Search results for: high energy materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28963

Search results for: high energy materials

12283 Eco-Hammam Initiative: Replicating the FSAC Model for Sustainable Wastewater Treatment and Resource Reuse in Dar Bouazza, Morocco

Authors: Nihad Chakri, Btissam El Amrani, Faouzi Berrada, Halima Jounaid, Fouad Amraoui

Abstract:

In the context of the increasing water resource scarcity in Morocco in recent years, the use of unconventional resources has become imperative. Although efforts have been made in the field of sanitation in urban areas, rural areas, due to their specificities, such as scattered dwellings and limited accessibility, suffer from a lack of basic infrastructure. This work focuses on replicating the Faculty of Sciences Ain Chock (FSAC) model for the treatment and reuse of wastewater from a peri-urban traditional hammam in Casablanca, specifically in the municipality of Dar Bouazza. This initiative is part of the Eco-Hammam project, which aims to minimize the negative impacts of traditional hammams in terms of irrational and uncontrolled consumption of water and wood energy resources. To achieve this, a comprehensive environmental diagnosis of all hammams in the municipality of Dar Bouazza, our study site, has been undertaken. Then, a feasibility study is also conducted to assess the possibility of replicating the FSAC mini-station to treat the wastewater of the selected pilot hammam, namely, My Yacoub II.

Keywords: water resource scarcity, unconventional resources, sanitation, per-urban areas, rural areas, basic infrastructure, replication, reuse of wastewater, traditional hammam, Casablanca, Municipality of Dar Bouazza, negative impacts, environmental diagnosis, feasibility study, pilot hammam, My Yacoub II

Procedia PDF Downloads 57
12282 Deposition of Cr-doped ZnO Thin Films and Their Ferromagnetic Properties

Authors: Namhyun An, Byungho Lee, Hwauk Lee, Youngmin Lee, Deuk Young Kim, Sejoon Lee

Abstract:

In this study, the Cr-doped ZnO thin films have been deposited by reactive magnetron sputtering method with different Cr-contents (1.0at.%, 2.5at.% and 12.5at.%) and their ferromagnetic properties have been characterized. All films revealed clear ferromagnetism above room temperature. However, the spontaneous magnetization of the films was observed to depend on the Cr contents in the films. Namely, the magnitude of effective magnetic moment (per each Cr ion) was exponentially decreased with increasing the Cr contents. We attributed the decreased spontaneous magnetization to the degraded crystal magnetic anisotropy. In other words, we found out that the high concentration of magnetic ions causes the lattice distortion in the magnetic ion-doped thin film, and it consequently degrades ferromagnetic channeling in the solid-state material system.

Keywords: Cr-doped ZnO, ferromagnetic properties, magnetization, sputtering, thin film

Procedia PDF Downloads 388
12281 Uncommon Case of Falx Subdural Hematoma

Authors: Thu Nguyen, Jane Daugherty-Luck

Abstract:

Falx subdural hematoma is a life-threatening condition associated with high mortality. We present a patient case who had fallen with no head injury or loss of conspicuousness. She had tenderness along cervical and thoracic lumbar spine. CT head revealed falx subdural hematoma. The patient was managed medically. The pathophysiology of falx subdural hematoma is linked to laceration of bridging veins provoked by frontal or occipital impact. Posttraumatic subdural hematoma is commonly caused by inertia instead of facture or cerebral contusion resulting from direct impact. The theory is consistent with the lack of fracture in most cases in the literature. Our patient had neither contusion nor fracture.

Keywords: falx subdural hematoma, traumatic head injury, CT head scan, bridging veins, inertia

Procedia PDF Downloads 133
12280 Study on Residual Stress Measurement of Inconel-718 under Different Lubricating Conditions

Authors: M. Sandeep Kumar, Vasu Velagapudi, A. Venugopal

Abstract:

When machining is carried out on a workpiece, residual stresses are induced in the workpiece due to nonuniform thermal and mechanical loads. These stresses play a vital role in the surface integrity of the final product or the output. Inconel 718 is commonly used in critical structural components of aircraft engines due to its properties at high temperatures. Therefore it is important to keep down the stresses induced due to machining. This can be achieved through proper lubricating conditions. In this work, experiments were carried out to check the influence of the developed nanofluid as cutting fluids on residual stresses developed during the course of machining. The results of MQL/Nanofluids were compared with MQL/Vegetable oil and dry machining lubricating condition. Results indicate the reduction in residual stress with the use of MQL/Nanofluid.

Keywords: nanofluids, MQL, residual stress, Inconel-718

Procedia PDF Downloads 253
12279 Utilization of Chicken Skin Based Products as Fat Replacers for Improving the Nutritional Quality, Physico-Chemical Characteristics and Sensory Attributes of Beef Fresh Sausage

Authors: Hussein M. H. Mohamed, Hamdy M. B. Zaki

Abstract:

