Search results for: strain softening
76 Computer Based Identification of Possible Molecular Targets for Induction of Drug Resistance Reversion in Multidrug Resistant Mycobacterium Tuberculosis
Authors: Oleg Reva, Ilya Korotetskiy, Marina Lankina, Murat Kulmanov, Aleksandr Ilin
Abstract:
Molecular docking approaches are widely used for design of new antibiotics and modeling of antibacterial activities of numerous ligands which bind specifically to active centers of indispensable enzymes and/or key signaling proteins of pathogens. Widespread drug resistance among pathogenic microorganisms calls for development of new antibiotics specifically targeting important metabolic and information pathways. A generally recognized problem is that almost all molecular targets have been identified already and it is getting more and more difficult to design innovative antibacterial compounds to combat the drug resistance. A promising way to overcome the drug resistance problem is an induction of reversion of drug resistance by supplementary medicines to improve the efficacy of the conventional antibiotics. In contrast to well established computer-based drug design, modeling of drug resistance reversion still is in its infancy. In this work, we proposed an approach to identification of compensatory genetic variants reducing the fitness cost associated with the acquisition of drug resistance by pathogenic bacteria. The approach was based on an analysis of the population genetic of Mycobacterium tuberculosis and on results of experimental modeling of the drug resistance reversion induced by a new anti-tuberculosis drug FS-1. The latter drug is an iodine-containing nanomolecular complex that passed clinical trials and was admitted as a new medicine against MDR-TB in Kazakhstan. Isolates of M. tuberculosis obtained on different stages of the clinical trials and also from laboratory animals infected with MDR-TB strain were characterized by antibiotic resistance, and their genomes were sequenced by the paired-end Illumina HiSeq 2000 technology. A steady increase in sensitivity to conventional anti-tuberculosis antibiotics in series of isolated treated with FS-1 was registered despite the fact that the canonical drug resistance mutations identified in the genomes of these isolates remained intact. It was hypothesized that the drug resistance phenotype in M. tuberculosis requires an adjustment of activities of many genes to compensate the fitness cost of the drug resistance mutations. FS-1 cased an aggravation of the fitness cost and removal of the drug-resistant variants of M. tuberculosis from the population. This process caused a significant increase in genetic heterogeneity of the Mtb population that was not observed in the positive and negative controls (infected laboratory animals left untreated and treated solely with the antibiotics). A large-scale search for linkage disequilibrium associations between the drug resistance mutations and genetic variants in other genomic loci allowed identification of target proteins, which could be influenced by supplementary drugs to increase the fitness cost of the drug resistance and deprive the drug-resistant bacterial variants of their competitiveness in the population. The approach will be used to improve the efficacy of FS-1 and also for computer-based design of new drugs to combat drug-resistant infections.Keywords: complete genome sequencing, computational modeling, drug resistance reversion, Mycobacterium tuberculosis
Procedia PDF Downloads 26375 Mechanical Response Investigation of Wafer Probing Test with Vertical Cobra Probe via the Experiment and Transient Dynamic Simulation
Authors: De-Shin Liu, Po-Chun Wen, Zhen-Wei Zhuang, Hsueh-Chih Liu, Pei-Chen Huang
Abstract:
Wafer probing tests play an important role in semiconductor manufacturing procedures in accordance with the yield and reliability requirement of the wafer after the backend-of-the-line process. Accordingly, the stable physical and electrical contact between the probe and the tested wafer during wafer probing is regarded as an essential issue in identifying the known good die. The probe card can be integrated with multiple probe needles, which are classified as vertical, cantilever and micro-electro-mechanical systems type probe selections. Among all potential probe types, the vertical probe has several advantages as compared with other probe types, including maintainability, high probe density and feasibility for high-speed wafer testing. In the present study, the mechanical response of the wafer probing test with the vertical cobra probe on 720 μm thick silicon (Si) substrate with a 1.4 μm thick aluminum (Al) pad is investigated by the experiment and transient dynamic simulation approach. Because the deformation mechanism of the vertical cobra probe is determined by both bending and buckling mechanisms, the stable correlation between contact forces and overdrive (OD) length must be carefully verified. Moreover, the decent OD length with corresponding contact force contributed to piercing the native oxide layer of the Al pad and preventing the probing test-induced damage on the interconnect system. Accordingly, the scratch depth of the Al pad under various OD lengths is estimated by the atomic force microscope (AFM) and simulation work. In the wafer probing test configuration, the contact phenomenon between the probe needle and the tested object introduced large deformation and twisting of mesh gridding, causing the subsequent numerical divergence issue. For this reason, the arbitrary Lagrangian-Eulerian method is utilized in the present simulation work to conquer the aforementioned issue. The analytic results revealed a slight difference when the OD is considered as 40 μm, and the simulated is almost identical to the measured scratch depths of the Al pad under higher OD lengths up to 70 μm. This phenomenon can be attributed to the unstable contact of the probe at low OD length with the scratch depth below 30% of Al pad thickness, and the contact status will be being stable when the scratch depth over 30% of pad thickness. The splash of the Al pad is observed by the AFM, and the splashed Al debris accumulates on a specific side; this phenomenon is successfully simulated in the transient dynamic simulation. Thus, the preferred testing OD lengths are found as 45 μm to 70 μm, and the corresponding scratch depths on the Al pad are represented as 31.4% and 47.1% of Al pad thickness, respectively. The investigation approach demonstrated in this study contributed to analyzing the mechanical response of wafer probing test configuration under large strain conditions and assessed the geometric designs and material selections of probe needles to meet the requirement of high resolution and high-speed wafer-level probing test for thinned wafer application.Keywords: wafer probing test, vertical probe, probe mark, mechanical response, FEA simulation
Procedia PDF Downloads 5674 Computational and Experimental Study of the Mechanics of Heart Tube Formation in the Chick Embryo
Authors: Hadi S. Hosseini, Larry A. Taber
Abstract:
In the embryo, heart is initially a simple tubular structure that undergoes complex morphological changes as it transforms into a four-chambered pump. This work focuses on mechanisms that create heart tube (HT). The early embryo is composed of three relatively flat primary germ layers called endoderm, mesoderm, and ectoderm. Precardiac cells located within bilateral regions of the mesoderm called heart fields (HFs) fold and fuse along the embryonic midline to create the HT. The right and left halves of this plate fold symmetrically to bring their upper edges into contact along the midline, where they fuse. In a region near the fusion line, these layers then separate to generate the primitive HT and foregut, which then extend vertically. The anterior intestinal portal (AIP) is the opening at the caudal end of the foregut, which descends as the HT lengthens. The biomechanical mechanisms that drive this folding are poorly understood. Our central hypothesis is that folding is caused by differences in growth between the endoderm and mesoderm while subsequent extension is driven by contraction along the AIP. The feasibility of this hypothesis is examined using experiments with chick embryos and finite-element modeling (FEM). Fertilized white Leghorn chicken eggs were incubated for approximately 22-33 hours until appropriate Hamburger and Hamilton stage (HH5 to HH9) was reached. To inhibit contraction, embryos were cultured in media containing blebbistatin (myosin II inhibitor) for 18h. Three-dimensional models were created using ABAQUS (D. S. Simulia). The initial geometry consists of a flat plate including two layers representing the mesoderm and endoderm. Tissue was considered as a nonlinear elastic material with growth and contraction (negative growth) simulated using a theory, in which the total deformation gradient is given by F=F^*.G, where G is growth tensor and F* is the elastic deformation gradient tensor. In embryos exposed to blebbistatin, initial folding and AIP descension occurred normally. However, after HFs partially fused to create the upper part of the HT, fusion, and AIP descension stopped, and the HT failed to grow longer. These results suggest that cytoskeletal contraction is required only for the later stages of HT formation. In the model, a larger biaxial growth rate in the mesoderm compared to the endoderm causes the bilayered plate to bend ventrally, as the upper edge moves toward the midline, where it 'fuses' with the other half . This folding creates the upper section of the HT, as well as the foregut pocket bordered by the AIP. After this phase completes by stage HH7, contraction along the arch-shaped AIP pulls the lower edge of the plate downward, stretching the two layers. Results given by model are in reasonable agreement with experimental data for the shape of HT, as well as patterns of stress and strain. In conclusion, results of our study support our hypothesis for the creation of the heart tube.Keywords: heart tube formation, FEM, chick embryo, biomechanics
Procedia PDF Downloads 29673 Fermented Fruit and Vegetable Discard as a Source of Feeding Ingredients and Functional Additives
Authors: Jone Ibarruri, Mikel Manso, Marta Cebrián
Abstract:
A high amount of food is lost or discarded in the World every year. In addition, in the last decades, an increasing demand of new alternative and sustainable sources of proteins and other valuable compounds is being observed in the food and feeding sectors and, therefore, the use of food by-products as nutrients for these purposes sounds very interesting from the environmental and economical point of view. However, the direct use of discarded fruit and vegetables that present, in general, a low protein content is not interesting as feeding ingredient except if they are used as a source of fiber for ruminants. Especially in the case of aquaculture, several alternatives to the use of fish meal and other vegetable protein sources have been extensively explored due to the scarcity of fish stocks and the unsustainability of fishing for these purposes. Fish mortality is also of great concern in this sector as this problem highly reduces their economic feasibility. So, the development of new functional and natural ingredients that could reduce the need for vaccination is also of great interest. In this work, several fermentation tests were developed at lab scale using a selected mixture of fruit and vegetable discards from a wholesale market located in the Basque Country to increase their protein content and also to produce some bioactive extracts that could be used as additives in aquaculture. Fruit and vegetable mixtures (60/40 ww) were centrifugated for humidity reduction and crushed to 2-5 mm particle size. Samples were inoculated with a selected Rhizopus oryzae strain and fermented for 7 days in controlled conditions (humidity between 65 and 75% and 28ºC) in Petri plates (120 mm) by triplicate. Obtained results indicated that the final fermented product presented a twofold protein content (from 13 to 28% d.w). Fermented product was further processed to determine their possible functionality as a feed additive. Extraction tests were carried out to obtain an ethanolic extract (60:40 ethanol: water, v.v) and remaining biomass that also could present applications in food or feed sectors. The extract presented a polyphenol content of about 27 mg GAE/gr d.w with antioxidant activity of 8.4 mg TEAC/g d.w. Remining biomass is mainly composed of fiber (51%), protein (24%) and fat (10%). Extracts also presented antibacterial activity according to the results obtained in Agar Diffusion and to the Minimum Inhibitory Concentration (MIC) tests determined against several food and fish pathogen strains. In vitro, digestibility was also assessed to obtain preliminary information about the expected effect of extraction procedure on fermented product digestibility. First results indicated that remaining biomass after extraction doesn´t seem to improve digestibility in comparison to the initial fermented product. These preliminary results show that fermented fruit and vegetables can be a useful source of functional ingredients for aquaculture applications and a substitute of other protein sources in the feeding sector. Further validation will be also carried out through “in vivo” tests with trout and bass.Keywords: fungal solid state fermentation, protein increase, functional extracts, feed ingredients
Procedia PDF Downloads 6472 Gut Microbial Dynamics in a Mouse Model of Inflammation-Linked Carcinogenesis as a Result of Diet Supplementation with Specific Mushroom Extracts
Authors: Alvarez M., Chapela M. J., Balboa E., Rubianes D., Sinde E., Fernandez de Ana C., Rodríguez-Blanco A.
