Search results for: 3D shape descriptor
657 Stability Design by Geometrical Nonlinear Analysis Using Equivalent Geometric Imperfections
Authors: S. Fominow, C. Dobert
Abstract:
The present article describes the research that deals with the development of equivalent geometric imperfections for the stability design of steel members considering lateral-torsional buckling. The application of these equivalent imperfections takes into account the stiffness-reducing effects due to inelasticity and residual stresses, which lead to a reduction of the load carrying capacity of slender members and structures. This allows the application of a simplified design method, that is performed in three steps. Application of equivalent geometric imperfections, determination of internal forces using geometrical non-linear analysis (GNIA) and verification of the cross-section resistance at the most unfavourable location. All three verification steps are closely related and influence the results. The derivation of the equivalent imperfections was carried out in several steps. First, reference lateral-torsional buckling resistances for various rolled I-sections, slenderness grades, load shapes and steel grades were determined. This was done either with geometric and material non-linear analysis with geometrical imperfections and residual stresses (GMNIA) or for standard cases based on the equivalent member method. With the aim of obtaining identical lateral-torsional buckling resistances as the reference resistances from the application of the design method, the required sizes for equivalent imperfections were derived. For this purpose, a program based on the FEM method has been developed. Based on these results, several proposals for the specification of equivalent geometric imperfections have been developed. These differ in the shape of the applied equivalent geometric imperfection, the model of the cross-sectional resistance and the steel grade. The proposed design methods allow a wide range of applications and a reliable calculation of the lateral-torsional buckling resistances, as comparisons between the calculated resistances and the reference resistances have shown.Keywords: equivalent geometric imperfections, GMNIA, lateral-torsional buckling, non-linear finite element analysis
Procedia PDF Downloads 158656 Teacher Knowledge: Unbridling Teacher Agency in the Context of Professional Development for Transformative Teaching and Learning
Authors: Bernice Badal
Abstract:
This article addresses a persistent challenge related to teacher agency in knowledge acquisition in professional development (PD) workshops in contexts of educational change, given that scholarship identifies a need for more teacher involvement and amplification of teacher's voices. Theoretical concepts are drawn from Bandura’s Social cognitive theory, incorporating the triadic causation model of agency to examine the reciprocal nature of the context, teacher characteristics, and systemic influences that shape how knowledge is transmitted and acquired in PD workshops. This qualitative study, using a mix of classroom observations and interviews, explored the political, contextual, and personal characteristics of teacher agency in PD through an analysis of data extracted from a PhD study. The narratives of six teachers from three township schools are examined to show how PD efforts in South Africa have failed to take account of the holistic development of teacher agency in knowledge dissemination and how this shapes teacher self-efficacy beliefs about being able to masterfully apply the tenets of the reform. Agency, teacher voice, and contextual considerations were used as markers of the quality of the training provided to understand how knowledge is acquired and meaning is made. The findings suggest that systemic influences of institutionally imposed PD offer partial understandings of the reform, which is offered in traditional formats that do not consider teacher empowerment in knowledge production and the development of teacher agency. Common in all the participants’ responses is the need for more information and training on the prescribed approach for teaching English as a second language; however, this paper holds the view that more information may not solve teachers’ dilemmas. Accordingly, it recommends a restructuring of the programme with facilitators being more cognisant of teacher agency for the development of transformative teachers. The findings of the study contribute to the field of teacher knowledge, teacher training, and professional development in the context of educational reforms.Keywords: teacher professional development, teacher voice, teacher agency, educational reforms, teacher knowledge
Procedia PDF Downloads 76655 The Role of Metaphor in Communication
Authors: Fleura Shkëmbi, Valbona Treska
Abstract:
In elementary school, we discover that a metaphor is a decorative linguistic device just for poets. But now that we know, it's also a crucial tactic that individuals employ to understand the universe, from fundamental ideas like time and causation to the most pressing societal challenges today. Metaphor is the use of language to refer to something other than what it was originally intended for or what it "literally" means in order to suggest a similarity or establish a connection between the two. People do not identify metaphors as relevant in their decisions, according to a study on metaphor and its effect on decision-making; instead, they refer to more "substantive" (typically numerical) facts as the basis for their problem-solving decision. Every day, metaphors saturate our lives via language, cognition, and action. They argue that our conceptions shape our views and interactions with others and that concepts define our reality. Metaphor is thus a highly helpful tool for both describing our experiences to others and forming notions for ourselves. In therapeutic contexts, their shared goal appears to be twofold. The cognitivist approach to metaphor regards it as one of the fundamental foundations of human communication. The benefits and disadvantages of utilizing the metaphor differ depending on the target domain that the metaphor portrays. The challenge of creating messages and surroundings that affect customers' notions of abstract ideas in a variety of industries, including health, hospitality, romance, and money, has been studied for decades in marketing and consumer psychology. The aim of this study is to examine, through a systematic literature review, the role of the metaphor in communication and in advertising. This study offers a selected analysis of this literature, concentrating on research on customer attitudes and product appraisal. The analysis of the data identifies potential research questions. With theoretical and applied implications for marketing, design, and persuasion, this study sheds light on how, when, and for whom metaphoric communications are powerful.Keywords: metaphor, communication, advertising, cognition, action
Procedia PDF Downloads 102654 Water Droplet Impact on Vibrating Rigid Superhydrophobic Surfaces
Authors: Jingcheng Ma, Patricia B. Weisensee, Young H. Shin, Yujin Chang, Junjiao Tian, William P. King, Nenad Miljkovic
Abstract:
Water droplet impact on surfaces is a ubiquitous phenomenon in both nature and industry. The transfer of mass, momentum and energy can be influenced by the time of contact between droplet and surface. In order to reduce the contact time, we study the influence of substrate motion prior to impact on the dynamics of droplet recoil. Using optical high speed imaging, we investigated the impact dynamics of macroscopic water droplets (~ 2mm) on rigid nanostructured superhydrophobic surfaces vibrating at 60 – 300 Hz and amplitudes of 0 – 3 mm. In addition, we studied the influence of the phase of the substrate at the moment of impact on total contact time. We demonstrate that substrate vibration can alter droplet dynamics, and decrease total contact time by as much as 50% compared to impact on stationary rigid superhydrophobic surfaces. Impact analysis revealed that the vibration frequency mainly affected the maximum contact time, while the amplitude of vibration had little direct effect on the contact time. Through mathematical modeling, we show that the oscillation amplitude influences the possibility density function of droplet impact at a given phase, and thus indirectly influences the average contact time. We also observed more vigorous droplet splashing and breakup during impact at larger amplitudes. Through semi-empirical mathematical modeling, we describe the relationship between contact time and vibration frequency, phase, and amplitude of the substrate. We also show that the maximum acceleration during the impact process is better suited as a threshold parameter for the onset of splashing than a Weber-number criterion. This study not only provides new insights into droplet impact physics on vibrating surfaces, but develops guidelines for the rational design of surfaces to achieve controllable droplet wetting in applications utilizing vibration.Keywords: contact time, impact dynamics, oscillation, pear-shape droplet
Procedia PDF Downloads 455653 A Critical Exploration of Dominant Perspectives Regarding Inclusion and Disability: Shifts Toward Meaningful Approaches
Authors: Luigi Iannacci
Abstract:
This study critically explores how disability and disability are presently and problematically configured within education. As such, pedagogies, discourses, and practices that shape this configuration are examined to forward a reconceptualization of disability as it relates to education and the inclusion of students with special needs in mainstream classroom contexts. The study examines how the dominant medical/deficit model of disability positions students with special needs and advocates for a shift towards a social/critical model of disability as applied to education and classrooms. This is demonstrated through a critical look at how language, processes, and ‘interventions’ name and address deficits people who have a disability are presumed to have and, as such, conceptualize these deficits as inherent flaws that are in need of ‘fixing.’ The study will demonstrate the necessary shifts in thinking, language and practice required to forward a critical/social model of disability. The ultimate aim of this research is to offer a much-needed reconceptualization of inclusion that recognizes disability as epistemology, identity, and diversity through a critical exploration of dominant discourses that impact language, policy, instruction and ultimately, the experiences students with disabilities have within mainstream classrooms. The presentation seeks to explore disability as neurodiversity and therefore elucidate how people with disabilities can demonstrate these ways of knowing within inclusive education that avoids superficial approaches that are not responsive to their needs. This research is, therefore, of interest and use to educators teaching at the elementary, secondary, and in-service levels as well as graduate students and scholars working in the areas of inclusion, special education, and literacy. Ultimately the presentation attempts to foster a social justice and human rights-focused approach to inclusion that is responsive to students with disabilities and, as such ensures a reconceptualization of present language, understandings and practices that continue to configure disability in problematic ways.Keywords: inclusion, disability, critical approach, social justice
Procedia PDF Downloads 80652 Chromatographic Preparation and Performance on Zinc Ion Imprinted Monolithic Column and Its Adsorption Property
Authors: X. Han, S. Duan, C. Liu, C. Zhou, W. Zhu, L. Kong
Abstract:
The ionic imprinting technique refers to the three-dimensional rigid structure with the fixed pore sizes, which was formed by the binding interactions of ions and functional monomers and used ions as the template, it has a high level of recognition to the ionic template. The preparation of monolithic column by the in-situ polymerization need to put the compound of template, functional monomers, cross-linking agent and initiating agent into the solution, dissolve it and inject to the column tube, and then the compound will have a polymerization reaction at a certain temperature, after the synthetic reaction, we washed out the unread template and solution. The monolithic columns are easy to prepare, low consumption and cost-effective with fast mass transfer, besides, they have many chemical functions. But the monolithic columns have some problems in the practical application, such as low-efficiency, quantitative analysis cannot be performed accurately because of the peak shape is wide and has tailing phenomena; the choice of polymerization systems is limited and the lack of theoretical foundations. Thus the optimization of components and preparation methods is an important research direction. During the preparation of ionic imprinted monolithic columns, pore-forming agent can make the polymer generate the porous structure, which can influence the physical properties of polymer, what’ s more, it can directly decide the stability and selectivity of polymerization reaction. The compounds generated in the pre-polymerization reaction could directly decide the identification and screening capabilities of imprinted polymer; thus the choice of pore-forming agent is quite critical in the preparation of imprinted monolithic columns. This article mainly focuses on the research that when using different pore-forming agents, the impact of zinc ion imprinted monolithic column on the enrichment performance of zinc ion.Keywords: high performance liquid chromatography (HPLC), ionic imprinting, monolithic column, pore-forming agent
Procedia PDF Downloads 218651 “It Plays a Huge Role”: Examining Dual Language Teachers’ Conceptions of Language, Culture and Sociocultural Competence
Authors: Giselle Martinez Negrette
Abstract:
Language and culture mutually shape and reflect the human experience. In the learning process, this connection creates and sustains the shared world of learners and educators. Dual Language (DL) programs exemplify this relationship by placing language and culture at the center of their educational approach. These programs, originally conceived to advance social justice in education, aim to foster bilingualism, biliteracy, academic development and sociocultural competence, emphasizing the inseparability of linguistic and cultural growth. Furthermore, because DL programs serve children from diverse cultural, ethnic, and socioeconomic backgrounds, they operate as spaces where linguistic skills and sociocultural understandings are actively cultivated, negotiated, and celebrated. Against this background, this paper examines how two DL teachers see language and culture shaping and reflecting the educational experience, and how their understandings of the relationship influence their mediation of sociocultural competence in their classrooms. This qualitative study employs critical discourse analysis to study in detail participants’ narratives seeking to uncover their perspectives on the “politics” surrounding language use and cultural understandings in their school contexts. Our findings show that these educators are not only keenly aware of the pivotal role that language and culture play in multilingual students’ learning journeys, but they have identified the sociolinguistic “games” taking place in their classrooms. We contend these understandings are pivotal for the critical development of sociocultural competence in DL programs. This study provides DL educators with important conceptual and pedagogical insights regarding the intersection between language and culture in their classrooms and seeks to encourage them to analyze their roles as supporters or opponents of transformative rupture opportunities to contest inequities in educationKeywords: sociocultural competence, critical discourse analysis, dual language programs, language, culture
Procedia PDF Downloads 17650 Useful Characteristics of Pleurotus Mushroom Hybrids
Authors: Suvalux Chaichuchote, Ratchadaporn Thonghem
Abstract:
Pleurotus mushroom is one of popular edible mushrooms in Thailand. It is much favored by consumers due to its delicious taste and high nutrition. It is commonly used as an ingredient in several dishes. The commercially cultivated strain grown in most farms is the Pleurotus sp., Hed Bhutan, that is widely distributed to mushroom farms throughout the country and can be cultivated almost all year round. However, it demands different cultivated strains from mushroom growers, therefore, the improving mushroom strains should be done to their benefits. In this study, we used a di-mon mating method to hybrid production from Hed Bhutan (P-3) as dikaryon material and monokaryotic mycelium were isolated from basidiospores of other three Pleurotus sp. by single spore isolation. The 3 hybrids: P-3XSA-6, P-3XSB-24 and P-3XSE-5 were recognized from the 12 hybridized successfully. They were appropriate hybridized in terms of fruiting body performance in the three time cycles of cultivation such as the number of days until growing, time for pinning, color and shape of fruiting bodies and yield. For genetic study, genomic DNAs of both Hed Bhutan (P-3) and three hybrids were extracted. A couple of primer ITS1 and ITS4 were used to amplify the gene coding for ITS1, ITS2 and 5.8S rRNA. The similarities between these amplified genes and databases of DNA revealed that Hed Bhutan (P-3) was the Pleurotus pulmonarius as well as P-3XSA-6, P-3XSB-24 and P-3XSE-5 hybrids. Furthermore, Hed Bhutan (P3) and three hybrids were distributed to 3 small-scale farms, with mushroom farming experience, in the countryside. To address this, one hundred and twenty mushroom bags of each strain were supplied to them. The findings, by interview, indicated two mushroom farmers were satisfied with P-3XSA-6 hybrid and P-3XSB-24 hybrid, thanks to their simultaneous fruiting time and good yield. While the other was satisfied with P-3XSB-24 hybrid due to its good yield and P-3XSE-5 hybrids thanks to its gradually fruiting body, benefiting in frequent harvest. Overall, farmers adopted all hybrids to grow as commercially cultivated strains as well as Hed Bhutan (P-3) strain.Keywords: dikaryon, monokaryon, pleurotus, strain improvement
Procedia PDF Downloads 255649 Flexible PVC Based Nanocomposites With the Incorporation of Electric and Magnetic Nanofillers for the Shielding Against EMI and Thermal Imaging Signals
Authors: H. M. Fayzan Shakir, Khadija Zubair, Tingkai Zhao
Abstract:
Electromagnetic (EM) waves are being used widely now a days. Cell phone signals, WIFI signals, wireless telecommunications etc everything uses EM waves which then create EM pollution. EM pollution can cause serious effects on both human health and nearby electronic devices. EM waves have electric and magnetic components that disturb the flow of charged particles in both human nervous system and electronic devices. The shielding of both humans and electronic devices are a prime concern today. EM waves can cause headaches, anxiety, suicide and depression, nausea, fatigue and loss of libido in humans and malfunctioning in electronic devices. Polyaniline (PANI) and polypyrrole (PPY) were successfully synthesized using chemical polymerizing using ammonium persulfate and DBSNa as oxidant respectively. Barium ferrites (BaFe) were also prepared using co-precipitation method and calcinated at 10500C for 8h. Nanocomposite thin films with various combinations and compositions of Polyvinylchloride, PANI, PPY and BaFe were prepared. X-ray diffraction technique was first used to confirm the successful fabrication of all nano fillers and particle size analyzer to measure the exact size and scanning electron microscopy is used for the shape. According to Electromagnetic Interference theory, electrical conductivity is the prime property required for the Electromagnetic Interference shielding. 4-probe technique is then used to evaluate DC conductivity of all samples. Samples with high concentration of PPY and PANI exhibit remarkable increased electrical conductivity due to fabrication of interconnected network structure inside the Polyvinylchloride matrix that is also confirmed by SEM analysis. Less than 1% transmission was observed in whole NIR region (700 nm – 2500 nm). Also, less than -80 dB Electromagnetic Interference shielding effectiveness was observed in microwave region (0.1 GHz to 20 GHz).Keywords: nanocomposites, polymers, EMI shielding, thermal imaging
Procedia PDF Downloads 112648 Formulation and Characterization of NaCS-PDMDAAC Capsules with Immobilized Chlorella vulgaris for Phycoremediation of Palm Oil Mill Effluent
Authors: Quin Emparan, Razif Harun, Dayang R. A. Biak, Rozita Omar, Michael K. Danquah
Abstract:
Cultivation of immobilized microalgae cells is on the rise for biotechnological applications. In this study, cultivation of Chlorella vulgaris was carried out in the form of suspended free-cell and immobilized cells system. NaCS-PDMDAAC capsules were used to immobilize C. vulgaris. Initially, the synthesized NaCS with C. vulgaris culture were prepared at various concentration of 5- 20% (w/v) using a 6% hardening solution (PDMDAAC) to investigate the capsules' gel stability and suitability for microalgae cells growth. Then, the capsules produced from 15% NaCS with C. vulgaris culture were furthered investigated using 5%, 10%, and 15% (w/v) of PDMDAAC solution. The capsules' gel stability was evaluated through dissolution time and loss of uniform spherical shape of capsules, while suitability for microalgae cells growth was evaluated through the optical density of microalgae. In this study, the 15% NaCS-10% PDMDAAC capsules were found to be the most suitable to sustain the capsules' gel stability and microalgae cells growth in MLA. For that reason, the C. vulgaris immobilized in the 15% NaCS-10% PDMDAAC capsules were further characterized using physicochemical analysis in terms of morphological, carbon (C), hydrogen (H) and nitrogen (N), Fourier transform-infrared (FT-IR), scanning electron microscopy-energy dispersive X-ray (SEM-EDX), zeta potential and Brunauer-Emmet-Teller (BET) analyses. The results revealed that the presence of sulfonates in the synthesized NaCS and NaCS-PDMDAAC capsules without and with C. vulgaris proves that cellulose alcohol group was successfully bonded by sulfo group. Besides that, immobilized microalgae cells have a smaller cell size of 6.29 ± 1.09 µm and zeta potential of -11.93 ± 0.91 mV than suspended free-cells microalgae culture. It can be summarized that immobilization of C. vulgaris in the 15% NaCS-10% PDMDAAC capsules are relevant as a bioremediator for wastewater treatment purposes due to its suitable size of pore and capsules as well as structural and compositional properties.Keywords: biological capsules, immobilized cultivation, microalgae, physico-chemical analysis
Procedia PDF Downloads 174647 Modeling of Bipolar Charge Transport through Nanocomposite Films for Energy Storage
Authors: Meng H. Lean, Wei-Ping L. Chu
Abstract:
The effects of ferroelectric nanofiller size, shape, loading, and polarization, on bipolar charge injection, transport, and recombination through amorphous and semicrystalline polymers are studied. A 3D particle-in-cell model extends the classical electrical double layer representation to treat ferroelectric nanoparticles. Metal-polymer charge injection assumes Schottky emission and Fowler-Nordheim tunneling, migration through field-dependent Poole-Frenkel mobility, and recombination with Monte Carlo selection based on collision probability. A boundary integral equation method is used for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit. Trajectories for charge that make it through the film are curvilinear paths that meander through the interspaces. Results indicate that charge transport behavior depends on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and lowest level of charge trapping in the interaction zone. Simulation prediction of a size range of 80 to 100 nm to minimize attachment and maximize conduction is validated by theory. Attached charge fractions go from 2.2% to 97% as nanofiller size is decreased from 150 nm to 60 nm. Computed conductivity of 0.4 x 1014 S/cm is in agreement with published data for plastics. Charge attachment is increased with spheroids due to the increase in surface area, and especially so for oblate spheroids showing the influence of larger cross-sections. Charge attachment to nanofillers and nanocrystallites increase with vol.% loading or degree of crystallinity, and saturate at about 40 vol.%.Keywords: nanocomposites, nanofillers, electrical double layer, bipolar charge transport