Fresh sausage is one of the cheapest and delicious meat products that are gaining popularity all over the world. It is considered as a practice of adding value to low-value meat cuts of high fat and connective tissue contents. One of the most important characteristics of fresh sausage is the distinctive marbling appearance between lean and fatty portions, which can be achieved by using animal fat. For achieving the marbling appearance of fresh sausage, a lager amount of fat needs to be used. The use of animal fat may represent a health concern due to its content of saturated fatty acids and trans-fats, which increase the risk of heart diseases. There is a need for reducing the fat content of fresh sausage to obtain a healthy product. However, fat is responsible for the texture, flavor, and juiciness of the product. Therefore, developing reduced-fat products is a challenging process. The main objectives of the current study were to incorporate chicken skin based products (chicken skin emulsion, gelatinized chicken skin, and gelatinized chicken skin emulsion) during the formulation of fresh sausage as fat replacers and to study the effect of these products on the nutritional quality, physicochemical properties, and sensory attributes of the processed product. Three fresh sausage formulae were prepared using chicken skin based fat replacers (chicken skin emulsion, gelatinized chicken skin, and gelatinized chicken skin emulsion) beside one formula prepared using mesenteric beef fat as a control. The proximate composition, fatty acid profiles, Physico-chemical characteristics, and sensory attributes of all formulas were assessed. The results revealed that the use of chicken skin based fat replacers resulted in significant (P < 0.05) reduction of fat contents from 17.67 % in beef mesenteric fat formulated sausage to 5.77, 8.05 and 8.46 in chicken skin emulsion, gelatinized chicken skin, and gelatinized chicken skin emulsion formulated sausages, respectively. Significant reduction in the saturated fatty acid contents and a significant increase in mono-unsaturated, poly-unsaturated, and omega-3 fatty acids have been observed in all formulae processed with chicken skin based fat replacers. Moreover, significant improvements in the physico-chemical characteristics and non-significant changes in the sensory attributes have been obtained. From the obtained results, it can be concluded that the chicken skin based products can be used safely to improve the nutritional quality and physico chemical properties of beef fresh sausages without changing the sensory attributes of the product. This study may encourage meat processors to utilize chicken skin based fat replacers for the production of high quality and healthy beef fresh sausages.

Keywords: chicken skin emulsion, fresh sausage, gelatinized chicken skin, gelatinized chicken skin emulsion

Procedia PDF Downloads 124
12278 The Preventive Effect of Date Palm (Phoenixdactylifera) Seed and Fruit Hydroalcoholic Extracts on Carrageenan-Induced Inflammation in Male Rat’s Hind Paw

Authors: Siavash Azarbani

Abstract:

Background and Objective: The side effects of NSAIDS drugs have caused the increasing interest of scientists in herbal medicines as alternative treatment. In this study, the effect of anti inflammatory of seed and fruit of date palm hydroalcolic extracts, due to having antioxidants, was studied. Materials and Methods: In this study, the extraxts of date palm seed and fruit were prepared by the maceration method in 70% alcohol. Eighty male rats Wistar, divided into 10 groups of eight in each, 4 groups received different doses (100, 200, 400, and 600 mg/kg) of seed extract, and 4 other groups different doses (100, 200, 400, and 600 mg/kg) of fruits extract of the palm, and the positive control aspirin (300mg/kg) and the negative control group saline (5ml/kg) via injection intraperitoneally. Half an hour later, all animals received 100 µl of 1% carrageenan into the rats hind paw subcutaneous. The changes in rats paw edema was measured by plethysmometer every hour for five hours. Results: The effect of all of the doses of date palm seed extract on edema were less than aspirine (P<0.05). But there was no significant difference between the group that received 400 and 600 mg/kg of date palm fruit extract when compared with the aspirin group. The Dose 400 mg/kg of fruit extract showed the most anti-inflammatory effect, and it was assignded as the best dose. Conclusion: It is likely that with further studies on different model of animals and also on the human model, the palm fruit extract could be used for pain treatment.

Keywords: palm, inflamentory, date, aspirin, karageenan

Procedia PDF Downloads 115
12277 Nanosilver Containing Biodegradable Bionanocomposites for Antimicrobial Application: Design, Preparation and Study

Authors: Nino Kupatadze, Shorena Tskhadadze, Mzevinar Bedinashvili, David Tugushi, Ramaz Katsarava

Abstract:

Surgical device-associated infection and biofilm formation are some of the major problems in biomedicine for today. The losing protection ability of conventional antimicrobial-drugs leads to the challenges in the current antibiotic therapy, the most serious of which is antibiotic resistance. Our strategy to overcome the biofilm formation consists in coating devices with polymeric film containing nanosilver(AgNPs) as a bactericidal agent. Such bionanocomposites are also promising as wound dressing materials. For this purpose, we have developed a new generation of AgNPs containing polymeric composites in which amino acid based biodegradable poly(ester amide)s (PEAs) were served as both matrices and AgNPs stabilizers. The AgNPs were formed by photochemical (daylight) reduction of AgNO3 in ethanol solution. The formation of AgNPs was monitored by coloring the solution in brownish-red and appearance of the absorption maximum at 420-430 nm in UV spectrum. Comparative studies of PEAs with polyvinylpyrrolidone (PVP) as particle stabilizers were carried out. It was found that PVP is better stabilizer in terms of particles yield and stability. Therefore, in subsequent experiments blends of PEAs and PVP were used as stabilizers for fabricating AgNPs. As expected, PVP increased the stabilizing effect and this apparently observed in the UV spectrum of the samples after 7 h daylight irradiation: for pure PVP λmax = 430 nm, D = 2.03, for pure PEA λmax= 420 nm, D = 0.65, and for the blend of PVP and PEA λmax = 435 nm, D = 1.88. Further study of the obtained nanobiocomposites is in progress now.