Abstract:
The gut microbiota plays an important role as gut inflammation could contribute to colorectal cancer development; however, this role is still not fully understood, and tools able to prevent this progression are yet to be developed. The main objective of this study was to monitor the effects of a mushroom extracts formulation in gut microbial community composition of an Azoxymethane (AOM)/Dextran sodium sulfate (DSS) mice model of inflammation-linked carcinogenesis. For the in vivo study, 41 adult male mice of the C57BL / 6 strain were obtained. 36 of them have been induced in a state of colon carcinogenesis by a single intraperitoneal administration of AOM at a dose of 12.5 mg/kg; the control group animals received instead of the same volume of 0.9% saline. DSS is an extremely toxic polysaccharide sulfate that causes chronic inflammation of the colon mucosa, favoring the appearance of severe colitis and the production of tumors induced by AOM. Induction by AOM/DSS is an interesting platform for chemopreventive intervention studies. This time the model was used to monitor gut microbiota changes as a result of supplementation with a specific mushroom extracts formulation previously shown to have prebiotic activity. The animals have been divided into three groups: (i) Cancer + mushroom extracts formulation experimental group: to which the MicoDigest2.0 mushroom extracts formulation developed by Hifas da Terra S.L has been administered dissolved in drinking water at an estimated concentration of 100 mg / ml. (ii) Control group of animals with Cancer: to which normal water has been administered without any type of treatment. (iii) Control group of healthy animals: these are the animals that have not been induced cancer or have not received any treatment in drinking water. This treatment has been maintained for a period of 3 months, after which the animals were sacrificed to obtain tissues that were subsequently analyzed to verify the effects of the mushroom extract formulation. A microbiological analysis has been carried out to compare the microbial communities present in the intestines of the mice belonging to each of the study groups. For this, the methodology of massive sequencing by molecular analysis of the 16S gene has been used (Ion Torrent technology). Initially, DNA extraction and metagenomics libraries were prepared using the 16S Metagenomics kit, always following the manufacturer's instructions. This kit amplifies 7 of the 9 hypervariable regions of the 16S gene that will then be sequenced. Finally, the data obtained will be compared with a database that makes it possible to determine the degree of similarity of the sequences obtained with a wide range of bacterial genomes. Results obtained showed that, similarly to certain natural compounds preventing colorectal tumorigenesis, a mushroom formulation enriched the Firmicutes and Proteobacteria phyla and depleted Bacteroidetes. Therefore, it was demonstrated that the consumption of the mushroom extracts’ formulation developed could promote the recovery of the microbial balance that is disrupted in the mice model of carcinogenesis. More preclinical and clinical studies are needed to validate this promising approach.Keywords: carcinogenesis, microbiota, mushroom extracts, inflammation
Procedia PDF Downloads 14971 Estimation of Effective Mechanical Properties of Linear Elastic Materials with Voids Due to Volume and Surface Defects
Authors: Sergey A. Lurie, Yury O. Solyaev, Dmitry B. Volkov-Bogorodsky, Alexander V. Volkov
Abstract:
The media with voids is considered and the method of the analytical estimation of the effective mechanical properties in the theory of elastic materials with voids is proposed. The variational model of the porous media is discussed, which is based on the model of the media with fields of conserved dislocations. It is shown that this model is fully consistent with the known model of the linear elastic materials with voids. In the present work, the generalized model of the porous media is proposed in which the specific surface properties are associated with the field of defects-pores in the volume of the deformed body. Unlike typical surface elasticity model, the strain energy density of the considered model includes the special part of the surface energy with the quadratic form of the free distortion tensor. In the result, the non-classical boundary conditions take modified form of the balance equations of volume and surface stresses. The analytical approach is proposed in the present work which allows to receive the simple enough engineering estimations for effective characteristics of the media with free dilatation. In particular, the effective flexural modulus and Poisson's ratio are determined for the problem of a beam pure bending. Here, the known voids elasticity solution was expanded on the generalized model with the surface effects. Received results allow us to compare the deformed state of the porous beam with the equivalent classic beam to introduce effective bending rigidity. Obtained analytical expressions for the effective properties depend on the thickness of the beam as a parameter. It is shown that the flexural modulus of the porous beam is decreased with an increasing of its thickness and the effective Poisson's ratio of the porous beams can take negative values for the certain values of the model parameters. On the other hand, the effective shear modulus is constant under variation of all values of the non-classical model parameters. Solutions received for a beam pure bending and the hydrostatic loading of the porous media are compared. It is shown that an analytical estimation for the bulk modulus of the porous material under hydrostatic compression gives an asymptotic value for the effective bulk modulus of the porous beam in the case of beam thickness increasing. Additionally, it is shown that the scale effects appear due to the surface properties of the porous media. Obtained results allow us to offer the procedure of an experimental identification of the non-classical parameters in the theory of the linear elastic materials with voids based on the bending tests for samples with different thickness. Finally, the problem of implementation of the Saint-Venant hypothesis for the transverse stresses in the porous beam are discussed. These stresses are different from zero in the solution of the voids elasticity theory, but satisfy the integral equilibrium equations. In this work, the exact value of the introduced surface parameter was found, which provides the vanishing of the transverse stresses on the free surfaces of a beam.Keywords: effective properties, scale effects, surface defects, voids elasticity
Procedia PDF Downloads 41770 Bio-Detoxification of Mycotoxins by Lactic Acid Bacteria from Different Food Matrices
Authors: António Inês, Ana Guimarães, José Maria, Vânia Laranjo, Armando Venâncio, Luís Abrunhosa
Abstract:
Lactic acid bacteria (LAB) play a key role in the biopreservation of a wide range of fermented food products, such as yogurt, cheese, fermented milks, meat, fish, vegetables (sauerkraut, olives and pickles), certain beer brands, wines and silage, allowing their safe consumption, which gave to these bacteria a GRAS (Generally Recognised as Safe) status. Besides that, the use of LAB in food and feed is a promising strategy to reduce the exposure to dietary mycotoxins, improving their shelf life and reducing health risks, given the unique mycotoxin decontaminating characteristic of some LAB. Mycotoxins present carcinogenic, mutagenic, teratogenic, neurotoxic and immunosuppressive effects over animals and Humans, being the most important ochratoxin A (OTA), aflatoxins (AFB1), trichothecenes, zearalenone (ZEA), fumonisin (FUM) and patulin. In a previous work of our group it was observed OTA biodegradation by some strains of Pediococcus parvulus isolated from Douro wines. So, the aim of this study was to enlarge the screening of the biodetoxification over more mycotoxins besides OTA, including AFB1, and ZEA. This ability was checked in a collection of LAB isolated from vegetable (wine, olives, fruits and silage) and animal (milk and dairy products, sausages) sources. All LAB strains were characterized phenotypically (Gram, catalase) and genotypically. Molecular characterisation of all LAB strains was performed using genomic fingerprinting by MSP-PCR with (GTG)5 and csM13 primers. The identification of the isolates was confirmed by 16S rDNA sequencing. To study the ability of LAB strains to degrade OTA, AFB1 and ZEA, a MRS broth medium was supplemented with 2.0 μg/mL of each mycotoxin. For each strain, 2 mL of MRS supplemented with the mycotoxins was inoculated in triplicate with 109 CFU/mL. The culture media and bacterial cells were extracted by the addition of an equal volume of acetonitrile/methanol/acetic acid (78:20:2 v/v/v) to the culture tubes. A 2 mL sample was then collected and filtered into a clean 2 mL vial using PP filters with 0.45 μm pores. The samples were preserved at 4 °C until HPLC analysis. Among LAB tested, 10 strains isolated from milk were able to eliminate AFB1, belonging to Lactobacillus casei (7), Lb. paracasei (1), Lb. plantarum (1) and 1 to Leuconostoc mesenteroides. Two strains of Enterococcus faecium and one of Ec. faecalis from sausage eliminated ZEA. Concerning to strains of vegetal origin, one Lb. plantarum isolated from elderberry fruit, one Lb. buchnerii and one Lb. parafarraginis both isolated from silage eliminated ZEA. Other 2 strains of Lb. plantarum from silage were able to degrade both ZEA and OTA, and 1 Lb. buchnerii showed activity over AFB1. These enzymatic activities were also verified genotypically through specific gene PCR and posteriorly confirmed by sequencing analysis. In conclusion, due the ability of some strains of LAB isolated from different sources to eliminate OTA, AFB1 and ZEA one can recognize their potential biotechnological application to reduce the health hazards associated with these mycotoxins. They may be suitable as silage inoculants or as feed additives or even in food industry.Keywords: bio-detoxification, lactic acid bacteria, mycotoxins, food and feed
