans, visuals and text); (2) press interviews with Middle Eastern officials and marketers; (3) official media policy adopted by government decision-maker (e.g. boycotting or arresting newspeople); and (4) marketing initiatives (e.g. organizing heritage festivals and cultural events). The data was located in three channels from December 2010, when the events started, to September 31, 2013: (1) Internet and video-sharing websites: YouTube and Middle Eastern countries' national tourism board websites; (2) News reports from two international media outlets, The New York Times and Ha’aretz; these are considered quality newspapers that focus on foreign news and tend to criticize institutions; (3) Global tourism news websites: eTurbo news and ‘Cities and countries branding’. Using the ‘multi-step model for altering place image,’ the analysis reveals that Middle Eastern marketers and officials used three kinds of strategies to repair their countries' negative image: 1. Source (cooperation and media relations; complying, threatening and blocking the media; and finding alternatives to the traditional media) 2. Message (ignoring, limiting, narrowing or reducing the scale of the crisis; acknowledging the negative effect of an event’s coverage and assuring a better future; promotion of multiple facets, exhibitions and softening the ‘hard’ image; hosting spotlight sporting and cultural events; spinning liabilities into assets; geographic dissociation from the Middle East region; ridicule the existing stereotype) and 3. Audience (changing the target audience by addressing others; emphasizing similarities and relevance to specific target audience). It appears that dealing with their image problems will continue to be a challenge for officials and marketers of Middle Eastern countries until the region stabilizes and its regional conflicts are resolved.

Keywords: Arab spring, cultural events, image repair, Middle East, tourism marketing

Procedia PDF Downloads 259
24 Complex Dynamics in a Morphologically Heterogeneous Biological Medium

Authors: Turky Al-Qahtani, Roustem Miftahof

Abstract:

Introduction: Under common assumptions of excitabi-lity, morphological (cellular) homogeneity, and spatial structural anomalies added as required, it has been shown that biological systems are able to display travelling wave dynamics. Being not self-sustainable, existence depends on the electrophysiological state of transmembrane ion channels and it requires an extrinsic/intrinsic periodic source. However, organs in the body are highly multicellular, heterogeneous, and their functionality is the outcome of electro-mechanical conjugation, rather than excitability only. Thus, peristalsis in the gut relies on spatiotemporal myoelectrical pattern formations between the mechanical, represented by smooth muscle cells (SM), and the control, comprised of a chain of primary sensory and motor neurones, components. Synaptically linked through the afferent and efferent pathways, they form a functional unit (FU) of the gut. Aims: These are: i) to study numerically the complex dynamics, and ii) to investigate the possibility of self-sustained myoelectrical activity in the FU. Methods: The FU recreates the following sequence of physiological events: deformation of mechanoreceptors of located in SM; generation and propagation of electrical waves of depolarisation - spikes - along the axon to the soma of the primary neurone; discharge of the primary neurone and spike propagation towards the motor neurone; burst of the motor neurone and transduction of spikes to SM, subsequently producing forces of contraction. These are governed by a system of nonlinear partial and ordinary differential equations being a modified version of the Hodgkin-Huxley model and SM fibre mechanics. In numerical experiments; the source of excitation is mechanical stretches of SM at a fixed amplitude and variable frequencies. Results: Low frequency (0.5 < v < 2 Hz) stimuli cause the propagation of spikes in the neuronal chain and, finally, the generation of active forces by SM. However, induced contractions are not sufficient to initiate travelling wave dynamics in the control system. At frequencies, 2 < v < 4 Hz, multiple low amplitude and short-lasting contractions are observed in SM after the termination of stretching. For frequencies (0.5 < v < 4 Hz), primary and sensory neurones demonstrate strong connectivity and coherent electrical activity. Significant qualitative and quantitative changes in dynamics of myoelectical patterns with a transition to a self-organised mode are recorded with the high degree of stretches at v = 4.5 Hz. Increased rates of deformation lead to the production of high amplitude signals at the mechanoreceptors with subsequent self-sustained excitation within the neuronal chain. Remarkably, the connection between neurones weakens resulting in incoherent firing. Further increase in a frequency of stimulation (v > 4.5 Hz) has a detrimental effect on the system. The mechanical and control systems become disconnected and exhibit uncoordinated electromechanical activity. Conclusion: To our knowledge, the existence of periodic activity in a multicellular, functionally heterogeneous biological system with mechano-electrical dynamics, such as the FU, has been demonstrated for the first time. These findings support the notion of possible peristalsis in the gut even in the absence of intrinsic sources - pacemaker cells. Results could be implicated in the pathogenesis of intestinal dysrythmia, a medical condition associated with motor dysfunction.