Procedia PDF Downloads 360646 Comparison of Agree Method and Shortest Path Method for Determining the Flow Direction in Basin Morphometric Analysis: Case Study of Lower Tapi Basin, Western India
Authors: Jaypalsinh Parmar, Pintu Nakrani, Bhaumik Shah
Abstract:
Digital Elevation Model (DEM) is elevation data of the virtual grid on the ground. DEM can be used in application in GIS such as hydrological modelling, flood forecasting, morphometrical analysis and surveying etc.. For morphometrical analysis the stream flow network plays a very important role. DEM lacks accuracy and cannot match field data as it should for accurate results of morphometrical analysis. The present study focuses on comparing the Agree method and the conventional Shortest path method for finding out morphometric parameters in the flat region of the Lower Tapi Basin which is located in the western India. For the present study, open source SRTM (Shuttle Radar Topography Mission with 1 arc resolution) and toposheets issued by Survey of India (SOI) were used to determine the morphometric linear aspect such as stream order, number of stream, stream length, bifurcation ratio, mean stream length, mean bifurcation ratio, stream length ratio, length of overland flow, constant of channel maintenance and aerial aspect such as drainage density, stream frequency, drainage texture, form factor, circularity ratio, elongation ratio, shape factor and relief aspect such as relief ratio, gradient ratio and basin relief for 53 catchments of Lower Tapi Basin. Stream network was digitized from the available toposheets. Agree DEM was created by using the SRTM and stream network from the toposheets. The results obtained were used to demonstrate a comparison between the two methods in the flat areas.Keywords: agree method, morphometric analysis, lower Tapi basin, shortest path method
Procedia PDF Downloads 240645 Comparison of the Anthropometric Obesity Indices in Prediction of Cardiovascular Disease Risk: Systematic Review and Meta-analysis
Authors: Saeed Pourhassan, Nastaran Maghbouli
Abstract:
Statement of the problem: The relationship between obesity and cardiovascular diseases has been studied widely(1). The distribution of fat tissue gained attention in relation to cardiovascular risk factors during lang-time research (2). American College of Cardiology/American Heart Association (ACC/AHA) is widely and the most reliable tool to be used as a cardiovascular risk (CVR) assessment tool(3). This study aimed to determine which anthropometric index is better in discrimination of high CVR patients from low risks using ACC/AHA score in addition to finding the best index as a CVR predictor among both genders in different races and countries. Methodology & theoretical orientation: The literature in PubMed, Scopus, Embase, Web of Science, and Google Scholar were searched by two independent investigators using the keywords "anthropometric indices," "cardiovascular risk," and "obesity." The search strategy was limited to studies published prior to Jan 2022 as full-texts in the English language. Studies using ACC/AHA risk assessment tool as CVR and those consisted at least 2 anthropometric indices (ancient ones and novel ones) are included. Study characteristics and data were extracted. The relative risks were pooled with the use of the random-effect model. Analysis was repeated in subgroups. Findings: Pooled relative risk for 7 studies with 16,348 participants were 1.56 (1.35-1.72) for BMI, 1.67(1.36-1.83) for WC [waist circumference], 1.72 (1.54-1.89) for WHR [waist-to-hip ratio], 1.60 (1.44-1.78) for WHtR [waist-to-height ratio], 1.61 (1.37-1.82) for ABSI [A body shape index] and 1.63 (1.32-1.89) for CI [Conicity index]. Considering gender, WC among females and WHR among men gained the highest RR. The heterogeneity of studies was moderate (α²: 56%), which was not decreased by subgroup analysis. Some indices such as VAI and LAP were evaluated just in one study. Conclusion & significance: This meta-analysis showed WHR could predict CVR better in comparison to BMI or WHtR. Some new indices like CI and ABSI are less accurate than WHR and WC. Among women, WC seems to be a better choice to predict cardiovascular disease risk.Keywords: obesity, cardiovascular disease, risk assessment, anthropometric indices
Procedia PDF Downloads 108644 Preparation and Characterization of Calcium Phosphate Cement
Authors: W. Thepsuwan, N. Monmaturapoj
Abstract:
Calcium phosphate cements (CPCs) is one of the most attractive bioceramics due to its moldable and shape ability to fill complicated bony cavities or small dental defect positions. In this study, CPCs were produced by using mixtures of tetracalcium phosphate (TTCP, Ca4O(PO4)2) and dicalcium phosphate anhydrous (DCPA, CaHPO4) in equimolar ratio (1/1) with aqueous solutions of acetic acid (C2H4O2) and disodium hydrogen phosphate dehydrate (Na2HPO4.2H2O) in combination with sodium alginate in order to improve theirs moldable characteristic. The concentrations of the aqueous solutions and sodium alginate were varied to investigate the effects of different aqueous solution and alginate on properties of the cements. The cement paste was prepared by mixing cement powder (P) with aqueous solution (L) in a P/L ratio of 1.0 g/ 0.35 ml. X-ray diffraction (XRD) was used to analyses phase formation of the cements. Setting times and compressive strength of the set CPCs were measured using the Gilmore apparatus and Universal testing machine, respectively. The results showed that CPCs could be produced by using both basic (Na2HPO4.2H2O) and acidic (C2H4O2) solutions. XRD results show the precipitation of hydroxyapatite in all cement samples. No change in phase formation among cements using difference concentrations of Na2HPO4.2H2O solutions. With increasing concentration of acidic solutions, samples obtained less hydroxyapatite with a high dicalcium phosphate dehydrate leaded to a shorter setting time. Samples with sodium alginate exhibited higher crystallization of hydroxyapatite than that of without alginate as a result of shorten setting time in basic solution but a longer setting time in acidic solution. The stronger cement was attained from samples using acidic solution with sodium alginate; however it was lower than using the basic solution.Keywords: calcium phosphate cements, TTCP, DCPA, hydroxyapatite, properties
Procedia PDF Downloads 395643 Tool for Maxillary Sinus Quantification in Computed Tomography Exams
Authors: Guilherme Giacomini, Ana Luiza Menegatti Pavan, Allan Felipe Fattori Alves, Marcela de Oliveira, Fernando Antonio Bacchim Neto, José Ricardo de Arruda Miranda, Seizo Yamashita, Diana Rodrigues de Pina
Abstract:
The maxillary sinus (MS), part of the paranasal sinus complex, is one of the most enigmatic structures in modern humans. The literature has suggested that MSs function as olfaction accessories, to heat or humidify inspired air, for thermoregulation, to impart resonance to the voice and others. Thus, the real function of the MS is still uncertain. Furthermore, the MS anatomy is complex and varies from person to person. Many diseases may affect the development process of sinuses. The incidence of rhinosinusitis and other pathoses in the MS is comparatively high, so, volume analysis has clinical value. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure, which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust, and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression, and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to quantify MS volume proved to be robust, fast, and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to automatically quantify MS volume proved to be robust, fast and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases.Keywords: maxillary sinus, support vector machine, region growing, volume quantification