Procedia PDF Downloads 56969 Morphotropic Phase Boundary in Ferromagnets: Unusual Magnetoelastic Behavior In Tb₁₋ₓNdₓCo₂
Authors: Adil Murtaza, Muhammad Tahir Khan, Awais Ghani, Chao Zhou, Sen Yang, Xiaoping Song
Abstract:
The morphotropic phase boundary (MPB); a boundary between two different crystallographic symmetries in the composition–temperature phase diagram has been widely studied in ferroelectrics and recently has drawn interest in ferromagnets for obtaining enhanced large field-induced strain. At MPB, the system gets a compressed free energy state, which allows the polarization to freely rotate and hence results in a high magnetoelastic response (e.g., high magnetization, low coercivity, and large magnetostriction). Based on the same mechanism, we designed MPB in a ferromagnetic Tb₁₋ₓNdₓCo₂ system. The temperature-dependent magnetization curves showed spin reorientation (SR); which can be explained by a two-sublattice model. Contrary to previously reported MPB involved ferromagnetic systems, the MPB composition of Tb₀.₃₅Nd₀.₆₅Co₂ exhibits a low saturation magnetization (MS), indicating a compensation of the Tb and Nd magnetic moments at MPB. The coercive field (HC) under a low magnetic field and first anisotropy constant (K₁) shows a minimum value at MPB composition of x=0.65. A detailed spin configuration diagram is provided for the Tb₁₋ₓNdₓCo₂ around the composition for the anisotropy compensation; this can guide the development of novel magnetostrictive materials. The anisotropic magnetostriction (λS) first decreased until x=0.8 and then continuously increased in the negative direction with further increase of Nd concentration. In addition, the large ratio between magnetostriction and the absolute values of the first anisotropy constant (λS/K₁) appears at MPB, indicating that Tb₀.₃₅Nd₀.₆₅Co₂ has good magnetostrictive properties. Present work shows an anomalous type of MPB in ferromagnetic materials, revealing that MPB can also lead to a weakening of magnetoelastic behavior as shown in the ferromagnetic Tb₁₋ₓNdₓCo₂ system. Our work shows the universal presence of MPB in ferromagnetic materials and suggests the differences between different ferromagnetic MPB systems that are important for substantial improvement of magnetic and magnetostrictive properties. Based on the results of this study, similar MPB effects might be achieved in other ferroic systems that can be used for technological applications. The finding of magnetic MPB in the ferromagnetic system leads to some important significances. First, it provides a better understanding of the fundamental concept of spin reorientation transitions (SRT) like ferro-ferro transitions are not only reorientation of magnetization but also crystal symmetry change upon magnetic ordering. Second, the flattened free energy corresponding to a low energy barrier for magnetization rotation and enhanced magnetoelastic response near MPB. Third, to attain large magnetostriction with MPB approach two terminal compounds have different easy magnetization directions below Curie temperature Tc in order to accomplish the weakening of magnetization anisotropy at MPB (as in ferroelectrics), thus easing the magnetic domain switching and the lattice distortion difference between two terminal compounds should be large enough, e.g., lattice distortion of R symmetry ˃˃ lattice distortion of T symmetry). So that the MPB composition agrees to a nearly isotropic state along with large ‘net’ lattice distortion, which is revealed in a higher value of magnetostriction.Keywords: magnetization, magnetostriction, morphotropic phase boundary (MPB), phase transition
Procedia PDF Downloads 14668 Revolutionary Wastewater Treatment Technology: An Affordable, Low-Maintenance Solution for Wastewater Recovery and Energy-Saving
Authors: Hady Hamidyan
Abstract:
As the global population continues to grow, the demand for clean water and effective wastewater treatment becomes increasingly critical. By 2030, global water demand is projected to exceed supply by 40%, driven by population growth, increased water usage, and climate change. Currently, about 4.2 billion people lack access to safely managed sanitation services. The wastewater treatment sector faces numerous challenges, including the need for energy-efficient solutions, cost-effectiveness, ease of use, and low maintenance requirements. This abstract presents a groundbreaking wastewater treatment technology that addresses these challenges by offering an energy-saving approach, wastewater recovery capabilities, and a ready-made, affordable, and user-friendly package with minimal maintenance costs. The unique design of this ready-made package made it possible to eliminate the need for pumps, filters, airlift, and other common equipment. Consequently, it enables sustainable wastewater treatment management with exceptionally low energy and cost requirements, minimizing investment and maintenance expenses. The operation of these packages is based on continuous aeration, which involves injecting oxygen gas or air into the aeration chamber through a tubular diffuser with very small openings. This process supplies the necessary oxygen for aerobic bacteria. The recovered water, which amounts to almost 95% of the input, can be treated to meet specific quality standards, allowing safe reuse for irrigation, industrial processes, or even potable purposes. This not only reduces the strain on freshwater resources but also provides economic benefits by offsetting the costs associated with freshwater acquisition and wastewater discharge. The ready-made, affordable, and user-friendly nature of this technology makes it accessible to a wide range of users, including small communities, industries, and decentralized wastewater treatment systems. The system incorporates user-friendly interfaces, simplified operational procedures, and integrated automation, facilitating easy implementation and operation. Additionally, the use of durable materials, efficient equipment, and advanced monitoring systems significantly reduces maintenance requirements, resulting in low overall life-cycle costs and alleviating the burden on operators and maintenance personnel. In conclusion, the presented wastewater treatment technology offers a comprehensive solution to the challenges faced by the industry. Its energy-saving approach, combined with wastewater recovery capabilities, ensures sustainable resource management and enhances environmental stewardship. This affordable, ready-made, and low-maintenance package promotes broad adoption across various sectors and communities, contributing to a more sustainable future for water and wastewater management.Keywords: wastewater treatment, energy saving, wastewater recovery, affordable package, low maintenance costs, sustainable resource management, environmental stewardship
Procedia PDF Downloads 9267 Symbiotic Functioning, Photosynthetic Induction and Characterisation of Rhizobia Associated with Groundnut, Jack Bean and Soybean from Eswatini
Authors: Zanele D. Ngwenya, Mustapha Mohammed, Felix D. Dakora
Abstract:
Legumes are a major source of biological nitrogen, and therefore play a crucial role in maintaining soil productivity in smallholder agriculture in southern Africa. Through their ability to fix atmospheric nitrogen in root nodules, legumes are a better option for sustainable nitrogen supply in cropping systems than chemical fertilisers. For decades, farmers have been highly receptive to the use of rhizobial inoculants as a source of nitrogen due mainly to the availability of elite rhizobial strains at a much lower compared to chemical fertilisers. To improve the efficiency of the legume-rhizobia symbiosis in African soils would require the use of highly effective rhizobia capable of nodulating a wide range of host plants. This study assessed the morphogenetic diversity, photosynthetic functioning and relative symbiotic effectiveness (RSE) of groundnut, jack bean and soybean microsymbionts in Eswatini soils as a first step to identifying superior isolates for inoculant production. According to the manufacturer's instructions, rhizobial isolates were cultured in yeast-mannitol (YM) broth until the late log phase and the bacterial genomic DNA was extracted using GenElute bacterial genomic DNA kit. The extracted DNA was subjected to enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) and a dendrogram constructed from the band patterns to assess rhizobial diversity. To assess the N2-fixing efficiency of the authenticated rhizobia, photosynthetic rates (A), stomatal conductance (gs), and transpiration rates (E) were measured at flowering for plants inoculated with the test isolates. The plants were then harvested for nodulation assessment and measurement of plant growth as shoot biomass. The results of ERIC-PCR fingerprinting revealed the presence of high genetic diversity among the microsymbionts nodulating each of the three test legumes, with many of them showing less than 70% ERIC-PCR relatedness. The dendrogram generated from ERIC-PCR profiles grouped the groundnut isolates into 5 major clusters, while the jack bean and soybean isolates were grouped into 6 and 7 major clusters, respectively. Furthermore, the isolates also elicited variable nodule number per plant, nodule dry matter, shoot biomass and photosynthetic rates in their respective host plants under glasshouse conditions. Of the groundnut isolates tested, 38% recorded high relative symbiotic effectiveness (RSE >80), while 55% of the jack bean isolates and 93% of the soybean isolates recorded high RSE (>80) compared to the commercial Bradyrhizobium strains. About 13%, 27% and 83% of the top N₂-fixing groundnut, jack bean and soybean isolates, respectively, elicited much higher relative symbiotic efficiency (RSE) than the commercial strain, suggesting their potential for use in inoculant production after field testing. There was a tendency for both low and high N₂-fixing isolates to group together in the dendrogram from ERIC-PCR profiles, which suggests that RSE can differ significantly among closely related microsymbionts.Keywords: genetic diversity, relative symbiotic effectiveness, inoculant, N₂-fixing