Keywords: complex dynamics, functional unit, the gut, dysrythmia

Procedia PDF Downloads 182
23 Avoidance of Brittle Fracture in Bridge Bearings: Brittle Fracture Tests and Initial Crack Size

Authors: Natalie Hoyer

Abstract:

Bridges in both roadway and railway systems depend on bearings to ensure extended service life and functionality. These bearings enable proper load distribution from the superstructure to the substructure while permitting controlled movement of the superstructure. The design of bridge bearings, according to Eurocode DIN EN 1337 and the relevant sections of DIN EN 1993, increasingly requires the use of thick plates, especially for long-span bridges. However, these plate thicknesses exceed the limits specified in the national appendix of DIN EN 1993-2. Furthermore, compliance with DIN EN 1993-1-10 regulations regarding material toughness and through-thickness properties necessitates further modifications. Consequently, these standards cannot be directly applied to the selection of bearing materials without supplementary guidance and design rules. In this context, a recommendation was developed in 2011 to regulate the selection of appropriate steel grades for bearing components. Prior to the initiation of the research project underlying this contribution, this recommendation had only been available as a technical bulletin. Since July 2023, it has been integrated into guideline 804 of the German railway. However, recent findings indicate that certain bridge-bearing components are exposed to high fatigue loads, which necessitate consideration in structural design, material selection, and calculations. Therefore, the German Centre for Rail Traffic Research called a research project with the objective of defining a proposal to expand the current standards in order to implement a sufficient choice of steel material for bridge bearings to avoid brittle fracture, even for thick plates and components subjected to specific fatigue loads. The results obtained from theoretical considerations, such as finite element simulations and analytical calculations, are validated through large-scale component tests. Additionally, experimental observations are used to calibrate the calculation models and modify the input parameters of the design concept. Within the large-scale component tests, a brittle failure is artificially induced in a bearing component. For this purpose, an artificially generated initial defect is introduced at the previously defined hotspot into the specimen using spark erosion. Then, a dynamic load is applied until the crack initiation process occurs to achieve realistic conditions in the form of a sharp notch similar to a fatigue crack. This initiation process continues until the crack length reaches a predetermined size. Afterward, the actual test begins, which requires cooling the specimen with liquid nitrogen until a temperature is reached where brittle fracture failure is expected. In the next step, the component is subjected to a quasi-static tensile test until failure occurs in the form of a brittle failure. The proposed paper will present the latest research findings, including the results of the conducted component tests and the derived definition of the initial crack size in bridge bearings.

Keywords: bridge bearings, brittle fracture, fatigue, initial crack size, large-scale tests

Procedia PDF Downloads 9
22 Analyzing the Heat Transfer Mechanism in a Tube Bundle Air-PCM Heat Exchanger: An Empirical Study

Authors: Maria De Los Angeles Ortega, Denis Bruneau, Patrick Sebastian, Jean-Pierre Nadeau, Alain Sommier, Saed Raji

Abstract:

Phase change materials (PCM) present attractive features that made them a passive solution for thermal comfort assessment in buildings during summer time. They show a large storage capacity per volume unit in comparison with other structural materials like bricks or concrete. If their use is matched with the peak load periods, they can contribute to the reduction of the primary energy consumption related to cooling applications. Despite these promising characteristics, they present some drawbacks. Commercial PCMs, as paraffines, offer a low thermal conductivity affecting the overall performance of the system. In some cases, the material can be enhanced, adding other elements that improve the conductivity, but in general, a design of the unit that optimizes the thermal performance is sought. The material selection is the departing point during the designing stage, and it does not leave plenty of room for optimization. The PCM melting point depends highly on the atmospheric characteristics of the building location. The selection must relay within the maximum, and the minimum temperature reached during the day. The geometry of the PCM container and the geometrical distribution of these containers are designing parameters, as well. They significantly affect the heat transfer, and therefore its phenomena must be studied exhaustively. During its lifetime, an air-PCM unit in a building must cool down the place during daytime, while the melting of the PCM occurs. At night, the PCM must be regenerated to be ready for next uses. When the system is not in service, a minimal amount of thermal exchanges is desired. The aforementioned functions result in the presence of sensible and latent heat storage and release. Hence different types of mechanisms drive the heat transfer phenomena. An experimental test was designed to study the heat transfer phenomena occurring in a circular tube bundle air-PCM exchanger. An in-line arrangement was selected as the geometrical distribution of the containers. With the aim of visual identification, the containers material and a section of the test bench were transparent. Some instruments were placed on the bench for measuring temperature and velocity. The PCM properties were also available through differential scanning calorimeter (DSC) tests. An evolution of the temperature during both cycles, melting and solidification were obtained. The results showed some phenomena at a local level (tubes) and on an overall level (exchanger). Conduction and convection appeared as the main heat transfer mechanisms. From these results, two approaches to analyze the heat transfer were followed. The first approach described the phenomena in a single tube as a series of thermal resistances, where a pure conduction controlled heat transfer was assumed in the PCM. For the second approach, the temperature measurements were used to find some significant dimensionless numbers and parameters as Stefan, Fourier and Rayleigh numbers, and the melting fraction. These approaches allowed us to identify the heat transfer phenomena during both cycles. The presence of natural convection during melting might have been stated from the influence of the Rayleigh number on the correlations obtained.

Keywords: phase change materials, air-PCM exchangers, convection, conduction

Procedia PDF Downloads 154
21 Analysis of Short Counter-Flow Heat Exchanger (SCFHE) Using Non-Circular Micro-Tubes Operated on Water-CuO Nanofluid

Authors: Avdhesh K. Sharma

Abstract:

Key, in the development of energy-efficient micro-scale heat exchanger devices, is to select large heat transfer surface to volume ratio without much expanse on re-circulated pumps. The increased interest in short heat exchanger (SHE) is due to accessibility of advanced technologies for manufacturing of micro-tubes in range of 1 micron m - 1 mm. Such SHE using micro-tubes are highly effective for high flux heat transfer technologies. Nanofluids, are used to enhance the thermal conductivity of re-circulated coolant and thus enhances heat transfer rate further. Higher viscosity associated with nanofluid expands more pumping power. Thus, there is a trade-off between heat transfer rate and pressure drop with geometry of micro-tubes. Herein, a novel design of short counter flow heat exchanger (SCFHE) using non-circular micro-tubes flooded with CuO-water nanofluid is conceptualized by varying the ratio of surface area to cross-sectional area of micro-tubes. A framework for comparative analysis of SCFHE using micro-tubes non-circular shape flooded by CuO-water nanofluid is presented. In SCFHE concept, micro-tubes having various geometrical shapes (viz., triangular, rectangular and trapezoidal) has been arranged row-wise to facilitate two aspects: (1) allowing easy flow distribution for cold and hot stream, and (2) maximizing the thermal interactions with neighboring channels. Adequate distribution of rows for cold and hot flow streams enables above two aspects. For comparative analysis, a specific volume or cross-section area is assigned to each elemental cell (which includes flow area and area corresponds to half wall thickness). A specific volume or cross-section area is assumed to be constant for each elemental cell (which includes flow area and half wall thickness area) and variation in surface area is allowed by selecting different geometry of micro-tubes in SCFHE. Effective thermal conductivity model for CuO-water nanofluid has been adopted, while the viscosity values for water based nanofluids are obtained empirically. Correlations for Nusselt number (Nu) and Poiseuille number (Po) for micro-tubes have been derived or adopted. Entrance effect is accounted for. Thermal and hydrodynamic performances of SCFHE are defined in terms of effectiveness and pressure drop or pumping power, respectively. For defining the overall performance index of SCFHE, two links are employed. First one relates heat transfer between the fluid streams q and pumping power PP as (=qj/PPj); while another link relates effectiveness eff and pressure drop dP as (=effj/dPj). For analysis, the inlet temperatures of hot and cold streams are varied in usual range of 20dC-65dC. Fully turbulent regime is seldom encountered in micro-tubes and transition of flow regime occurs much early (i.e., ~Re=1000). Thus, Re is fixed at 900, however, the uncertainty in Re due to addition of nanoparticles in base fluid is quantified by averaging of Re. Moreover, for minimizing error, volumetric concentration is limited to range 0% to ≤4% only. Such framework may be helpful in utilizing maximum peripheral surface area of SCFHE without any serious severity on pumping power and towards developing advanced short heat exchangers.