Procedia PDF Downloads 505642 Development of Wave-Dissipating Block Installation Simulation for Inexperienced Worker Training
Authors: Hao Min Chuah, Tatsuya Yamazaki, Ryosui Iwasawa, Tatsumi Suto
Abstract:
In recent years, with the advancement of digital technology, the movement to introduce so-called ICT (Information and Communication Technology), such as computer technology and network technology, to civil engineering construction sites and construction sites is accelerating. As part of this movement, attempts are being made in various situations to reproduce actual sites inside computers and use them for designing and construction planning, as well as for training inexperienced engineers. The installation of wave-dissipating blocks on coasts, etc., is a type of work that has been carried out by skilled workers based on their years of experience and is one of the tasks that is difficult for inexperienced workers to carry out on site. Wave-dissipating blocks are structures that are designed to protect coasts, beaches, and so on from erosion by reducing the energy of ocean waves. Wave-dissipating blocks usually weigh more than 1 t and are installed by being suspended by a crane, so it would be time-consuming and costly for inexperienced workers to train on-site. In this paper, therefore, a block installation simulator is developed based on Unity 3D, a game development engine. The simulator computes porosity. Porosity is defined as the ratio of the total volume of the wave breaker blocks inside the structure to the final shape of the ideal structure. Using the evaluation of porosity, the simulator can determine how well the user is able to install the blocks. The voxelization technique is used to calculate the porosity of the structure, simplifying the calculations. Other techniques, such as raycasting and box overlapping, are employed for accurate simulation. In the near future, the simulator will install an automatic block installation algorithm based on combinatorial optimization solutions and compare the user-demonstrated block installation and the appropriate installation solved by the algorithm.Keywords: 3D simulator, porosity, user interface, voxelization, wave-dissipating blocks
Procedia PDF Downloads 108641 Mike Hat: Coloured-Tape-in-Hat as a Head Circumference Measuring Instrument for Early Detection of Hydrocephalus in an Infant
Authors: Nyimas Annissa Mutiara Andini
Abstract:
Every year, children develop hydrocephalus during the first year of life. If it is not treated, hydrocephalus can lead to brain damage, a loss in mental and physical abilities, and even death. To be treated, first, we have to do a proper diagnosis using some examinations especially to detect hydrocephalus earlier. One of the examination that could be done is using a head circumference measurement. Increased head circumference is a first and main sign of hydrocephalus, especially in infant (0-1 year age). Head circumference is a measurement of a child's head largest area. In this measurement, we want to get the distance from above the eyebrows and ears and around the back of the head using a measurement tape. If the head circumference of an infant is larger than normal, this infant might potentially suffer hydrocephalus. If early diagnosis and timely treatment of hydrocephalus could be done most children can recover successfully. There are some problems with early detection of hydrocephalus using regular tape for head circumference measurement. One of the problem is the infant’s comfort. We need to make the infant feel comfort along the head circumference measurement to get a proper result of the examination. For that, we can use a helpful stuff, like a hat. This paper is aimed to describe the possibility of using a head circumference measuring instrument for early detection of hydrocephalus in an infant with a mike hat, coloured-tape-in-hat. In the first life, infants’ head size is about 35 centimeters. First three months after that infants will gain 2 centimeters each month. The second three months, infant’s head circumference will increase 1 cm each month. And for the six months later, the rate is 0.5 cm per month, and end up with an average of 47 centimeters. This formula is compared to the WHO’s head circumference growth chart. The shape of this tape-in-hat is alike an upper arm measurement. This tape-in-hat diameter is about 47 centimeters. It contains twelve different colours range by age. If it is out of the normal colour, the infant potentially suffers hydrocephalus. This examination should be done monthly. If in two times of measurement there still in the same range abnormal of head circumference, or a rapid growth of the head circumference size, the infant should be referred to a pediatrician. There are the pink hat for girls and blue hat for boys. Based on this paper, we know that this measurement can be used to help early detection of hydrocephalus in an infant.Keywords: head circumference, hydrocephalus, infant, mike hat
Procedia PDF Downloads 270640 Finite Element Modeling of Aortic Intramural Haematoma Shows Size Matters
Authors: Aihong Zhao, Priya Sastry, Mark L Field, Mohamad Bashir, Arvind Singh, David Richens
Abstract:
Objectives: Intramural haematoma (IMH) is one of the pathologies, along with acute aortic dissection, that present as Acute Aortic Syndrome (AAS). Evidence suggests that unlike aortic dissection, some intramural haematomas may regress with medical management. However, intramural haematomas have been traditionally managed like acute aortic dissections. Given that some of these pathologies may regress with conservative management, it would be useful to be able to identify which of these may not need high risk emergency intervention. A computational aortic model was used in this study to try and identify intramural haematomas with risk of progression to aortic dissection. Methods: We created a computational model of the aorta with luminal blood flow. Reports in the literature have identified 11 mm as the radial clot thickness that is associated with heightened risk of progression of intramural haematoma. Accordingly, haematomas of varying sizes were implanted in the modeled aortic wall to test this hypothesis. The model was exposed to physiological blood flows and the stresses and strains in each layer of the aortic wall were recorded. Results: Size and shape of clot were seen to affect the magnitude of aortic stresses. The greatest stresses and strains were recorded in the intima of the model. When the haematoma exceeded 10 mm in all dimensions, the stress on the intima reached breaking point. Conclusion: Intramural clot size appears to be a contributory factor affecting aortic wall stress. Our computer simulation corroborates clinical evidence in the literature proposing that IMH diameter greater than 11 mm may be predictive of progression. This preliminary report suggests finite element modelling of the aortic wall may be a useful process by which to examine putative variables important in predicting progression or regression of intramural haematoma.Keywords: intramural haematoma, acute aortic syndrome, finite element analysis,
Procedia PDF Downloads 433639 Active Control Effects on Dynamic Response of Elevated Water Storage Tanks
Authors: Ali Etemadi, Claudia Fernanda Yasar
Abstract:
Elevated water storage tank structures (EWSTs) are high elevated-ponderous structural systems and very vulnerable to seismic vibrations. In past earthquake events, many of these structures exhibit poor performance and experienced severe damage. The dynamic analysis of the EWSTs under earthquake loads is, therefore, of significant importance for the design of the structure and a key issue for the development of modern methods, such as active control design. In this study, a reduced model of the EWSTs is explained, which is based on a tuned mass damper model (TMD). Vibration analysis of a structure under seismic excitation is presented and then used to propose an active vibration controller. MATLAB/Simulink is employed for dynamic analysis of the system and control of the seismic response. A single degree of freedom (SDOF) and two degree of freedom (2DOF) models of ELSTs are going to be used to study the concept of active vibration control. Lab-scale experimental models similar to pendulum are applied to suppress vibrations in ELST under seismic excitation. One of the most important phenomena in liquid storage tanks is the oscillation of fluid due to the movements of the tank body because of its base motions during an earthquake. Simulation results illustrate that the EWSTs vibration can be reduced by means of an input shaping technique that takes into account the dominant mode shape of the structure. Simulations with which to guide many of our designs are presented in detail. A simple and effective real-time control for seismic vibration damping can be, therefore, design and built-in practice.Keywords: elevated water storage tank, tuned mass damper model, real time control, shaping control, seismic vibration control, the laplace transform
Procedia PDF Downloads 154638 Electrochemical Top-Down Synthesis of Nanostructured Support and Catalyst Materials for Energy Applications
Authors: Peter M. Schneider, Batyr Garlyyev, Sebastian A. Watzele, Aliaksandr S. Bandarenka
Abstract:
Functional nanostructures such as nanoparticles are a promising class of materials for energy applications due to their unique properties. Bottom-up synthetic routes for nanostructured materials often involve multiple synthesis steps and the use of surfactants, reducing agents, or stabilizers. This results in complex and extensive synthesis protocols. In recent years, a novel top-down synthesis approach to form metal nanoparticles has been established, in which bulk metal wires are immersed in an electrolyte (primarily alkali earth metal based) and subsequently subjected to a high alternating potential. This leads to the generation of nanoparticles dispersed in the electrolyte. The main advantage of this facile top-down approach is that there are no reducing agents, surfactants, or precursor solutions. The complete synthesis can be performed in one pot involving one main step with consequent washing and drying of the nanoparticles. More recent studies investigated the effect of synthesis parameters such as potential amplitude, frequency, electrolyte composition, and concentration on the size and shape of the nanoparticles. Here, we investigate the electrochemical erosion of various metal wires such as Ti, Pt, Pd, and Sn in various electrolyte compositions via this facile top-down technique and its experimental optimization to successfully synthesize nanostructured materials for various energy applications. As an example, for Pt and Pd, homogeneously distributed nanoparticles on carbon support can be obtained. These materials can be used as electrocatalyst materials for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER), respectively. In comparison, the top-down erosion of Sn wires leads to the formation of nanoparticles, which have great potential as oxygen evolution reaction (OER) support materials. The application of the technique on Ti wires surprisingly leads to the formation of nanowires, which show a high surface area and demonstrate great potential as an alternative support material to carbon.Keywords: ORR, electrochemistry, electrocatalyst, synthesis
Procedia PDF Downloads 88637 Short-Term Effects of Extreme Temperatures on Cause Specific Cardiovascular Admissions in Beijing, China
Authors: Deginet Aklilu, Tianqi Wang, Endwoke Amsalu, Wei Feng, Zhiwei Li, Xia Li, Lixin Tao, Yanxia Luo, Moning Guo, Xiangtong Liu, Xiuhua Guo
Abstract:
Extreme temperature-related cardiovascular diseases (CVDs) have become a growing public health concern. However, the impact of temperature on the cause of specific CVDs has not been well studied in the study area. The objective of this study was to assess the impact of temperature on cause-specific cardiovascular hospital admissions in Beijing, China. We obtained data from 172 large general hospitals from the Beijing Public Health Information Center Cardiovascular Case Database and China. Meteorological Administration covering 16 districts in Beijing from 2013 to 2017. We used a time-stratified case crossover design with a distributed lag nonlinear model (DLNM) to derive the impact of temperature on CVD in hospitals back to 27 days on CVD admissions. The temperature data were stratified as cold (extreme and moderate ) and hot (moderate and extreme ). Within five years (January 2013-December 2017), a total of 460,938 (male 54.9% and female 45.1%) CVD admission cases were reported. The exposure-response relationship for hospitalization was described by a "J" shape for the total and cause-specific. An increase in the six-day moving average temperature from moderate hot (30.2 °C) to extreme hot (36.9 °C) resulted in a significant increase in CVD admissions of 16.1%(95% CI = 12.8%-28.9%). However, the effect of cold temperature exposure on CVD admissions over a lag time of 0-27 days was found to be non significant, with a relative risk of 0.45 (95% CI = 0.378-0.55) for extreme cold (-8.5 °C)and 0.53 (95% CI = 0.47-0.60) for moderate cold (-5.6 °C). The results of this study indicate that exposure to extremely high temperatures is highly associated with an increase in cause-specific CVD admissions. These finding may guide to create and raise awareness of the general population, government and private sectors regarding on the effects of current weather conditions on CVD.Keywords: admission, Beijing, cardiovascular diseases, distributed lag non linear model, temperature
Procedia PDF Downloads 71636 Development of Personal Protection Equipment for Dental Surgeon
Authors: Thi. A. D. Tran, Matthieu Arnold, Dominique Adolphe, Laurence Schcher, Guillaume Reys
Abstract:
During daily oral health cares, dental surgeons are in contact with numerous potentially infectious germs from patients' saliva and blood. In order to take into account these risks, a product development process has been unrolled to propose to the dental surgeon a personal protection equipment that is suitable with their expectations in terms of images, protection and comfort. After a consumer study, to evaluate how the users wear the garment and their expectations, specifications have been carried out and technical solutions have been developed in order to answer to the maximum of the desiderata. Thermal studies and comfort studies have been performed. The obtained results lead to define the technical solutions concerning the design of the new scrub. Three main functions have been investigated, the ergonomic aspect, the protection and the thermal comfort. In terms of ergonomic aspect, instrumented garments have been worn and pressure measurements have been done. The results highlight that a raglan shape for the sleeves has to be selected for a better dynamic comfort. Moreover, spray tests helped us to localize the potential contamination area and therefore protection devices have been placed on the garment. Concerning the thermal comfort, an I-R study was conducted in consulting room under the real working conditions; the heating zones have been detected. Based on these results, solutions have been proposed and implemented in a new gown. This new gown is currently composed of three different parts; a protective layer placed in the chest area to avoid contamination; a breathable layer placed in the back and in the armpits and a normal PET/Cotton fabric for the rest of the gown. Through the fitting tests conducted in hospital, it was obtained that the new design was highly appreciated. Some points can nevertheless be further improved. A final product will be produced based on necessary improvements.Keywords: comfort, dentists, garment, thermal
Procedia PDF Downloads 315635 Effect of Microstructure and Texture of Magnesium Alloy Due to Addition of Pb