Keywords: biodegradation, bionanocompositions, polymer, nanosilver

Procedia PDF Downloads 339
12276 Measurements of Radial Velocity in Fixed Fluidized Bed for Fischer-Tropsch Synthesis Using LDV

Authors: Xiaolai Zhang, Haitao Zhang, Qiwen Sun, Weixin Qian, Weiyong Ying

Abstract:

High temperature Fischer-Tropsch synthesis process use fixed fluidized bed as a reactor. In order to understand the flow behavior in the fluidized bed better, the research of how the radial velocity affect the entire flow field is necessary. Laser Doppler Velocimetry (LDV) was used to study the radial velocity distribution along the diameter direction of the cross-section of the particle in a fixed fluidized bed. The velocity in the cross-section is fluctuating within a small range. The direction of the speed is a random phenomenon. In addition to r/R is 1, the axial velocity are more than 6 times of the radial velocity, the radial velocity has little impact on the axial velocity in a fixed fluidized bed.

Keywords: Fischer-Tropsch synthesis, Fixed fluidized bed, LDV, Velocity

Procedia PDF Downloads 394
12275 Psycholinguistic Analysis on Stuttering Treatment through Systemic Functional Grammar in Tom Hooper’s The King’s Speech

Authors: Nurvita Wijayanti

Abstract:

The movie titled The King’s Speech is based on a true story telling an English king suffers from stuttering and how he gets the treatment from the therapist, so that he can reduce the high frequency on stuttering. The treatment uses the unique approach implying the linguistic principles. This study shows how the language works significantly in order to treat the stuttering sufferer using psychological approach. Therefore, the linguistic study is done to analyze the treatment activity. Halliday’s Systemic Functional Grammar is used as the main approach in this study along with qualitative descriptive method. The study finds that the therapist though using the orthodox approach applies the psycholinguistic method to overcome the king’s stuttering.

Keywords: psycholinguistics, stuttering, systemic functional grammar, treatment

Procedia PDF Downloads 246
12274 Inertial Spreading of Drop on Porous Surfaces

Authors: Shilpa Sahoo, Michel Louge, Anthony Reeves, Olivier Desjardins, Susan Daniel, Sadik Omowunmi

Abstract:

The microgravity on the International Space Station (ISS) was exploited to study the imbibition of water into a network of hydrophilic cylindrical capillaries on time and length scales long enough to observe details hitherto inaccessible under Earth gravity. When a drop touches a porous medium, it spreads as if laid on a composite surface. The surface first behaves as a hydrophobic material, as liquid must penetrate pores filled with air. When contact is established, some of the liquid is drawn into pores by a capillarity that is resisted by viscous forces growing with length of the imbibed region. This process always begins with an inertial regime that is complicated by possible contact pinning. To study imbibition on Earth, time and distance must be shrunk to mitigate gravity-induced distortion. These small scales make it impossible to observe the inertial and pinning processes in detail. Instead, in the International Space Station (ISS), astronaut Luca Parmitano slowly extruded water spheres until they touched any of nine capillary plates. The 12mm diameter droplets were large enough for high-speed GX1050C video cameras on top and side to visualize details near individual capillaries, and long enough to observe dynamics of the entire imbibition process. To investigate the role of contact pinning, a text matrix was produced which consisted nine kinds of porous capillary plates made of gold-coated brass treated with Self-Assembled Monolayers (SAM) that fixed advancing and receding contact angles to known values. In the ISS, long-term microgravity allowed unambiguous observations of the role of contact line pinning during the inertial phase of imbibition. The high-speed videos of spreading and imbibition on the porous plates were analyzed using computer vision software to calculate the radius of the droplet contact patch with the plate and height of the droplet vs time. These observations are compared with numerical simulations and with data that we obtained at the ESA ZARM free-fall tower in Bremen with a unique mechanism producing relatively large water spheres and similarity in the results were observed. The data obtained from the ISS can be used as a benchmark for further numerical simulations in the field.

Keywords: droplet imbibition, hydrophilic surface, inertial phase, porous medium

Procedia PDF Downloads 125
12273 Understanding the Conflict Between Ecological Environment and Human Activities in the Process of Urbanization

Authors: Yazhou Zhou, Yong Huang, Guoqin Ge

Abstract:

In the process of human social development, the coupling and coordinated development among the ecological environment(E), production(P), and living functions(L) is of great significance for sustainable development. This study uses an improved coupling coordination degree model (CCDM) to discover the coordination conflict between E and human settlement environment. The main work of this study is as follows: (1) It is found that in the process of urbanization development of Ya 'an city from 2014 to 2018, the degree of coupling (DOC) value between E, P, and L is high, but the coupling coordination degree (CCD) of the three is low, especially the DOC value of E and the other two has the biggest decline. (2) A more objective weight value is obtained, which can avoid the analysis error caused by subjective judgment weight value.

Keywords: ecological environment, coupling coordination degree, neural network, sustainable development

Procedia PDF Downloads 67
12272 Multivariate Analysis of Students’ Performance in Math Courses and Specific Engineering Courses

Authors: H. Naccache, R. Hleiss

Abstract:

The aim of this research is to study the relationship between the performance of engineering students in different math courses and their performance in specific engineering courses. The considered courses are taken mainly by engineering students during the first two years of their major. Several factors are being studied, such as gender and final grades in the math and specific engineering courses. Participants of this study comprised a sample of more than thousands of engineering students at Lebanese University during their tertiary academic years. A significant relationship tends to appear between these factors and the performance of students in engineering courses. Moreover, female students appear to outperform their male counterparts in both the math and engineering courses, and a high correlation was found between their grades in math courses and their grades in specific engineering courses. The results and implications of the study were being discussed.