Keywords: CuO-water nanofluid, non-circular micro-tubes, performance index, short counter flow heat exchanger

Procedia PDF Downloads 190
20 Thermodynamic Modeling of Cryogenic Fuel Tanks with a Model-Based Inverse Method

Authors: Pedro A. Marques, Francisco Monteiro, Alessandra Zumbo, Alessia Simonini, Miguel A. Mendez

Abstract:

Cryogenic fuels such as Liquid Hydrogen (LH₂) must be transported and stored at extremely low temperatures. Without expensive active cooling solutions, preventing fuel boil-off over time is impossible. Hence, one must resort to venting systems at the cost of significant energy and fuel mass loss. These losses increase significantly in propellant tanks installed on vehicles, as the presence of external accelerations induces sloshing. Sloshing increases heat and mass transfer rates and leads to significant pressure oscillations, which might further trigger propellant venting. To make LH₂ economically viable, it is essential to minimize these factors by using advanced control techniques. However, these require accurate modelling and a full understanding of the tank's thermodynamics. The present research aims to implement a simple thermodynamic model capable of predicting the state of a cryogenic fuel tank under different operating conditions (i.e., filling, pressurization, fuel extraction, long-term storage, and sloshing). Since this model relies on a set of closure parameters to drive the system's transient response, it must be calibrated using experimental or numerical data. This work focuses on the former approach, wherein the model is calibrated through an experimental campaign carried out on a reduced-scale model of a cryogenic tank. The thermodynamic model of the system is composed of three control volumes: the ullage, the liquid, and the insulating walls. Under this lumped formulation, the governing equations are derived from energy and mass balances in each region, with mass-averaged properties assigned to each of them. The gas-liquid interface is treated as an infinitesimally thin region across which both phases can exchange mass and heat. This results in a coupled system of ordinary differential equations, which must be closed with heat and mass transfer coefficients between each control volume. These parameters are linked to the system evolution via empirical relations derived from different operating regimes of the tank. The derivation of these relations is carried out using an inverse method to find the optimal relations that allow the model to reproduce the available data. This approach extends classic system identification methods beyond linear dynamical systems via a nonlinear optimization step. Thanks to the data-driven assimilation of the closure problem, the resulting model accurately predicts the evolution of the tank's thermodynamics at a negligible computational cost. The lumped model can thus be easily integrated with other submodels to perform complete system simulations in real time. Moreover, by setting the model in a dimensionless form, a scaling analysis allowed us to relate the tested configurations to a representative full-size tank for naval applications. It was thus possible to compare the relative importance of different transport phenomena between the laboratory model and the full-size prototype among the different operating regimes.