Authors: Yebeen Ji, Jimin Yun, Kwonhoo Kim
Abstract:
Magnesium alloys were limited for industrial applications due to having a limited slip system and high plastic anisotropy. It has been known that specific textures were formed during processing (rolling, etc.), and These textures cause poor formability. To solve these problems, many researchers have studied controlling texture by adding rare-earth elements. However, the high cost limits their use; therefore, alternatives are needed to replace them. Although Pb addition doesn’t directly improve magnesium properties, it has been known to suppress the diffusion of other alloying elements and reduce grain boundary energy. These characteristics are similar to the additions of rare-earth elements, and a similar texture behavior is expected as well. However, there is insufficient research on this. Therefore, this study investigates the behavior of texture and microstructure development after adding Pb to magnesium. This study compared and analyzed AZ61 alloy and Mg-15wt%Pb alloy to determine the effect of adding solute elements. The alloy was hot rolled and annealed to form a single phase and initial texture. Afterward, the specimen was set to contraction and elongate parallel to the rolling surface and the rolling direction and then subjected to high-temperature plane strain compression under the conditions of 723K and 0.05/s. Microstructural analysis and texture measurements were performed by SEM-EBSD. The peak stress in the true strain-stress curve after compression was higher in AZ61, but the shape of the flow curve was similar for both alloys. For both alloys, continuous dynamic recrystallization was confirmed to occur during the compression process. The basal texture developed parallel to the compressed surface, and the pole density was lower in the Mg-15wt%Pb alloy. It is confirmed that this change in behavior is because the orientation distribution of recrystallized grains has a more random orientation compared to the parent grains when Pb is added.Keywords: Mg, texture, Pb, DRX
Procedia PDF Downloads 53634 Re-Thinking Community Relationship for Resolving Conflict and Building Peace in Ethiopia: The Need to Shift from Com-Animation to Communication
Authors: Sisaye Tamrat Ayalew
Abstract:
In Ethiopia, the relationships between different communities have been characterized by mistrust, prejudice, and conflict, resulting in mass killings, displacement, and human rights violations. These relationships are mainly based on ethnic, religious, and linguistic lines, leading to a polarized society. The aim of this study is to appraise the nature of two major community relationships, namely the I-Thou relationship, characterized by genuine dialogue and mutual understanding, and the I-It relationship, characterized by a monologue and mutual suspicion. The study also aims to analyze how these two types of relationships contribute to either resolving or aggravating conflicts and building or deteriorating peace in Ethiopia. The study adopts a qualitative approach, specifically hermeneutics, to explore the nature of the I-Thou and I-It relationships in the Ethiopian context. It also examines how political elites shape these relationships within the community. The study finds that the dominant relationship in Ethiopian society is the I-It relationship, which is manifested as "com-animation." This relationship is characterized by mutual mistrust, prejudice, hostility, and misunderstanding. As a result, conflicts have arisen, leading to violence, displacement, and human rights violations. The study concludes that there is a need to shift from the I-It (com-animation) relationship to the I-Thou (communication) relationship in Ethiopian society. This shift would involve rethinking and readjusting societal relationships, especially among political elites, to foster genuine dialogue, mutual understanding, and lasting peace. It is imperative to overcome mutual mistrust, prejudice, and misunderstanding in order to resolve conflicts and build a harmonious society in Ethiopia. The study's findings and recommendations contribute to raising awareness among both Ethiopians and the international community on the potential for conflict resolution and peacebuilding through a shift in community relationships.Keywords: dialogue, I-Thou relationship, I-It relationship, conflict resolution, building peace
Procedia PDF Downloads 116633 Development and Modeling of the Process of Narrow-seam Laser Welding of Ni-Superalloy in a Hard-to-Reach Place
Authors: Vladimir Isakov, Evgeniy Rykov, Lubov Magerramova, Nikolay Emmaussky
Abstract:
For the manufacture of critical hollow products, a laser narrow-seam welding scheme based on the supply of a laser beam into the inner cavity has been developed. The report presents the results of comprehensive studies aimed at creating a sealed weld that repeats the geometric shape of the inner cavity using a rotary mirror. Laser welding of hard-to-reach places requires preliminary modeling of the process to identify defect-free modes performed at the highest possible welding speed. Optimization of the technological modes of the welded joint with a ratio of the seam width to its depth equal to 1/5 of the thickness of the Ni superalloy 6.0 mm was performed using the Verhulst limited growth model in a discrete representation. This mathematical model in the form of a recurrence relation made it possible to numerically investigate the entire variety of laser melting modes: chaotic; self-oscillating; stationary and attenuated. The control parameters and the parameter of the order to which other variables of the technological system of laser welding are subordinated are established. In it, the coefficient of relative heat capacity of the melt bath was used as a control parameter, characterizing the competition between the heat input by the laser and the heat sink into the surrounding metal. The parameter of the order of the narrow–seam laser welding process, in this interpretation, is a dimensionless value of the penetration depth, which is an argument of the function of the desired logistic equation. Experimental studies of narrow-seam welding were performed using a copper, water-cooled mirror by radiation from a powerful fiber laser. The obtained results were used to validate the evolutionary mathematical model of the laser welding process.Keywords: laser welding, internal cavity, limited growth model, ni-superalloy
Procedia PDF Downloads 16632 Late Neolithic Cemeteries Funerary and Their Indications of Societies Changes and Religion Emergences of Sudan: Qalaat Shanan Site Case Study
Authors: Ahmed Hamid Nassr
Abstract:
The significant of the old stone ages in the Sudan, seems from the longest times and the large differentiation in antiquities, so many Neolithic cemeteries have been discovered in the Sudan, which the studies revealed costumes’ funerary from the Form of grave and the contents has been contrasted in some elements and constant in the others. Many interpretations of the late Neolithic cemeteries tradition written from the earlier studies, most of them focus of the development and change in the burial from society’s development and ideas of afterlife beginnings. Another emphasis undertaken is the relationship between societies cultural aspects and the environmental conditions of the period; it has been considered that it hyper-affected the development of farming in one way or another. The site of Qalaat Shanan noted in earlier 1990 and excavated by the Author from 2011-2013, the site located north of Khartoum about 170 km in Shendi town. Site setting lies amongst a group of Neolithic sites in the Shendi area, it reflected a succession of various Neolithic activities from the early to the late horizons. Excavation revealed many late Neolithic graves, the adult and child graves show large funerary content, different in quality and quantity, which indicates of societies development and related to religion and ideas about the afterlife. This presentation discusses the variations of the Late Neolithic cemeteries in Galaat Shanan site from the grave form, content and differentiation of the sex and age and compared with other late Neolithic discoveries in Sudan and the Nile valley. The study shows many changes in the graves related to the societies changes in late Neolithic in Sudan, climate and economic subsistence's are well reasons, but also the idea change is the main reason for the changes. That is clear from the variations of grave shape and content in age and sex and might be society’s status and levels.Keywords: Sudan, Shendi town, Qalaat Shanan, late neolithic, cemeteries, funerary, tradition