Keywords: education, engineering, math, performance

Procedia PDF Downloads 333
12271 Halogenated Methoxy- and Methyl-benzoic Acids: Joint Experimental and DFT Study For Molecular Structure, Vibrational Analysis, and Other Molecular Properties

Authors: Boda Sreenivas, Lyathakula Ravindranath, Kanugula Srishailam, Byru Venkatram Reddy

Abstract:

Extensive research into the optimized structure and molecular properties of 3-Flouro-2-methylbenzoicacid(FMB), 3-Chloro-2-methoxybenzoicacid (CMB), and 3-Bromo-2-methylbenzoicacid (BMB) was carried out using FT-IR, FT-Raman and UV-Visible spectra, as well as theoretically using the DFT approach with B3LYPfunctional in conjunction with 6-311++G(d,p) basis set. The optimized structure was determined by evaluating torsional scans about free rotation bonds. Structure parameters, harmonic vibrational frequencies, potential energy distribution(PED), and infrared and Raman intensities were computed. The computational results from the DFT approach, such asFT-IR, FT-Raman, and UV-Visible spectra, were compared with the experimental results and found good agreement. Observed and calculated frequencies agreed with an rms error of 8.42, 6.60, and 6.95 cm-1 for FMB, CMB, and BMB, respectively. Unambiguous vibrational assignments were made for all fundamentals using PED and eigenvectors. The electronic HOMO-LUMO, H-bonding, and strong conjugative interactions across different molecular entities are discussed using experimental and simulated Ultraviolet-Visible spectra. The title molecules' molecular properties such as dipole moment, mean polarizability, and first-order hyperpolarizability, were calculated to study their non-linear optical (NLO) behavior. The chemical reactivity descriptors and mapped electrostatic surface potential (MESP) were also evaluated. Natural bond orbital (NBO) analysis was used to examine the stability of molecules resulting from hyperconjugative interactions and charge delocalization.

Keywords: ftir/raman spectra, DFT, NLO, homo-lumo, NBO, halogenated benzoic acids

Procedia PDF Downloads 70
12270 Analysis of Correlation Between Manufacturing Parameters and Mechanical Strength Followed by Uncertainty Propagation of Geometric Defects in Lattice Structures

Authors: Chetra Mang, Ahmadali Tahmasebimoradi, Xavier Lorang

Abstract:

Lattice structures are widely used in various applications, especially in aeronautic, aerospace, and medical applications because of their high performance properties. Thanks to advancement of the additive manufacturing technology, the lattice structures can be manufactured by different methods such as laser beam melting technology. However, the presence of geometric defects in the lattice structures is inevitable due to the manufacturing process. The geometric defects may have high impact on the mechanical strength of the structures. This work analyzes the correlation between the manufacturing parameters and the mechanical strengths of the lattice structures. To do that, two types of the lattice structures; body-centered cubic with z-struts (BCCZ) structures made of Inconel718, and body-centered cubic (BCC) structures made of Scalmalloy, are manufactured by laser melting beam machine using Taguchi design of experiment. Each structure is placed on the substrate with a specific position and orientation regarding the roller direction of deposed metal powder. The position and orientation are considered as the manufacturing parameters. The geometric defects of each beam in the lattice are characterized and used to build the geometric model in order to perform simulations. Then, the mechanical strengths are defined by the homogeneous response as Young's modulus and yield strength. The distribution of mechanical strengths is observed as a function of manufacturing parameters. The mechanical response of the BCCZ structure is stretch-dominated, i.e., the mechanical strengths are directly dependent on the strengths of the vertical beams. As the geometric defects of vertical beams are slightly changed based on their position/orientation on the manufacturing substrate, the mechanical strengths are less dispersed. The manufacturing parameters are less influenced on the mechanical strengths of the structure BCCZ. The mechanical response of the BCC structure is bending-dominated. The geometric defects of inclined beam are highly dispersed within a structure and also based on their position/orientation on the manufacturing substrate. For different position/orientation on the substrate, the mechanical responses are highly dispersed as well. This shows that the mechanical strengths are directly impacted by manufacturing parameters. In addition, this work is carried out to study the uncertainty propagation of the geometric defects on the mechanical strength of the BCC lattice structure made of Scalmalloy. To do that, we observe the distribution of mechanical strengths of the lattice according to the distribution of the geometric defects. A probability density law is determined based on a statistical hypothesis corresponding to the geometric defects of the inclined beams. The samples of inclined beams are then randomly drawn from the density law to build the lattice structure samples. The lattice samples are then used for simulation to characterize the mechanical strengths. The results reveal that the distribution of mechanical strengths of the structures with the same manufacturing parameters is less dispersed than one of the structures with different manufacturing parameters. Nevertheless, the dispersion of mechanical strengths due to the structures with the same manufacturing parameters are unneglectable.

Keywords: geometric defects, lattice structure, mechanical strength, uncertainty propagation

Procedia PDF Downloads 121
12269 Shark Cartilage Modulate IL-23/IL-17 Axis by Increasing IFN-γ and Decreasing IL-4 in Patients with Gastric Cancer

Authors: Razieh Zareia, Hassan ZMB, Darush Moslemic, Amrollah Mostafa-Zaded

Abstract:

Introduction: Shark is a murine organism and its cartilage has antitumor peptides to prevent angiogenesis, at least, in vitro. The purpose of our research was to evaluate the immune-effectiveness on imbalance between IL-23/IL-17 axis, as an inflammatory pathway and TGF/Foxp3 T regulatory as a inhibitory pathway of commercial shark cartilage that is available as a non-common dietary supplement in IRAN. Materials and Methods: First investigated an imbalanced supernatant of cytokines exist in patients with gastric cancer by ELISA. Associated with cytokines measuring such as IL-23, IL-17, TGF-β, IL-4, and γ-IFN, then flow cytometry was employed to determine whether the peripheral blood mononuclear cells such as CD4+CD25+Foxp3highT regulatory cells in patients with gastric cancer were changed correspondingly. Results: The simultaneously presented up-regulation IL-17A indicated, at least cytokine level without changing in TGF-β amount or CD4+CD25+Foxp3 T regulatory cells, that there are not a direct correlation between IL-23/IL-17 axis and Treg/TGF-β pathway in patients with gastric cancer treated by shark cartilage, but IL-23 was not expressed differentially in this group. So, accompany these changes, an imbalance between Th1 immunity (γ-IFN production) and TH2 immunity (IL-4 secretion) evaluated in patients with gastric cancer treated by shark cartilage. Conclusion: On the basis of results, we propose that shark cartilage, by reducing IL-4, decreasing IL-17 a central cytokine in angiogenesis and increasing γ-IFN amplify anti-tumor immune responses in patients with gastric cancer.

Keywords: IL-23/IL17 axis, TGF-β/CD4+CD25+Foxp3high T regulatory pathway, γ-IFN, IL-4, shark cartilage, gastric cancer

Procedia PDF Downloads 383
12268 Quantum Engine Proposal using Two-level Atom Like Manipulation and Relativistic Motoring Control

Authors: Montree Bunruangses, Sonath Bhattacharyya, Somchat Sonasang, Preecha Yupapin

Abstract:

A two-level system is manipulated by a microstrip add-drop circuit configured as an atom like system for wave-particle behavior investigation when its traveling speed along the circuit perimeter is the speed of light. The entangled pair formed by the upper and lower sideband peaks is bound by the angular displacement, which is given by 0≤θ≤π/2. The control signals associated with 3-peak signal frequencies are applied by the external inputs via the microstrip add-drop multiplexer ports, where they are time functions without the space term involved. When a system satisfies the speed of light conditions, the mass term has been changed to energy based on the relativistic limit described by the Lorentz factor and Einstein equation. The different applied frequencies can be utilized to form the 3-phase torques that can be applied for quantum engines. The experiment will use the two-level system circuit and be conducted in the laboratory. The 3-phase torques will be recorded and investigated for quantum engine driving purpose. The obtained results will be compared to the simulation. The optimum amplification of torque can be obtained by the resonant successive filtering operation. Torque will be vanished when the system is balanced at the stopped position, where |Time|=0, which is required to be a system stability condition. It will be discussed for future applications. A larger device may be tested in the future for realistic use. A synchronous and asynchronous driven motor is also discussed for the warp drive use.

Keywords: quantum engine, relativistic motor, 3-phase torque, atomic engine

Procedia PDF Downloads 53
12267 Human Activities Recognition Based on Expert System

Authors: Malika Yaici, Soraya Aloui, Sara Semchaoui

Abstract:

Recognition of human activities from sensor data is an active research area, and the main objective is to obtain a high recognition rate. In this work, we propose a recognition system based on expert systems. The proposed system makes the recognition based on the objects, object states, and gestures, taking into account the context (the location of the objects and of the person performing the activity, the duration of the elementary actions, and the activity). This work focuses on complex activities which are decomposed into simple easy to recognize activities. The proposed method can be applied to any type of activity. The simulation results show the robustness of our system and its speed of decision.

Keywords: human activity recognition, ubiquitous computing, context-awareness, expert system

Procedia PDF Downloads 132
12266 Vibration Analysis and Optimization Design of Ultrasonic Horn

Authors: Kuen Ming Shu, Ren Kai Ho

Abstract:

Ultrasonic horn has the functions of amplifying amplitude and reducing resonant impedance in ultrasonic system. Its primary function is to amplify deformation or velocity during vibration and focus ultrasonic energy on the small area. It is a crucial component in design of ultrasonic vibration system. There are five common design methods for ultrasonic horns: analytical method, equivalent circuit method, equal mechanical impedance, transfer matrix method, finite element method. In addition, the general optimization design process is to change the geometric parameters to improve a single performance. Therefore, in the general optimization design process, we couldn't find the relation of parameter and objective. However, a good optimization design must be able to establish the relationship between input parameters and output parameters so that the designer can choose between parameters according to different performance objectives and obtain the results of the optimization design. In this study, an ultrasonic horn provided by Maxwide Ultrasonic co., Ltd. was used as the contrast of optimized ultrasonic horn. The ANSYS finite element analysis (FEA) software was used to simulate the distribution of the horn amplitudes and the natural frequency value. The results showed that the frequency for the simulation values and actual measurement values were similar, verifying the accuracy of the simulation values. The ANSYS DesignXplorer was used to perform Response Surface optimization, which could shows the relation of parameter and objective. Therefore, this method can be used to substitute the traditional experience method or the trial-and-error method for design to reduce material costs and design cycles.

Keywords: horn, natural frequency, response surface optimization, ultrasonic vibration

Procedia PDF Downloads 108
12265 Iron Catalyst for Decomposition of Methane: Influence of Al/Si Ratio Support

Authors: A. S. Al-Fatesh, A. A. Ibrahim, A. M. AlSharekh, F. S. Alqahtani, S. O. Kasim, A. H. Fakeeha

Abstract:

Hydrogen is the expected future fuel since it produces energy without any pollution. It can be used as a fuel directly or through the fuel cell. It is also used in chemical and petrochemical industry as reducing agent or in hydrogenation processes. It is produced by different methods such as reforming of hydrocarbon, electrolytic method and methane decomposition. The objective of the present paper is to study the decomposition of methane reaction at 700°C and 800°C. The catalysts were prepared via impregnation method using 20%Fe and different proportions of combined alumina and silica support using the following ratios [100%, 90%, 80%, and 0% Al₂O₃/SiO₂]. The prepared catalysts were calcined and activated at 600 OC and 500 OC respectively. The reaction was carried out in fixed bed reactor at atmospheric pressure using 0.3g of catalyst and feed gas ratio of 1.5/1 CH₄/N₂ with a total flow rate 25 mL/min. Catalyst characterizations (TPR, TGA, BET, XRD, etc.) have been employed to study the behavior of catalysts before and after the reaction. Moreover, a brief description of the weight loss and the CH₄ conversions versus time on stream relating the different support ratios over 20%Fe/Al₂O₃/SiO₂ catalysts has been added as well. The results of TGA analysis provided higher weights losses for catalysts operated at 700°C than 800°C. For the 90% Al₂O₃/SiO₂, the activity decreases with the time on stream using 800°C reaction temperature from 73.9% initial CH₄ conversion to 46.3% for a period of 300min, whereas the activity for the same catalyst increases from 47.1% to 64.8% when 700°C reaction temperature is employed. Likewise, for 80% Al₂O₃/SiO₂ the trend of activity is similar to that of 90% Al₂O₃/SiO₂ but with a different rate of activity variation. It can be inferred from the activity results that the ratio of Al₂O₃ to SiO₂ is crucial and it is directly proportional with the activity. Whenever the Al/Si ratio decreases the activity declines. Indeed, the CH₄ conversion of 100% SiO₂ support was less than 5%.

Keywords: Al₂O₃, SiO₂, CH₄ decomposition, hydrogen, iron

Procedia PDF Downloads 174
12264 A Performance Analysis of Different Scheduling Schemes in WiMAX

Authors: A. Youseef

Abstract:

One of the most aims of IEEE 802.16 (WiMAX) is to present high-speed wireless access to cover wide range coverage. The base station (BS) and the subscriber station (SS) are the main parts of WiMAX. WiMAX uses either Point-to-Multipoint (PMP) or mesh topologies. In the PMP mode, the SSs connect to the BS to gain access to the network. However, in the mesh mode, the SSs connect to each other to gain access to the BS. The main components of QoS management in the 802.16 standard are the admission control, buffer management, and packet scheduling. There are several researches proposed to create an efficient packet scheduling schemes. Therefore, we use QualNet 5.0.2 to study the performance of different scheduling schemes, such as WFQ, SCFQ, RR, and SP when the numbers of SSs increase. We find that when the number of SSs increases, the average jitter and average end-to-end delay is increased and the throughput is reduced.

Keywords: WiMAX, scheduling scheme, QoS, QualNet

Procedia PDF Downloads 449
12263 Automatic MC/DC Test Data Generation from Software Module Description

Authors: Sekou Kangoye, Alexis Todoskoff, Mihaela Barreau

Abstract:

Modified Condition/Decision Coverage (MC/DC) is a structural coverage criterion that is highly recommended or required for safety-critical software coverage. Therefore, many testing standards include this criterion and require it to be satisfied at a particular level of testing (e.g. validation and unit levels). However, an important amount of time is needed to meet those requirements. In this paper we propose to automate MC/DC test data generation. Thus, we present an approach to automatically generate MC/DC test data, from software module description written over a dedicated language. We introduce a new merging approach that provides high MC/DC coverage for the description, with only a little number of test cases.

Keywords: domain-specific language, MC/DC, test data generation, safety-critical software coverage

Procedia PDF Downloads 431
12262 Teacher’s Self-Efficacy and Self-Perception of Teaching Professional Competences

Authors: V. Biasi, A. M. Ciraci, G. Domenici, N. Patrizi

Abstract:

We present two studies centered on the teacher’s perception of self-efficacy and professional competences. The first study aims to evaluate the levels of self-efficacy as attitude in 200 teachers of primary and secondary schools. Teacher self-efficacy is related to many educational outcomes: such as teachers’ persistence, enthusiasm, commitment and instructional behavior. High level of teacher self-efficacy beliefs enhance student motivation and pupil’s learning level. On this theoretical and empirical basis we are planning a second study oriented to assess teacher self-perception of competences that are linked to teacher self-efficacy. With the CDVR Questionnaire, 287 teachers graduated in Education Sciences in e-learning mode, showed an increase in their self-perception of didactic-evaluation and relational competences and an increased confidence also in their own professionalism.

Keywords: teacher competence, teacher self-efficacy, selfperception, self-report evaluation

Procedia PDF Downloads 513
12261 Fabrication and Characterization of Dissolvable Microneedle Patches Using Different Compositions and Ratios of Hyaluronic Acid and Zinc Oxide Nanoparticles

Authors: Dada Kolawole Segun

Abstract:

Transdermal drug delivery has gained popularity as a non-invasive method for controlled drug release compared to traditional delivery routes. Dissolvable transdermal patches have emerged as a promising platform for delivering a variety of drugs due to their ease of use. The objective of this research was to create and characterize dissolvable transdermal patches using various compositions and ratios of hyaluronic acid and zinc oxide nanoparticles. A micromolding technique was utilized to fabricate the patches, which were subsequently characterized using scanning electron microscopy, atomic force microscopy, and tensile strength testing. In vitro drug release studies were conducted to evaluate the drug release kinetics of the patches. The study found that the mechanical strength and dissolution properties of the patches were influenced by the hyaluronic acid and zinc oxide nanoparticle ratios used in the fabrication process. Moreover, the patches demonstrated controlled delivery of model drugs through the skin, highlighting their potential for transdermal drug delivery applications. The results suggest that dissolvable transdermal patches can be tailored to meet specific requirements for drug delivery applications using different compositions and ratios of hyaluronic acid and zinc oxide nanoparticles. This development has the potential to improve treatment outcomes and patient compliance in various therapeutic areas.