Keywords: destratification, hydrogen, modeling, pressure-drop, pressurization, sloshing, thermodynamics

Procedia PDF Downloads 66
19 Optimizing Heavy-Duty Green Hydrogen Refueling Stations: A Techno-Economic Analysis of Turbo-Expander Integration

Authors: Christelle Rabbat, Carole Vouebou, Sary Awad, Alan Jean-Marie

Abstract:

Hydrogen has been proven to be a viable alternative to standard fuels as it is easy to produce and only generates water vapour and zero carbon emissions. However, despite the hydrogen benefits, the widespread adoption of hydrogen fuel cell vehicles and internal combustion engine vehicles is impeded by several challenges. The lack of refueling infrastructures remains one of the main hindering factors due to the high costs associated with their design, construction, and operation. Besides, the lack of hydrogen vehicles on the road diminishes the economic viability of investing in refueling infrastructure. Simultaneously, the absence of accessible refueling stations discourages consumers from adopting hydrogen vehicles, perpetuating a cycle of limited market uptake. To address these challenges, the implementation of adequate policies incentivizing the use of hydrogen vehicles and the reduction of the investment and operation costs of hydrogen refueling stations (HRS) are essential to put both investors and customers at ease. Even though the transition to hydrogen cars has been rather slow, public transportation companies have shown a keen interest in this highly promising fuel. Besides, their hydrogen demand is easier to predict and regulate than personal vehicles. Due to the reduced complexity of designing a suitable hydrogen supply chain for public vehicles, this sub-sector could be a great starting point to facilitate the adoption of hydrogen vehicles. Consequently, this study will focus on designing a chain of on-site green HRS for the public transportation network in Nantes Metropole leveraging the latest relevant technological advances aiming to reduce the costs while ensuring reliability, safety, and ease of access. To reduce the cost of HRS and encourage their widespread adoption, a network of 7 H35-T40 HRS has been designed, replacing the conventional J-T valves with turbo-expanders. Each station in the network has a daily capacity of 1,920 kg. Thus, the HRS network can produce up to 12.5 tH2 per day. The detailed cost analysis has revealed a CAPEX per station of 16.6 M euros leading to a network CAPEX of 116.2 M euros. The proposed station siting prioritized Nantes metropole’s 5 bus depots and included 2 city-centre locations. Thanks to the turbo-expander technology, the cooling capacity of the proposed HRS is 19% lower than that of a conventional station equipped with J-T valves, resulting in significant CAPEX savings estimated at 708,560 € per station, thus nearly 5 million euros for the whole HRS network. Besides, the turbo-expander power generation ranges from 7.7 to 112 kW. Thus, the power produced can be used within the station or sold as electricity to the main grid, which would, in turn, maximize the station’s profit. Despite the substantial initial investment required, the environmental benefits, cost savings, and energy efficiencies realized through the transition to hydrogen fuel cell buses and the deployment of HRS equipped with turbo-expanders offer considerable advantages for both TAN and Nantes Metropole. These initiatives underscore their enduring commitment to fostering green mobility and combatting climate change in the long term.

Keywords: green hydrogen, refueling stations, turbo-expander, heavy-duty vehicles

Procedia PDF Downloads 20
18 Influence of Cryo-Grinding on Antioxidant Activity and Amount of Free Phenolic Acids, Rutin and Tyrosol in Whole Grain Buckwheat and Pumpkin Seed Cake

Authors: B. Voucko, M. Benkovic, N. Cukelj, S. Drakula, D. Novotni, S. Balbino, D. Curic

Abstract:

Oxidative stress is considered as one of the causes leading to metabolic disorders in humans. Therefore, the ability of antioxidants to inhibit free radical production is their primary role in the human organism. Antioxidants originating from cereals, especially flavonoids and polyphenols, are mostly bound and indigestible. Micronization damages the cell wall which consecutively results in bioactive material to be more accessible in vivo. In order to ensure complete fragmentation, micronization is often combined with high temperatures (e.g., for bran 200°C) which can lead to degradation of bioactive compounds. The innovative non-thermal technology of cryo-milling is an ultra-fine micronization method that uses liquid nitrogen (LN2) at a temperature of 195°C to freeze and cool the sample during milling. Freezing at such low temperatures causes the material to become brittle which ensures the generation of fine particles while preserving the bioactive content of the material. The aim of this research was to determine if production of ultra-fine material with cryo-milling will result in the augmentation of available bioactive compounds of buckwheat and pumpkin seed cake. For that reason, buckwheat and pumpkin seed cake were ground in a ball mill (CryoMill, Retch, Germany) with and without the use of LN2 for 8 minutes, in a 50 mL stainless steel jar containing one grinding ball (Ø 25 mm) at an oscillation frequency of 30 Hz. The cryo-milled samples were cooled with LN2 for 2 minutes prior to milling, followed by the first cycle of milling (4 minutes), intermediary cooling (2 minutes), and finally the second cycle of milling (further 4 minutes). A continuous process of milling was applied to the samples ground without freezing with LN2. Particle size distribution was determined using the Scirocco 2000 dry dispersion unit (Malvern Instruments, UK). Antioxidant activity was determined by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) test and ferric reducing antioxidant power (FRAP) assay, while the total phenol content was determined using the Folin Ciocalteu method, using the ultraviolet-visible spectrophotometer (Specord 50 Plus, Germany). The content of the free phenolic acids, rutin in buckwheat, tyrosol in pumpkin seed cake, was determined with an HPLC-PDA method (Agilent 1200 series, Germany). Cryo-milling resulted in 11 times smaller size of buckwheat particles, and 3 times smaller size of pumpkin seed particles than milling without the use of LN2, but also, a lower uniformity of the particle size distribution. Lack of freezing during milling of pumpkin seed cake caused a formation of agglomerates due to its high-fat content (21 %). Cryo-milling caused augmentation of buckwheat flour antioxidant activity measured by DPPH test (23,9%) and an increase in available rutin content (14,5%). Also, it resulted in an augmentation of the total phenol content (36,9%) and available tyrosol content (12,5%) of pumpkin seed cake. Antioxidant activity measured with the FRAP test, as well as the content of phenolic acids remained unchanged independent of the milling process. The results of this study showed the potential of cryo-milling for complete raw material utilization in the food industry, as well as a tool for extraction of aimed bioactive components.

Keywords: bioactive, ball-mill, buckwheat, cryo-milling, pumpkin seed cake

Procedia PDF Downloads 114
17 Deciphering Information Quality: Unraveling the Impact of Information Distortion in the UK Aerospace Supply Chains

Authors: Jing Jin

Abstract:

The incorporation of artificial intelligence (AI) and machine learning (ML) in aircraft manufacturing and aerospace supply chains leads to the generation of a substantial amount of data among various tiers of suppliers and OEMs. Identifying the high-quality information challenges decision-makers. The application of AI/ML models necessitates access to 'high-quality' information to yield desired outputs. However, the process of information sharing introduces complexities, including distortion through various communication channels and biases introduced by both human and AI entities. This phenomenon significantly influences the quality of information, impacting decision-makers engaged in configuring supply chain systems. Traditionally, distorted information is categorized as 'low-quality'; however, this study challenges this perception, positing that distorted information, contributing to stakeholder goals, can be deemed high-quality within supply chains. The main aim of this study is to identify and evaluate the dimensions of information quality crucial to the UK aerospace supply chain. Guided by a central research question, "What information quality dimensions are considered when defining information quality in the UK aerospace supply chain?" the study delves into the intricate dynamics of information quality in the aerospace industry. Additionally, the research explores the nuanced impact of information distortion on stakeholders' decision-making processes, addressing the question, "How does the information distortion phenomenon influence stakeholders’ decisions regarding information quality in the UK aerospace supply chain system?" This study employs deductive methodologies rooted in positivism, utilizing a cross-sectional approach and a mono-quantitative method -a questionnaire survey. Data is systematically collected from diverse tiers of supply chain stakeholders, encompassing end-customers, OEMs, Tier 0.5, Tier 1, and Tier 2 suppliers. Employing robust statistical data analysis methods, including mean values, mode values, standard deviation, one-way analysis of variance (ANOVA), and Pearson’s correlation analysis, the study interprets and extracts meaningful insights from the gathered data. Initial analyses challenge conventional notions, revealing that information distortion positively influences the definition of information quality, disrupting the established perception of distorted information as inherently low-quality. Further exploration through correlation analysis unveils the varied perspectives of different stakeholder tiers on the impact of information distortion on specific information quality dimensions. For instance, Tier 2 suppliers demonstrate strong positive correlations between information distortion and dimensions like access security, accuracy, interpretability, and timeliness. Conversely, Tier 1 suppliers emphasise strong negative influences on the security of accessing information and negligible impact on information timeliness. Tier 0.5 suppliers showcase very strong positive correlations with dimensions like conciseness and completeness, while OEMs exhibit limited interest in considering information distortion within the supply chain. Introducing social network analysis (SNA) provides a structural understanding of the relationships between information distortion and quality dimensions. The moderately high density of ‘information distortion-by-information quality’ underscores the interconnected nature of these factors. In conclusion, this study offers a nuanced exploration of information quality dimensions in the UK aerospace supply chain, highlighting the significance of individual perspectives across different tiers. The positive influence of information distortion challenges prevailing assumptions, fostering a more nuanced understanding of information's role in the Industry 4.0 landscape.