Procedia PDF Downloads 281631 Traditional Ceramics Value in the Middle East
Authors: Abdelmessih Malak Sadek Labib
Abstract:
The Stability in harsh environments thanks to excellent electrical, mechanical and thermal properties is what ceramics are all about selected materials for many applications despite advent of new materials such as plastics and composites. However, ceramic materials have disadvantages, including brittleness. Fragility is often attributed to pottery strong covalent and ionic bonds in the ceramic body. There is still much to learn about brittle cracks in a attention to detail, hence the fragility of the ceramic and its catastrophic failure of a frequently studied topic, particularly in charging applications. One of the most commonly used ceramics for load-bearing applications such as veneers is porcelain. Porcelain is a type of traditional pottery. Traditional pottery consists mainly of three basic ingredients: clay, which gives plasticity; silica which maintains the shape and stability of the ceramic body over temperature high temperature; and feldspar affecting glazing. In traditional pottery, the inversion of quartz during cooling the process can create microcracks that act as a stress concentration centers. Consequently, subcritical crack growth is caused due to quartz inversion origins unpredictable catastrophic failure of the work of ceramic bodies when reloading. In the case of porcelain, however, this is what the mullite hypothesis says the strength of porcelain can be significantly increased with felt Interlocking of mullite needles in the ceramic body.in this way realistic assessment of the role of quartz and mullite Porcelain with a strength of is needed to grow stronger and smaller fragile porcelain. Currently,the lack of reports on Young's moduli in the literature leads to erroneous conclusions in this regard mechanical behavior of porcelain. Therefore, the current project uses the Young's modulus approach for the investigation the role of quartz and mullite on the mechanical strength of various porcelains, in addition to reducing particle size, flexural strength fractographic forces and techniques.Keywords: materials, technical, ceramics, properties, thermal, stability, advantages
Procedia PDF Downloads 90630 The Effect of Artificial Intelligence on Electric Machines and Welding
Authors: Mina Malak Zakaria Henin
Abstract:
The finite detail evaluation of magnetic fields in electromagnetic devices shows that the machine cores revel in extraordinary flux patterns consisting of alternating and rotating fields. The rotating fields are generated in different configurations variety, among circular and elliptical, with distinctive ratios between the fundamental and minor axes of the flux locus. Experimental measurements on electrical metal uncovered one-of-a-kind flux patterns that divulge distinctive magnetic losses in the samples below the test. Therefore, electric machines require unique interest throughout the core loss calculation technique to bear in mind the flux styles. In this look, a circular rotational unmarried sheet tester is employed to measure the middle losses in the electric-powered metallic pattern of M36G29. The sample becomes exposed to alternating fields, circular areas, and elliptical fields with axis ratios of zero.2, zero. Four, 0.6 and 0.8. The measured statistics changed into applied on 6-4 switched reluctance motors at 3 distinctive frequencies of interest to the industry 60 Hz, 400 Hz, and 1 kHz. The effects reveal an excessive margin of error, which can arise at some point in the loss calculations if the flux pattern difficulty is overlooked. The mistake in exceptional components of the gadget associated with considering the flux styles may be around 50%, 10%, and a couple of at 60Hz, 400Hz, and 1 kHz, respectively. The future paintings will focus on the optimization of gadget geometrical shape, which has a primary effect on the flux sample on the way to decrease the magnetic losses in system cores.Keywords: converters, electric machines, MEA (more electric aircraft), PES (power electronics systems) synchronous machine, vector control Multi-machine/ Multi-inverter, matrix inverter, Railway tractionalternating core losses, finite element analysis, rotational core losses
Procedia PDF Downloads 34629 Influence of Thermal Damage on the Mechanical Strength of Trimmed CFRP
Authors: Guillaume Mullier, Jean François Chatelain
Abstract:
Carbon Fiber Reinforced Plastics (CFRPs) are widely used for advanced applications, in particular in aerospace, automotive and wind energy industries. Once cured to near net shape, CFRP parts need several finishing operations such as trimming, milling or drilling in order to accommodate fastening hardware and meeting the final dimensions. The present research aims to study the effect of the cutting temperature in trimming on the mechanical strength of high performance CFRP laminates used for aeronautics applications. The cutting temperature is of great importance when dealing with trimming of CFRP. Temperatures higher than the glass-transition temperature (Tg) of the resin matrix are highly undesirable: they cause degradation of the matrix in the trimmed edges area, which can severely affect the mechanical performance of the entire component. In this study, a 9.50 mm diameter CVD diamond coated carbide tool with six flutes was used to trim 24-plies CFRP laminates. A 300 m/min cutting speed and 1140 mm/min feed rate were used in the experiments. The tool was heated prior to trimming using a blowtorch, for temperatures ranging from 20°C to 300°C. The temperature at the cutting edge was measured using embedded K-Type thermocouples. Samples trimmed for different cutting temperatures, below and above Tg, were mechanically tested using three-points bending short-beam loading configurations. New cutting tools as well as worn cutting tools were utilized for the experiments. The experiments with the new tools could not prove any correlation between the length of cut, the cutting temperature and the mechanical performance. Thus mechanical strength was constant, regardless of the cutting temperature. However, for worn tools, producing a cutting temperature rising up to 450°C, thermal damage of the resin was observed. The mechanical tests showed a reduced mean resistance in short beam configuration, while the resistance in three point bending decreases with increase of the cutting temperature.Keywords: composites, trimming, thermal damage, surface quality
Procedia PDF Downloads 323628 Removal of Rhodamine B from Aqueous Solution Using Natural Clay by Fixed Bed Column Method
Abstract:
The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removal of such compounds at such low levels is a difficult problem. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. The focus of this research was to evaluate the adsorption potential of the raw clay in removing rhodamine B from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height, and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 8.5. Experiments were carried out at different bed heights (5 - 20 cm), influent flow rates (1.6- 8 mL/min) and influent rhodamine B concentrations (20 - 80 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of rhodamine B from aqueous solution. Uptake of rhodamine B through a fixed-bed column was dependent on the bed depth, influent rhodamine B concentration, and flow rate.Keywords: adsorption, breakthrough curve, clay, fixed bed column, rhodamine b, regeneration
Procedia PDF Downloads 277