Procedia PDF Downloads 22166 Isolation and Characterization of a Narrow-Host Range Aeromonas hydrophila Lytic Bacteriophage
Authors: Sumeet Rai, Anuj Tyagi, B. T. Naveen Kumar, Shubhkaramjeet Kaur, Niraj K. Singh
Abstract:
Since their discovery, indiscriminate use of antibiotics in human, veterinary and aquaculture systems has resulted in global emergence/spread of multidrug-resistant bacterial pathogens. Thus, the need for alternative approaches to control bacterial infections has become utmost important. High selectivity/specificity of bacteriophages (phages) permits the targeting of specific bacteria without affecting the desirable flora. In this study, a lytic phage (Ahp1) specific to Aeromonas hydrophila subsp. hydrophila was isolated from finfish aquaculture pond. The host range of Ahp1 range was tested against 10 isolates of A. hydrophila, 7 isolates of A. veronii, 25 Vibrio cholerae isolates, 4 V. parahaemolyticus isolates and one isolate each of V. harveyi and Salmonella enterica collected previously. Except the host A. hydrophila subsp. hydrophila strain, no lytic activity against any other bacterial was detected. During the adsorption rate and one-step growth curve analysis, 69.7% of phage particles were able to get adsorbed on host cell followed by the release of 93 ± 6 phage progenies per host cell after a latent period of ~30 min. Phage nucleic acid was extracted by column purification methods. After determining the nature of phage nucleic acid as dsDNA, phage genome was subjected to next-generation sequencing by generating paired-end (PE, 2 x 300bp) reads on Illumina MiSeq system. De novo assembly of sequencing reads generated circular phage genome of 42,439 bp with G+C content of 58.95%. During open read frame (ORF) prediction and annotation, 22 ORFs (out of 49 total predicted ORFs) were functionally annotated and rest encoded for hypothetical proteins. Proteins involved in major functions such as phage structure formation and packaging, DNA replication and repair, DNA transcription and host cell lysis were encoded by the phage genome. The complete genome sequence of Ahp1 along with gene annotation was submitted to NCBI GenBank (accession number MF683623). Stability of Ahp1 preparations at storage temperatures of 4 °C, 30 °C, and 40 °C was studied over a period of 9 months. At 40 °C storage, phage counts declined by 4 log units within one month; with a total loss of viability after 2 months. At 30 °C temperature, phage preparation was stable for < 5 months. On the other hand, phage counts decreased by only 2 log units over a period of 9 during storage at 4 °C. As some of the phages have also been reported as glycerol sensitive, the stability of Ahp1 preparations in (0%, 15%, 30% and 45%) glycerol stocks were also studied during storage at -80 °C over a period of 9 months. The phage counts decreased only by 2 log units during storage, and no significant difference in phage counts was observed at different concentrations of glycerol. The Ahp1 phage discovered in our study had a very narrow host range and it may be useful for phage typing applications. Moreover, the endolysin and holin genes in Ahp1 genome could be ideal candidates for recombinant cloning and expression of antimicrobial proteins.Keywords: Aeromonas hydrophila, endolysin, phage, narrow host range
Procedia PDF Downloads 16265 Isolation and Characterization of Chromium Tolerant Staphylococcus aureus from Industrial Wastewater and Their Potential Use to Bioremediate Environmental Chromium
Authors: Muhammad Tariq, Muhammad Waseem, Muhammad Hidayat Rasool
Abstract:
Isolation and characterization of chromium tolerant Staphylococcus aureus from industrial wastewater and their potential use to bioremediate environmental chromium. Objectives: Chromium with its great economic importance in industrial use is major metal pollutant of the environment. Chromium are used in different industries for various applications such as textile, dyeing and pigmentation, wood preservation, manufacturing pulp and paper, chrome plating, steel and tanning. The release of untreated chromium in industrial effluents causes serious threat to environment and human health, therefore, the current study designed to isolate chromium tolerant Staphylococcus aureus for removal of chromium prior to their final discharge into the environment due to its cost effective and beneficial advantage over physical and chemical methods. Methods: Wastewater samples were collected from discharge point of different industries. Heavy metal analysis by atomic absorption spectrophotometer and microbiological analysis such as total viable count, total coliform, fecal coliform and Escherichia coli were conducted. Staphylococcus aureus was identified through gram’s staining, biomeriux vitek 2 microbial identification system and 16S rRNA gene amplification by polymerase chain reaction. Optimum growth conditions with respect to temperature, pH, salt concentrations and effect of chromium on the growth of bacteria, resistance to other heavy metal ions, minimum inhibitory concentration and chromium uptake ability of Staphylococcus aureus strain K1 was determined by spectrophotometer. Antibiotic sensitivity pattern was also determined by disc diffusion method. Furthermore, chromium uptake ability was confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope equipped with Oxford Energy Dipersive X-ray (EDX) micro analysis system. Results: The results presented that optimum temperature was 35ᵒC, pH was 8.0 and salt concentration was 0.5% for growth of Staphylococcus aureus K1. The maximum uptake ability of chromium by bacteria was 20mM than other heavy metal ions. The antibiotic sensitivity pattern revealed that Staphylococcus aureus was vancomycin and methicillin sensitive. Non hemolytic activity on blood agar and negative coagulase reaction showed that it was non-pathogenic. Furthermore, the growth of bacteria decreases in the presence of chromium and maximum chromium uptake by bacteria observed at optimum growth conditions. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and Energy dispersive X-ray (EDX) analysis confirmed the presence of chromium uptake by Staphylococcus aureus K1. Conclusion: The study revealed that Staphylococcus aureus K1 have the potential to bio-remediate chromium toxicity from wastewater. Gradually, this biological treatment becomes more important due to its advantage over physical and chemical methods to protect environment and human health.Keywords: wastewater, staphylococcus, chromium, bioremediation
Procedia PDF Downloads 16964 Mathematical Modeling of Avascular Tumor Growth and Invasion
Authors: Meitham Amereh, Mohsen Akbari, Ben Nadler
Abstract:
Cancer has been recognized as one of the most challenging problems in biology and medicine. Aggressive tumors are a lethal type of cancers characterized by high genomic instability, rapid progression, invasiveness, and therapeutic resistance. Their behavior involves complicated molecular biology and consequential dynamics. Although tremendous effort has been devoted to developing therapeutic approaches, there is still a huge need for new insights into the dark aspects of tumors. As one of the key requirements in better understanding the complex behavior of tumors, mathematical modeling and continuum physics, in particular, play a pivotal role. Mathematical modeling can provide a quantitative prediction on biological processes and help interpret complicated physiological interactions in tumors microenvironment. The pathophysiology of aggressive tumors is strongly affected by the extracellular cues such as stresses produced by mechanical forces between the tumor and the host tissue. During the tumor progression, the growing mass displaces the surrounding extracellular matrix (ECM), and due to the level of tissue stiffness, stress accumulates inside the tumor. The produced stress can influence the tumor by breaking adherent junctions. During this process, the tumor stops the rapid proliferation and begins to remodel its shape to preserve the homeostatic equilibrium state. To reach this, the tumor, in turn, upregulates epithelial to mesenchymal transit-inducing transcription factors (EMT-TFs). These EMT-TFs are involved in various signaling cascades, which are often associated with tumor invasiveness and malignancy. In this work, we modeled the tumor as a growing hyperplastic mass and investigated the effects of mechanical stress from surrounding ECM on tumor invasion. The invasion is modeled as volume-preserving inelastic evolution. In this framework, principal balance laws are considered for tumor mass, linear momentum, and diffusion of nutrients. Also, mechanical interactions between the tumor and ECM is modeled using Ciarlet constitutive strain energy function, and dissipation inequality is utilized to model the volumetric growth rate. System parameters, such as rate of nutrient uptake and cell proliferation, are obtained experimentally. To validate the model, human Glioblastoma multiforme (hGBM) tumor spheroids were incorporated inside Matrigel/Alginate composite hydrogel and was injected into a microfluidic chip to mimic the tumor’s natural microenvironment. The invasion structure was analyzed by imaging the spheroid over time. Also, the expression of transcriptional factors involved in invasion was measured by immune-staining the tumor. The volumetric growth, stress distribution, and inelastic evolution of tumors were predicted by the model. Results showed that the level of invasion is in direct correlation with the level of predicted stress within the tumor. Moreover, the invasion length measured by fluorescent imaging was shown to be related to the inelastic evolution of tumors obtained by the model.Keywords: cancer, invasion, mathematical modeling, microfluidic chip, tumor spheroids
Procedia PDF Downloads 11163 Development of Biosensor Chip for Detection of Specific Antibodies to HSV-1
Authors: Zatovska T. V., Nesterova N. V., Baranova G. V., Zagorodnya S. D.