Keywords: transdermal drug delivery, characterization, skin permeation, biodegradable materials

Procedia PDF Downloads 77
12260 An Improved Discrete Version of Teaching–Learning-Based ‎Optimization for Supply Chain Network Design

Authors: Ehsan Yadegari

Abstract:

While there are several metaheuristics and exact approaches to solving the Supply Chain Network Design (SCND) problem, there still remains an unfilled gap in using the Teaching-Learning-Based Optimization (TLBO) algorithm. The algorithm has demonstrated desirable results with problems with complicated combinational optimization. The present study introduces a Discrete Self-Study TLBO (DSS-TLBO) with priority-based solution representation that can solve a supply chain network configuration model to lower the total expenses of establishing facilities and the flow of materials. The network features four layers, namely suppliers, plants, distribution centers (DCs), and customer zones. It is designed to meet the customer’s demand through transporting the material between layers of network and providing facilities in the best economic Potential locations. To have a higher quality of the solution and increase the speed of TLBO, a distinct operator was introduced that ensures self-adaptation (self-study) in the algorithm based on the four types of local search. In addition, while TLBO is used in continuous solution representation and priority-based solution representation is discrete, a few modifications were added to the algorithm to remove the solutions that are infeasible. As shown by the results of experiments, the superiority of DSS-TLBO compared to pure TLBO, genetic algorithm (GA) and firefly Algorithm (FA) was established.

Keywords: supply chain network design, teaching–learning-based optimization, improved metaheuristics, discrete solution representation

Procedia PDF Downloads 45
12259 Development of Academic Software for Medial Axis Determination of Porous Media from High-Resolution X-Ray Microtomography Data

Authors: S. Jurado, E. Pazmino

Abstract:

Determination of the medial axis of a porous media sample is a non-trivial problem of interest for several disciplines, e.g., hydrology, fluid dynamics, contaminant transport, filtration, oil extraction, etc. However, the computational tools available for researchers are limited and restricted. The primary aim of this work was to develop a series of algorithms to extract porosity, medial axis structure, and pore-throat size distributions from porous media domains. A complementary objective was to provide the algorithms as free computational software available to the academic community comprising researchers and students interested in 3D data processing. The burn algorithm was tested on porous media data obtained from High-Resolution X-Ray Microtomography (HRXMT) and idealized computer-generated domains. The real data and idealized domains were discretized in voxels domains of 550³ elements and binarized to denote solid and void regions to determine porosity. Subsequently, the algorithm identifies the layer of void voxels next to the solid boundaries. An iterative process removes or 'burns' void voxels in sequence of layer by layer until all the void space is characterized. Multiples strategies were tested to optimize the execution time and use of computer memory, i.e., segmentation of the overall domain in subdomains, vectorization of operations, and extraction of single burn layer data during the iterative process. The medial axis determination was conducted identifying regions where burnt layers collide. The final medial axis structure was refined to avoid concave-grain effects and utilized to determine the pore throat size distribution. A graphic user interface software was developed to encompass all these algorithms, including the generation of idealized porous media domains. The software allows input of HRXMT data to calculate porosity, medial axis, and pore-throat size distribution and provide output in tabular and graphical formats. Preliminary tests of the software developed during this study achieved medial axis, pore-throat size distribution and porosity determination of 100³, 320³ and 550³ voxel porous media domains in 2, 22, and 45 minutes, respectively in a personal computer (Intel i7 processor, 16Gb RAM). These results indicate that the software is a practical and accessible tool in postprocessing HRXMT data for the academic community.

Keywords: medial axis, pore-throat distribution, porosity, porous media

Procedia PDF Downloads 109
12258 Thermal Maturity and Hydrocarbon Generation Histories of the Silurian Tannezuft Shale Formation, Ghadames Basin, Northwestern Libya

Authors: Emir Borovac, Sedat İnan

Abstract:

The Silurian Tannezuft Formation within the Ghadames Basin of Northwestern Libya, like other Silurian shales in North Africa and the Middle East, represents a significant prospect for unconventional hydrocarbon exploration. Unlike the more popular and extensively studied Sirt Basin, the Ghadames Basin remains underexplored, presenting untapped potential that warrants further investigation. This study focuses on the thermal maturity and hydrocarbon generation histories of the Tannezuft shales, utilizing calibrated basin modeling approaches. The Tannezuft shales are organic-rich and primarily contain Type II kerogen, especially in the basal layer, which contains up to 10 wt. % TOC, leading to its designation as ‘hot shale’. The research integrates geological, geochemical, and basin modeling data to elucidate the unconventional hydrocarbon potential of this formation, which is crucial given the global demand for energy and the need for new resources. By employing PetroMod software from Schlumberger, calibrated modeling results simulate hydrocarbon generation and migration within the Tannezuft shales. The findings suggest dual-phase hydrocarbon generation from the Lower Silurian Tannezuft source rock, related to deep burial prior to Hercynian orogeny and subsequent Alpine orogeny events. The Ghadames Basin's tectonic history, including major Hercynian and Alpine orogenies, has significantly influenced the generation, migration, and preservation of hydrocarbons, making the Ghadames Basin a promising area for further exploration.