Keywords: information distortion, information quality, supply chain configuration, UK aerospace industry

Procedia PDF Downloads 27
16 Evolution of Fluvial-Deltaic System Recorded in Accumulation of Organic Material: From the Example of the Kura River in the South Caspian Basin

Authors: Dadash Huseynov, Elmira Aliyeva, Robert Hoogendoorn, Salomon Kroonenberg

Abstract:

The study of organic material in bottom sediments together with lithologic and biostratigraphic data improves our understanding of the evolution of fluvial and deltaic systems. The modern Kura River delta is located in the Southwest Caspian Sea and is fluvial-dominated. The river distributes its sediment load through three channels oriented North-East, South-East, and South-West. The offshore modern delta consists of thinly bedded or laminated silty clays and dark grey clays. Locally sand and shell-rich horizons occur. Onshore delta is composed of channel-levee sands and floodplain silts and clays. Overall sedimentation rates in the delta determined by the 210Pb method range between 1.5-3.0 cm/yr. We investigated the distribution of organic material in the deltaic sediments in 300 samples selected from 3m deep piston cores. The studies of transparent sections demonstrate that deltaic sediments are enriched in terrestrial debris. It is non-transparent and has an irregular, isometric, or elongated shape, angular edges, black or dark-brown colour, and a clearly expressed fabric. Partially it is dissolved at the edges and is replaced by iron sulphides. Fragments of marine algae have more smooth edges, brown colour. They are transparent; the fabric is rarely preserved. The evidences of dissolution and gelification are well observed. Iron sulphides are common. The recorded third type of organic material has a round, drop-like, or oval shape and belongs to planktonic organisms. Their initial organic material is strongly transformed or replaced by dark organic compounds, probably, neoplasms. The particles are red-brown and transparent. The iron sulphides are not observed. The amount of Corg in the uppermost portion of sediments accumulated in the offshore Kura River delta varies from 0.2 to 1.22%, with median values of 0.6-0.8%. In poorly sorted sediments Corg content changes from 0.24 to 0.97% (average 0.69%), silty-sandy clay - 0.45 to 1.22% (average 0.77%), sandy-silty clay - 0.5 to 0.97% (average 0.67%), silty clay - 0.52 to 0.95% (average 0.70%). The data demonstrate that in sediments deposited during Caspian Sea high stand in 1929, the minimum of Corg content is localised near the mouth of the main south-eastern distributary channel and coincides with the minimum of the clay fraction. At the same time, the maximum of organic matter content locates near the mouth of the eastern channel, which was inactive at that time. In sediments accumulated during the last Caspian Sea low stand in 1977, the area of Corg minimum is attached to the north-eastern distributary’s mouth. It indicates the high activity of this distributary during the Caspian Sea fall. The area of Corg minimum is also recorded around the mouth of the main channel and eastern part of the delta. Maximums of Corg and clay fraction shift towards the basin. During the Caspian high stand in 1995, the minimum of Corg content is again observed in the mouth of the main south-eastern channel. The distribution of organic matter in the modern sediments of the Kura river delta displays the strong time dependence and reflects progradational-retrogradational cycles of evolution of this fluvial-deltaic system.