Abstract:
In recent years, biosensor technologies based on the phenomenon of surface plasmon resonance (SPR) are becoming increasingly used in biology and medicine. Their application facilitates exploration in real time progress of binding of biomolecules and identification of agents that specifically interact with biologically active substances immobilized on the biosensor surface (biochips). Special attention is paid to the use of Biosensor analysis in determining the antibody-antigen interaction in the diagnostics of diseases caused by viruses and bacteria. According to WHO, the diseases that are caused by the herpes simplex virus (HSV), take second place (15.8%) after influenza as a cause of death from viral infections. Current diagnostics of HSV infection include PCR and ELISA assays. The latter allows determination the degree of immune response to viral infection and respective stages of its progress. In this regard, the searches for new and available diagnostic methods are very important. This work was aimed to develop Biosensor chip for detection of specific antibodies to HSV-1 in the human blood serum. The proteins of HSV1 (strain US) were used as antigens. The viral particles were accumulated in cell culture MDBK and purified by differential centrifugation in cesium chloride density gradient. Analysis of the HSV1 proteins was performed by polyacrylamide gel electrophoresis and ELISA. The protein concentration was measured using De Novix DS-11 spectrophotometer. The device for detection of antigen-antibody interactions was an optoelectronic two-channel spectrometer ‘Plasmon-6’, using the SPR phenomenon in the Krechman optical configuration. It was developed at the Lashkarev Institute of Semiconductor Physics of NASU. The used carrier was a glass plate covered with 45 nm gold film. Screening of human blood serums was performed using the test system ‘HSV-1 IgG ELISA’ (GenWay, USA). Development of Biosensor chip included optimization of conditions of viral antigen sorption and analysis steps. For immobilization of viral proteins 0.2% solution of Dextran 17, 200 (Sigma, USA) was used. Sorption of antigen took place at 4-8°C within 18-24 hours. After washing of chip, three times with citrate buffer (pH 5,0) 1% solution of BSA was applied to block the sites not occupied by viral antigen. It was found direct dependence between the amount of immobilized HSV1 antigen and SPR response. Using obtained biochips, panels of 25 positive and 10 negative for the content of antibodies to HSV-1 human sera were analyzed. The average value of SPR response was 185 a.s. for negative sera and from 312 to. 1264 a.s. for positive sera. It was shown that SPR data were agreed with ELISA results in 96% of samples proving the great potential of SPR in such researches. It was investigated the possibility of biochip regeneration and it was shown that application of 10 mM NaOH solution leads to rupture of intermolecular bonds. This allows reuse the chip several times. Thus, in this study biosensor chip for detection of specific antibodies to HSV1 was successfully developed expanding a range of diagnostic methods for this pathogen.Keywords: biochip, herpes virus, SPR
Procedia PDF Downloads 41762 Investigation of Linezolid, 127I-Linezolid and 131I-Linezolid Effects on Slime Layer of Staphylococcus with Nuclear Methods
Authors: Hasan Demiroğlu, Uğur Avcıbaşı, Serhan Sakarya, Perihan Ünak
Abstract:
Implanted devices are progressively practiced in innovative medicine to relieve pain or improve a compromised function. Implant-associated infections represent an emerging complication, caused by organisms which adhere to the implant surface and grow embedded in a protective extracellular polymeric matrix, known as a biofilm. In addition, the microorganisms within biofilms enter a stationary growth phase and become phenotypically resistant to most antimicrobials, frequently causing treatment failure. In such cases, surgical removal of the implant is often required, causing high morbidity and substantial healthcare costs. Staphylococcus aureus is the most common pathogen causing implant-associated infections. Successful treatment of these infections includes early surgical intervention and antimicrobial treatment with bactericidal drugs that also act on the surface-adhering microorganisms. Linezolid is a promising anti-microbial with ant-staphylococcal activity, used for the treatment of MRSA infections. Linezolid is a synthetic antimicrobial and member of oxazolidinoni group, with a bacteriostatic or bactericidal dose-dependent antimicrobial mechanism against gram-positive bacteria. Intensive use of antibiotics, have emerged multi-resistant organisms over the years and major problems have begun to be experienced in the treatment of infections occurred with them. While new drugs have been developed worldwide, on the other hand infections formed with microorganisms which gained resistance against these drugs were reported and the scale of the problem increases gradually. Scientific studies about the production of bacterial biofilm increased in recent years. For this purpose, we investigated the activity of Lin, Lin radiolabeled with 131I (131I-Lin) and cold iodinated Lin (127I-Lin) against clinical strains of Staphylococcus aureus DSM 4910 in biofilm. In the first stage, radio and cold labeling studies were performed. Quality-control studies of Lin and iodo (radio and cold) Lin derivatives were carried out by using TLC (Thin Layer Radiochromatography) and HPLC (High Pressure Liquid Chromatography). In this context, it was found that the binding yield was obtained to be about 86±2 % for 131I-Lin. The minimal inhibitory concentration (MIC) of Lin, 127I-Lin and 131I-Lin for Staphylococcus aureus DSM 4910 strain were found to be 1µg/mL. In time-kill studies of Lin, 127I-Lin and 131I-Lin were producing ≥ 3 log10 decreases in viable counts (cfu/ml) within 6 h at 2 and 4 fold of MIC respectively. No viable bacteria were observed within the 24 h of the experiments. Biofilm eradication of S. aureus started with 64 µg/mL of Lin, 127I-Lin and 131I-Lin, and OD630 was 0.507±0.0.092, 0.589±0.058 and 0.266±0.047, respectively. The media control of biofilm producing Staphylococcus was 1.675±0,01 (OD630). 131I and 127I did not have any effects on biofilms. Lin and 127I-Lin were found less effectively than 131I-Lin at killing cells in biofilm and biofilm eradication. Our results demonstrate that the 131I-Lin have potent anti-biofilm activity against S. aureus compare to Lin, 127I-Lin and media control. This is suggested that, 131I may have harmful effect on biofilm structure.Keywords: iodine-131, linezolid, radiolabeling, slime layer, Staphylococcus
Procedia PDF Downloads 55861 Performance of Pilot Test of Geotextile Tube Filled with Lightly Cemented Clay
Authors: S. H. Chew, Z. X. Eng, K. E. Chuah, T. Y. Lim, H. M. A. Yim
Abstract:
In recent years, geotextile tube has been widely used in the hydraulic engineering and dewatering industry. To construct a stable containment bund with geotextile tubes, the sand slurry is always the preference infilling material. However, the shortage of sand supply posts a problem in Singapore to adopt this construction method in the actual construction of long containment bund. Hence, utilizing the soft dredged clay or the excavated soft clay as the infilling material of geotextile tubes has a great economic benefit. There are any technical issues with using this soft clayey material as infilling material, especially on the excessive settlement and stability concerns. To minimize the shape deformation and settlement of geotextile tube associated with the use of this soft clay infilling material, a modified innovative infilling material is proposed – lightly cemented soft clay. The preliminary laboratory studies have shown that the dewatering mechanism via geotextile material of the tube skin, and the introduction of cementitious chemical action of the lightly cemented soft clay will accelerate the consolidation and improve the shear strength of infill material. This study aims to extend the study by conducting a pilot test of the geotextile tube filled with lightly cemented clay. This study consists of testing on a series of miniature geo-tubes and two full-size geotextile tube. In the miniature geo-tube tests, a number of small scaled-down size of geotextile tubes were filled with cemented clay (at water content of 150%) with cement content of 0% to 8% (by weight). The shear strength development of the lightly cemented clay under dewatering mechanism was evaluated using a modified in-situ Cone Penetration Test (CPT) at 0 days, 3 days, 7 days and 28 days after the infilling. The undisturbed soil samples of lightly cemented infilled clay were also extracted at 3-days and 7-days for triaxial tests and evaluation of final water content. The results suggested that the geotextile tubes filled with un-cemented soft clay experienced very significant shape change over the days (as control test). However, geotextile mini-tubes filled with lightly cemented clay experienced only marginal shape changed, even that the strength development of this lightly cemented clay inside the tube may not show significant strength gain at the early stage. The shape stability is believed to be due to the confinement effect of the geotextile tube with clay at non-slurry state. Subsequently, a full-scale instrumented geotextile tube filled with lightly cemented clay was performed. The extensive results of strain gauges and pressure transducers installed on this full-size geotextile tube demonstrated a substantial mobilization of tensile forces on the geotextile skin corresponding to the filling activity and the subsequent dewatering stage. Shape change and the in-fill material strength development was also monitored. In summary, the construction of containment bund with geotextile tube filled with lightly cemented clay is found to be technically feasible and stable with the use of the sufficiently strong (i.e. adequate tensile strength) geotextile tube, the adequate control on the dosage of cement content, and suitable water content of infilling soft clay material.Keywords: cemented clay, containment bund, dewatering, geotextile tube
Procedia PDF Downloads 26860 Concentration of Droplets in a Transient Gas Flow
Authors: Timur S. Zaripov, Artur K. Gilfanov, Sergei S. Sazhin, Steven M. Begg, Morgan R. Heikal
Abstract:
The calculation of the concentration of inertial droplets in complex flows is encountered in the modelling of numerous engineering and environmental phenomena; for example, fuel droplets in internal combustion engines and airborne pollutant particles. The results of recent research, focused on the development of methods for calculating concentration and their implementation in the commercial CFD code, ANSYS Fluent, is presented here. The study is motivated by the investigation of the mixture preparation processes in internal combustion engines with direct injection of fuel sprays. Two methods are used in our analysis; the Fully Lagrangian method (also known as the Osiptsov method) and the Eulerian approach. The Osiptsov method predicts droplet concentrations along path lines by solving the equations for the components of the Jacobian of the Eulerian-Lagrangian transformation. This method significantly decreases the computational requirements as it does not require counting of large numbers of tracked droplets as in the case of the conventional Lagrangian approach. In the Eulerian approach the average droplet velocity is expressed as a function of the carrier phase velocity as an expansion over the droplet response time and transport equation can be solved in the Eulerian form. The advantage of the method is that droplet velocity can be found without solving additional partial differential equations for the droplet velocity field. The predictions from the two approaches were compared in the analysis of the problem of a dilute gas-droplet flow around an infinitely long, circular cylinder. The concentrations of inertial droplets, with Stokes numbers of 0.05, 0.1, 0.2, in steady-state and transient laminar flow conditions, were determined at various Reynolds numbers. In the steady-state case, flows with Reynolds numbers of 1, 10, and 100 were investigated. It has been shown that the results predicted using both methods are almost identical at small Reynolds and Stokes numbers. For larger values of these numbers (Stokes — 0.1, 0.2; Reynolds — 10, 100) the Eulerian approach predicted a wider spread in concentration in the perturbations caused by the cylinder that can be attributed to the averaged droplet velocity field. The transient droplet flow case was investigated for a Reynolds number of 200. Both methods predicted a high droplet concentration in the zones of high strain rate and low concentrations in zones of high vorticity. The maxima of droplet concentration predicted by the Osiptsov method was up to two orders of magnitude greater than that predicted by the Eulerian method; a significant variation for an approach widely used in engineering applications. Based on the results of these comparisons, the Osiptsov method has resulted in a more precise description of the local properties of the inertial droplet flow. The method has been applied to the analysis of the results of experimental observations of a liquid gasoline spray at representative fuel injection pressure conditions. The preliminary results show good qualitative agreement between the predictions of the model and experimental data.Keywords: internal combustion engines, Eulerian approach, fully Lagrangian approach, gasoline fuel sprays, droplets and particle concentrations
Procedia PDF Downloads 25759 A Data-Driven Compartmental Model for Dengue Forecasting and Covariate Inference
Authors: Yichao Liu, Peter Fransson, Julian Heidecke, Jonas Wallin, Joacim Rockloev
Abstract:
Dengue, a mosquito-borne viral disease, poses a significant public health challenge in endemic tropical or subtropical countries, including Sri Lanka. To reveal insights into the complexity of the dynamics of this disease and study the drivers, a comprehensive model capable of both robust forecasting and insightful inference of drivers while capturing the co-circulating of several virus strains is essential. However, existing studies mostly focus on only one aspect at a time and do not integrate and carry insights across the siloed approach. While mechanistic models are developed to capture immunity dynamics, they are often oversimplified and lack integration of all the diverse drivers of disease transmission. On the other hand, purely data-driven methods lack constraints imposed by immuno-epidemiological processes, making them prone to overfitting and inference bias. This research presents a hybrid model that combines machine learning techniques with mechanistic modelling to overcome the limitations of existing approaches. Leveraging eight years of newly reported dengue case data, along with socioeconomic factors, such as human mobility, weekly climate data from 2011 to 2018, genetic data detecting the introduction and presence of new strains, and estimates of seropositivity for different districts in Sri Lanka, we derive a data-driven vector (SEI) to human (SEIR) model across 16 regions in Sri Lanka at the weekly time scale. By conducting ablation studies, the lag effects allowing delays up to 12 weeks of time-varying climate factors were determined. The model demonstrates superior predictive performance over a pure machine learning approach when considering lead times of 5 and 10 weeks on data withheld from model fitting. It further reveals several interesting interpretable findings of drivers while adjusting for the dynamics and influences of immunity and introduction of a new strain. The study uncovers strong influences of socioeconomic variables: population density, mobility, household income and rural vs. urban population. The study reveals substantial sensitivity to the diurnal temperature range and precipitation, while mean temperature and humidity appear less important in the study location. Additionally, the model indicated sensitivity to vegetation index, both max and average. Predictions on testing data reveal high model accuracy. Overall, this study advances the knowledge of dengue transmission in Sri Lanka and demonstrates the importance of incorporating hybrid modelling techniques to use biologically informed model structures with flexible data-driven estimates of model parameters. The findings show the potential to both inference of drivers in situations of complex disease dynamics and robust forecasting models.Keywords: compartmental model, climate, dengue, machine learning, social-economic
Procedia PDF Downloads 8458 W-WING: Aeroelastic Demonstrator for Experimental Investigation into Whirl Flutter
Authors: Jiri Cecrdle
Abstract:
This paper describes the concept of the W-WING whirl flutter aeroelastic demonstrator. Whirl flutter is the specific case of flutter that accounts for the additional dynamic and aerodynamic influences of the engine rotating parts. The instability is driven by motion-induced unsteady aerodynamic propeller forces and moments acting in the propeller plane. Whirl flutter instability is a serious problem that may cause the unstable vibration of a propeller mounting, leading to the failure of an engine installation or an entire wing. The complicated physical principle of whirl flutter required the experimental validation of the analytically gained results. W-WING aeroelastic demonstrator has been designed and developed at Czech Aerospace Research Centre (VZLU) Prague, Czechia. The demonstrator represents the wing and engine of the twin turboprop commuter aircraft. Contrary to the most of past demonstrators, it includes a powered motor and thrusting propeller. It allows the changes of the main structural parameters influencing the whirl flutter stability characteristics. Propeller blades are adjustable at standstill. The demonstrator is instrumented by strain gauges, accelerometers, revolution-counting impulse sensor, sensor of airflow velocity, and the thrust measurement unit. Measurement is supported by the in house program providing the data storage and real-time depiction in the time domain as well as pre-processing into the form of the power spectral densities. The engine is linked with a servo-drive unit, which enables maintaining of the propeller revolutions (constant or controlled rate ramp) and monitoring of immediate revolutions and power. Furthermore, the program manages the aerodynamic excitation of the demonstrator by the aileron flapping (constant, sweep, impulse). Finally, it provides the safety guard to prevent any structural failure of the demonstrator hardware. In addition, LMS TestLab system is used for the measurement of the structure response and for the data assessment by means of the FFT- and OMA-based methods. The demonstrator is intended for the experimental investigations in the VZLU 3m-diameter low-speed wind tunnel. The measurement variant of the model is defined by the structural parameters: pitch and yaw attachment stiffness, pitch and yaw hinge stations, balance weight station, propeller type (duralumin or steel blades), and finally, angle of attack of the propeller blade 75% section (). The excitation is provided either by the airflow turbulence or by means of the aerodynamic excitation by the aileron flapping using a frequency harmonic sweep. The experimental results are planned to be utilized for validation of analytical methods and software tools in the frame of development of the new complex multi-blade twin-rotor propulsion system for the new generation regional aircraft. Experimental campaigns will include measurements of aerodynamic derivatives and measurements of stability boundaries for various configurations of the demonstrator.Keywords: aeroelasticity, flutter, whirl flutter, W WING demonstrator
Procedia PDF Downloads 9657 Evaluation of Intraoral Complications of Buccal Mucosa Graft in Augmentation Urethroplasty
Authors: Dahna Alkahtani, Faryal Suraya, Fadah Alanazi
Abstract:
Background: Buccal mucosal graft for urethral augmentation has surpassed other grafting options, and is now considered the standard of choice for substitution Urethroplasty. The graft has gained its popularity due to its excellent short and long-term results, easy harvesting as well as its ability in withstanding wet environments. However, although Buccal mucosal grafts are an excellent option, it is not free of complications, potential intraoral complications are bleeding, pain, swelling, injury to the nerve resulting in numbness, lip deviation or retraction. Objectives: The current study aims to evaluate the intraoral complications of buccal mucosa grafts harvested from one cheek, and used in Augmentation Urethroplasty. Methodology: The study was conducted retrospectively using the medical records of patients who underwent open augmentation urethroplasty with a buccal mucosa graft at King Khalid University Hospital, Saudi Arabia. Data collection of demographics included the type of graft used, presence or absence of strictures and its etiological factors. Pre-operative and post-operative evaluations were carried out on the subjects including the medical history, physical examination, uroflowmetry, retrograde urethrography, voiding cystourethrography and urine cultures were also noted. Further, the quality of life and complications of the procedure including the presence or occurrence of bleeding within 3-days post-procedure, the severity of pain, oral swelling after grafting, length of return to normal daily diet, painful surgical site, intake of painkillers, presence or absence of speech disturbance, numbness in the cheeks and lips were documented. Results: Thirty-two male subjects with ages ranging from 15 years to 72 years were included in the current study. Following the procedure, a hundred percent of the subjects returned to their normal daily diet by the sixth postoperative day. Further, the majority of the patients reported experiencing mild pain accounting for 61.3%, and 90.3% of the subjects reported using painkillers to control the pain. Surgical wound Pain was reportedly more common at the perineal site as 48.4% of the subjects experienced it; on the other hand, 41.9% of the patients experienced pain in the oral mucosa. The presence of speech disorders, as assessed through medical history, was found to be present in 3.2% of patients. The presence of numbness in the cheeks and lips was found in 3.2% of patients. Other complications such as parotid duct injury, delayed wound healing, non-healing wound and suture granuloma were rare as 90.3% of the subjects denied experiencing any of them, there were nonetheless reports of parotid duct injury by 6.5% of the patients, and non-healing wound by the 3.2% of patients. Conclusion: Buccal Mucosa Graft in Augmentation Urethroplasty is an ideal source of allograft, although not entirely painless; it is considerably safe with minimal intra-oral complication and undetectable strain on the patients’ quality of life.Keywords: augmentation, buccal, graft, oral
Procedia PDF Downloads 17956 Stress Reduction Techniques for First Responders: Scientifically Proven Methods
Authors: Esther Ranero Carrazana, Maria Karla Ramirez Valdes
Abstract:
First responders, including firefighters, police officers, and emergency medical personnel, are frequently exposed to high-stress scenarios that significantly increase their risk of mental health issues such as depression, anxiety, and post-traumatic stress disorder (PTSD). Their work involves life-threatening situations, witnessing suffering, and making critical decisions under pressure, all contributing to psychological strain. The objectives of this research on "Stress Reduction Techniques for First Responders: Scientifically Proven Methods" are as follows. One of them is to evaluate the effectiveness of stress reduction techniques. The primary objective is to assess the efficacy of various scientifically proven stress reduction techniques explicitly tailored for first responders. Heart Rate Variability (HRV) Training, Interoception and Exteroception, Sensory Integration, and Body Perception Awareness are scrutinized for their ability to mitigate stress-related symptoms. Furthermore, we evaluate and enhance the understanding of stress mechanisms in first responders by exploring how different techniques influence the physiological and psychological responses to stress. The study aims to deepen the understanding of stress mechanisms in high-risk professions. Additionally, the study promotes psychological resilience by seeking to identify and recommend methods that can significantly enhance the psychological resilience of first responders, thereby supporting their mental health and operational efficiency in high-stress environments. Guide training and policy development is an additional objective to provide evidence-based recommendations that can be used to guide training programs and policy development aimed at improving the mental health and well-being of first responders. Lastly, the study aims to contribute valuable insights to the existing body of knowledge in stress management, specifically tailored to the unique needs of first responders. This study involved a comprehensive literature review assessing the effectiveness of various stress reduction techniques tailored for first responders. Techniques evaluated include Heart Rate Variability (HRV) Training, Interoception and Exteroception, Sensory Integration, and Body Perception Awareness, focusing on their ability to alleviate stress-related symptoms. The review indicates promising results for several stress reduction methods. HRV Training demonstrates the potential to reflect stress vulnerability and enhance physiological and behavioral flexibility. Interoception and Exteroception help modulate the stress response by enhancing awareness of the body's internal state and its interaction with the environment. Sensory integration plays a crucial role in adaptive responses to stress by focusing on individual senses and their integration. Therefore, body perception awareness addresses stress and anxiety through enhanced body perception and mindfulness. The evaluated techniques show significant potential in reducing stress and improving the mental health of first responders. Implementing these scientifically supported methods into routine training could significantly enhance their psychological resilience and operational effectiveness in high-stress environments.Keywords: first responders, HRV training, mental health, sensory integration, stress reduction
Procedia PDF Downloads 3755 The Influence of Perinatal Anxiety and Depression on Breastfeeding Behaviours: A Qualitative Systematic Review
Authors: Khulud Alhussain, Anna Gavine, Stephen Macgillivray, Sushila Chowdhry
Abstract:
Background: Estimates show that by the year 2030, mental illness will account for more than half of the global economic burden, second to non-communicable diseases. Often, the perinatal period is characterised by psychological ambivalence and a mixed anxiety-depressive condition. Maternal mental disorder is associated with perinatal anxiety and depression and affects breastfeeding behaviors. Studies also indicate that maternal mental health can considerably influence a baby's health in numerous aspects and impact the newborn health due to lack of adequate breastfeeding. However, studies reporting factors associated with breastfeeding behaviors are predominantly quantitative. Therefore, it is not clear what literature is available to understand the factors affecting breastfeeding and perinatal women’s perspectives and experiences. Aim: This review aimed to explore the perceptions and experiences of women with perinatal anxiety and depression, as well as how these experiences influence their breastfeeding behaviours. Methods: A systematic literature review of qualitative studies in line with the Enhancing Transparency in Reporting the Synthesis of Qualitative Research (ENTREQ). Four electronic databases (CINAHL, PsycINFO, Embase, and Google Scholar) were explored for relevant studies using a search strategy. The search was restricted to studies published in the English language between 2000 and 2022. Findings from the literature were screened using a pre-defined screening criterion and the quality of eligible studies was appraised using the Walsh and Downe (2006) checklist. Findings were extracted and synthesised based on Braun and Clark. The review protocol was registered on PROSPERO (Ref: CRD42022319609). Result: A total of 4947 studies were identified from the four databases. Following duplicate removal and screening 16 studies met the inclusion criteria. The studies included 87 pregnant and 302 post-partum women from 12 countries. The participants were from a variety of economic, regional, and religious backgrounds, mainly from the age of 18 to 45 years old. Three main themes were identified: Barriers to breastfeeding, breastfeeding facilitators, emotional disturbance, and breastfeeding. Seven subthemes emerged from the data: expectation versus reality, uncertainly about maternal competencies, body image and breastfeeding, lack of sufficient breastfeeding support for family and caregivers’ support, influences positive breastfeeding practices, breastfeeding education, and causes of mental strain among breastfeeding women. Breastfeeding duration is affected in women with mental health disorders, irrespective of their desire to breastfeed. Conclusion: There is significant empirical evidence that breastfeeding behaviour and perinatal mental disturbance are linked. However, there is a lack of evidence to apply the findings to Saudi women due to lack of empirical qualitative information. To improve the psychological well-being of mothers, it is crucial to explore and recognise any concerns with their mental, physical, and emotional well-being. Therefore, robust research is needed so that breastfeeding intervention researchers and policymakers can focus on specifically what needs to be done to help mentally distressed perinatal women and their new-born.Keywords: pregnancy, perinatal period, anxiety, depression, emotional disturbance, breastfeeding
Procedia PDF Downloads 9854 Visco-Hyperelastic Finite Element Analysis for Diagnosis of Knee Joint Injury Caused by Meniscal Tearing
Authors: Eiji Nakamachi, Tsuyoshi Eguchi, Sayo Yamamoto, Yusuke Morita, H. Sakamoto
Abstract:
In this study, we aim to reveal the relationship between the meniscal tearing and the articular cartilage injury of knee joint by using the dynamic explicit finite element (FE) method. Meniscal injuries reduce its functional ability and consequently increase the load on the articular cartilage of knee joint. In order to prevent the induction of osteoarthritis (OA) caused by meniscal injuries, many medical treatment techniques, such as artificial meniscus replacement and meniscal regeneration, have been developed. However, it is reported that these treatments are not the comprehensive methods. In order to reveal the fundamental mechanism of OA induction, the mechanical characterization of meniscus under the condition of normal and injured states is carried out by using FE analyses. At first, a FE model of the human knee joint in the case of normal state – ‘intact’ - was constructed by using the magnetron resonance (MR) tomography images and the image construction code, Materialize Mimics. Next, two types of meniscal injury models with the radial tears of medial and lateral menisci were constructed. In FE analyses, the linear elastic constitutive law was adopted for the femur and tibia bones, the visco-hyperelastic constitutive law for the articular cartilage, and the visco-anisotropic hyperelastic constitutive law for the meniscus, respectively. Material properties of articular cartilage and meniscus were identified using the stress-strain curves obtained by our compressive and the tensile tests. The numerical results under the normal walking condition revealed how and where the maximum compressive stress occurred on the articular cartilage. The maximum compressive stress and its occurrence point were varied in the intact and two meniscal tear models. These compressive stress values can be used to establish the threshold value to cause the pathological change for the diagnosis. In this study, FE analyses of knee joint were carried out to reveal the influence of meniscal injuries on the cartilage injury. The following conclusions are obtained. 1. 3D FE model, which consists femur, tibia, articular cartilage and meniscus was constructed based on MR images of human knee joint. The image processing code, Materialize Mimics was used by using the tetrahedral FE elements. 2. Visco-anisotropic hyperelastic constitutive equation was formulated by adopting the generalized Kelvin model. The material properties of meniscus and articular cartilage were determined by curve fitting with experimental results. 3. Stresses on the articular cartilage and menisci were obtained in cases of the intact and two radial tears of medial and lateral menisci. Through comparison with the case of intact knee joint, two tear models show almost same stress value and higher value than the intact one. It was shown that both meniscal tears induce the stress localization in both medial and lateral regions. It is confirmed that our newly developed FE analysis code has a potential to be a new diagnostic system to evaluate the meniscal damage on the articular cartilage through the mechanical functional assessment.Keywords: finite element analysis, hyperelastic constitutive law, knee joint injury, meniscal tear, stress concentration