Keywords: tanezzuft formation, ghadames basin, silurian hot shale, unconventional hydrocarbon

Procedia PDF Downloads 13
12257 Image Recognition Performance Benchmarking for Edge Computing Using Small Visual Processing Unit

Authors: Kasidis Chomrat, Nopasit Chakpitak, Anukul Tamprasirt, Annop Thananchana

Abstract:

Internet of Things devices or IoT and Edge Computing has become one of the biggest things happening in innovations and one of the most discussed of the potential to improve and disrupt traditional business and industry alike. With rises of new hang cliff challenges like COVID-19 pandemic that posed a danger to workforce and business process of the system. Along with drastically changing landscape in business that left ruined aftermath of global COVID-19 pandemic, looming with the threat of global energy crisis, global warming, more heating global politic that posed a threat to become new Cold War. How emerging technology like edge computing and usage of specialized design visual processing units will be great opportunities for business. The literature reviewed on how the internet of things and disruptive wave will affect business, which explains is how all these new events is an effect on the current business and how would the business need to be adapting to change in the market and world, and example test benchmarking for consumer marketed of newer devices like the internet of things devices equipped with new edge computing devices will be increase efficiency and reducing posing a risk from a current and looming crisis. Throughout the whole paper, we will explain the technologies that lead the present technologies and the current situation why these technologies will be innovations that change the traditional practice through brief introductions to the technologies such as cloud computing, edge computing, Internet of Things and how it will be leading into future.

Keywords: internet of things, edge computing, machine learning, pattern recognition, image classification

Procedia PDF Downloads 149
12256 Removal of Deposits and Improvement of Shelf Life in CO₂-Rich Mineral Water by Ozone-Microbubbles

Authors: Un Hwa Choe, Jong Hyon Choe, Yong Jun Kim

Abstract:

The aim of this study was to effectively remove Fe2+ by using ozone microbubbles in bottled mineral water to prevent sediment from occurring during storage and increase shelf life. By considering the characteristics of mineral water with low solubility of ozone and high CO2 content, a suitable ozone injection step was chosen and a new mineral water treatment method using microbubbles was proposed. As a result of the treatment of the bottled mineral water with ozone microbubbles, the iron ion concentration was reduced from 0.14 mg/L to 0.01 mg/L, and the shelf life increased to 360 days. During the treatment, the concentrations of K+ and Na+ were almost unchanged, and the deposition time was reduced to one-third compared to the natural oxidation.

Keywords: CO₂-rich mineral water, ozone-micro bubble, shelf life, bottled mineral water, water treatment

Procedia PDF Downloads 73
12255 Gradient Index Metalens for WLAN Applications

Authors: Akram Boubakri, Fethi Choubeni, Tan Hoa Vuong, Jacques David

Abstract:

The control of electromagnetic waves is a key aim of several researches over the past decade. In this regard, Metamaterials have shown a strong ability to manipulate the electromagnetic waves on a subwavelength scales thanks to its unconventional properties that are not available in natural materials such as negative refraction index, super imaging and invisibility cloaking. Metalenses were used to avoid some drawbacks presented by conventional lenses since focusing with conventional lenses suffered from the limited resolution because they were only able to focus the propagating wave component. Nevertheless, Metalenses were able to go beyond the diffraction limit and enhance the resolution not only by collecting the propagating waves but also by restoring the amplitude of evanescent waves that decay rapidly when going far from the source and that contains the finest details of the image. Metasurfaces have many mechanical advantages over three-dimensional metamaterial structures especially the ease of fabrication and a smaller required volume. Those structures have been widely used for antenna performance improvement and to build flat metalenses. In this work, we showed that a well-designed metasurface lens operating at the frequency of 5.9GHz, has efficiently enhanced the radiation characteristics of a patch antenna and can be used for WLAN applications (IEEE 802.11 a). The proposed metasurface lens is built with a geometrically modified unit cells which lead to a change in the response of the lens at different position and allow the control of the wavefront beam of the incident wave thanks to the gradient refractive index.

Keywords: focusing, gradient index, metasurface, metalens, WLAN Applications

Procedia PDF Downloads 250
12254 Effectiveness of Intraoperative Heparinization in Neonatal and Pediatric Patients with Congenital Heart Diseases: Focus in Heparin Resistance

Authors: Karakhalis N. B.

Abstract:

This study aimed to determine the prevalence of heparin resistance among cardiac surgical pediatric and neonatal patients and identify associated risk factors. Materials and Methods: The study included 306 pediatric and neonatal patients undergoing on-pump cardiac surgery. Patients whose activated clotting time (ACT) targets were achieved after the first administration of heparin formed the 1st group (n=280); the 2nd group (n=26) included patients with heparin resistance. The initial assessment of the haemostasiological profile included determining the PT, aPPT, FG, AT III activity, and INR. Intraoperative control of heparinization was carried out with a definition of ACT using a kaolin activator. A weight-associated protocol at the rate of 300 U/kg with target values of ACT >480 sec was used for intraoperative heparinization. Results: The heparin resistance was verified in 8.5% of patients included in the study. Repeated heparin administration at the maximum dose of≥600 U/kg is required in 80.77% of cases. Despite additional heparinization, 19.23% of patients had FFP infusion. There was reduced antithrombin activity in the heparin resistance group (p=0.01). Most patients with heparin resistance (57.7%) were pretreated with low molecular weight heparins during the preoperative period. Conclusion: Determining the initial level of antithrombin activity can predict the risk of developing heparin resistance. The factor analysis verified hidden risk factors for heparin resistance to the heparin pretreatment, chronic hypoxia, and chronic heart failure.

Keywords: congenital heart disease, heparin, antithrombin, activated clotting time, heparin resistance

Procedia PDF Downloads 76