Keywords: high and low stands, Kura River delta, South Caspian Sea, organic matter

Procedia PDF Downloads 106
15 Aquaporin-1 as a Differential Marker in Toxicant-Induced Lung Injury

Authors: Ekta Yadav, Sukanta Bhattacharya, Brijesh Yadav, Ariel Hus, Jagjit Yadav

Abstract:

Background and Significance: Respiratory exposure to toxicants (chemicals or particulates) causes disruption of lung homeostasis leading to lung toxicity/injury manifested as pulmonary inflammation, edema, and/or other effects depending on the type and extent of exposure. This emphasizes the need for investigating toxicant type-specific mechanisms to understand therapeutic targets. Aquaporins, aka water channels, are known to play a role in lung homeostasis. Particularly, the two major lung aquaporins AQP5 and AQP1 expressed in alveolar epithelial and vasculature endothelia respectively allow for movement of the fluid between the alveolar air space and the associated vasculature. In view of this, the current study is focused on understanding the regulation of lung aquaporins and other targets during inhalation exposure to toxic chemicals (Cigarette smoke chemicals) versus toxic particles (Carbon nanoparticles) or co-exposures to understand their relevance as markers of injury and intervention. Methodologies: C57BL/6 mice (5-7 weeks old) were used in this study following an approved protocol by the University of Cincinnati Institutional Animal Care and Use Committee (IACUC). The mice were exposed via oropharyngeal aspiration to multiwall carbon nanotube (MWCNT) particles suspension once (33 ugs/mouse) followed by housing for four weeks or to Cigarette smoke Extract (CSE) using a daily dose of 30µl/mouse for four weeks, or to co-exposure using the combined regime. Control groups received vehicles following the same dosing schedule. Lung toxicity/injury was assessed in terms of homeostasis changes in the lung tissue and lumen. Exposed lungs were analyzed for transcriptional expression of specific targets (AQPs, surfactant protein A, Mucin 5b) in relation to tissue homeostasis. Total RNA from lungs extracted using TRIreagent kit was analyzed using qRT-PCR based on gene-specific primers. Total protein in bronchoalveolar lavage (BAL) fluid was determined by the DC protein estimation kit (BioRad). GraphPad Prism 5.0 (La Jolla, CA, USA) was used for all analyses. Major findings: CNT exposure alone or as co-exposure with CSE increased the total protein content in the BAL fluid (lung lumen rinse), implying compromised membrane integrity and cellular infiltration in the lung alveoli. In contrast, CSE showed no significant effect. AQP1, required for water transport across membranes of endothelial cells in lungs, was significantly upregulated in CNT exposure but downregulated in CSE exposure and showed an intermediate level of expression for the co-exposure group. Both CNT and CSE exposures had significant downregulating effects on Muc5b, and SP-A expression and the co-exposure showed either no significant effect (Muc5b) or significant downregulating effect (SP-A), suggesting an increased propensity for infection in the exposed lungs. Conclusions: The current study based on the lung toxicity mouse model showed that both toxicant types, particles (CNT) versus chemicals (CSE), cause similar downregulation of lung innate defense targets (SP-A, Muc5b) and mostly a summative effect when presented as co-exposure. However, the two toxicant types show differential induction of aquaporin-1 coinciding with the corresponding differential damage to alveolar integrity (vascular permeability). Interestingly, this implies the potential of AQP1 as a differential marker of toxicant type-specific lung injury.

Keywords: aquaporin, gene expression, lung injury, toxicant exposure

Procedia PDF Downloads 154