Procedia PDF Downloads 24653 A Retrospective Study: Correlation between Enterococcus Infections and Bone Carcinoma Incidence
Authors: Sonia A. Stoica, Lexi Frankel, Amalia Ardeljan, Selena Rashid, Ali Yasback, Omar Rashid
Abstract:
Introduction Enterococcus is a vast genus of lactic acid bacteria, gram-positivecocci species. They are common commensal organisms in the intestines of humans: E. faecalis (90–95%) and E. faecium (5–10%). Rare groups of infections can occur with other species, including E. casseliflavus, E. gallinarum, and E. raffinosus. The most common infections caused by Enterococcus include urinary tract infections, biliary tract infections, subacute endocarditis, diverticulitis, meningitis, septicemia, and spontaneous bacterial peritonitis. The treatment for sensitive strains of these bacteria includes ampicillin, penicillin, cephalosporins, or vancomycin, while the treatment for resistant strains includes daptomycin, linezolid, tygecycline, or streptogramine. Enterococcus faecalis CECT7121 is an encouraging nominee for being considered as a probiotic strain. E. faecalis CECT7121 enhances and skews the profile of cytokines to the Th1 phenotype in situations such as vaccination, anti-tumoral immunity, and allergic reactions. It also enhances the secretion of high levels of IL-12, IL-6, TNF alpha, and IL-10. Cytokines have been previously associated with the development of cancer. The intention of this study was to therefore evaluate the correlation between Enterococcus infections and incidence of bone carcinoma. Methods A retrospective cohort study (2010-2019) was conducted through a Health Insurance Portability and Accountability Act (HIPAA) compliant national database and conducted using International Classification of Disease (ICD) 9th and 10th codes for bone carcinoma diagnosis in a previously Enterococcus infected population. Patients were matched for age range and Charlson Comorbidity Index (CCI). Access to the database was granted by Holy Cross Health for academic research. Chi-squared test was used to assess statistical significance. Results A total number of 17,056 patients was obtained in Enterococcus infected group as well as in the control population (matched by Age range and CCI score). Subsequent bone carcinoma development was seen at a rate of 1.07% (184) in the Enterococcal infectious group and 3.42% (584) in the control group, respectively. The difference was statistically significant by p= 2.2x10-¹⁶, Odds Ratio = 0.355 (95% CI 0.311 - 0.404) Treatment for enterococcus infection was analyzed and controlled for in both enterococcus infected and noninfected populations. 78 out of 6,624 (1.17%) patients with a prior enterococcus infection and treated with antibiotics were compared to 202 out of 6,624 (3.04%) patients with no history of enterococcus infection (control) and received antibiotic treatment. Both populations subsequently developed bone carcinoma. Results remained statistically significant (p<2.2x10-), Odds Ratio=0.456 (95% CI 0.396-0.525). Conclusion This study shows a statistically significant correlation between Enterococcus infection and a decreased incidence of bone carcinoma. The immunologic response of the organism to Enterococcus infection may exert a protecting mechanism from developing bone carcinoma. Further exploration is needed to identify the potential mechanism of Enterococcus in reducing bone carcinoma incidence.Keywords: anti-tumoral immunity, bone carcinoma, enterococcus, immunologic response
Procedia PDF Downloads 17952 Finite Element Analysis of Hollow Structural Shape (HSS) Steel Brace with Infill Reinforcement under Cyclic Loading
Authors: Chui-Hsin Chen, Yu-Ting Chen
Abstract:
Special concentrically braced frames is one of the seismic load resisting systems, which dissipates seismic energy when bracing members within the frames undergo yielding and buckling while sustaining their axial tension and compression load capacities. Most of the inelastic deformation of a buckling bracing member concentrates in the mid-length region. While experiencing cyclic loading, the region dissipates most of the seismic energy being input into the frame. Such a concentration makes the braces vulnerable to failure modes associated with low-cycle fatigue. In this research, a strategy to improve the cyclic behavior of the conventional steel bracing member is proposed by filling the Hollow Structural Shape (HSS) member with reinforcement. It prevents the local section from concentrating large plastic deformation caused by cyclic loading. The infill helps spread over the plastic hinge region into a wider area hence postpone the initiation of local buckling or even the rupture of the braces. The finite element method is introduced to simulate the complicated bracing member behavior and member-versus-infill interaction under cyclic loading. Fifteen 3-D-element-based models are built by ABAQUS software. The verification of the FEM model is done with unreinforced (UR) HSS bracing members’ cyclic test data and aluminum honeycomb plates’ bending test data. Numerical models include UR and filled HSS bracing members with various compactness ratios based on the specification of AISC-2016 and AISC-1989. The primary variables to be investigated include the relative bending stiffness and the material of the filling reinforcement. The distributions of von Mises stress and equivalent plastic strain (PEEQ) are used as indices to tell the strengths and shortcomings of each model. The result indicates that the change of relative bending stiffness of the infill is much more influential than the change of material in use to increase the energy dissipation capacity. Strengthen the relative bending stiffness of the reinforcement results in additional energy dissipation capacity to the extent of 24% and 46% in model based on AISC-2016 (16-series) and AISC-1989 (89-series), respectively. HSS members with infill show growth in 𝜂Local Buckling, normalized energy cumulated until the happening of local buckling, comparing to UR bracing members. The 89-series infill-reinforced members have more energy dissipation capacity than unreinforced 16-series members by 117% to 166%. The flexural rigidity of infills should be less than 29% and 13% of the member section itself for 16-series and 89-series bracing members accordingly, thereby guaranteeing the spread over of the plastic hinge and the happening of it within the reinforced section. If the parameters are properly configured, the ductility, energy dissipation capacity, and fatigue-life of HSS SCBF bracing members can be improved prominently by the infill-reinforced method.Keywords: special concentrically braced frames, HSS, cyclic loading, infill reinforcement, finite element analysis, PEEQ
Procedia PDF Downloads 9351 Digital Image Correlation Based Mechanical Response Characterization of Thin-Walled Composite Cylindrical Shells
Authors: Sthanu Mahadev, Wen Chan, Melanie Lim
Abstract:
Anisotropy dominated continuous-fiber composite materials have garnered attention in numerous mechanical and aerospace structural applications. Tailored mechanical properties in advanced composites can exhibit superiority in terms of stiffness-to-weight ratio, strength-to-weight ratio, low-density characteristics, coupled with significant improvements in fatigue resistance as opposed to metal structure counterparts. Extensive research has demonstrated their core potential as more than just mere lightweight substitutes to conventional materials. Prior work done by Mahadev and Chan focused on formulating a modified composite shell theory based prognosis methodology for investigating the structural response of thin-walled circular cylindrical shell type composite configurations under in-plane mechanical loads respectively. The prime motivation to develop this theory stemmed from its capability to generate simple yet accurate closed-form analytical results that can efficiently characterize circular composite shell construction. It showcased the development of a novel mathematical framework to analytically identify the location of the centroid for thin-walled, open cross-section, curved composite shells that were characterized by circumferential arc angle, thickness-to-mean radius ratio, and total laminate thickness. Ply stress variations for curved cylindrical shells were analytically examined under the application of centric tensile and bending loading. This work presents a cost-effective, small-platform experimental methodology by taking advantage of the full-field measurement capability of digital image correlation (DIC) for an accurate assessment of key mechanical parameters such as in-plane mechanical stresses and strains, centroid location etc. Mechanical property measurement of advanced composite materials can become challenging due to their anisotropy and complex failure mechanisms. Full-field displacement measurements are well suited for characterizing the mechanical properties of composite materials because of the complexity of their deformation. This work encompasses the fabrication of a set of curved cylindrical shell coupons, the design and development of a novel test-fixture design and an innovative experimental methodology that demonstrates the capability to very accurately predict the location of centroid in such curved composite cylindrical strips via employing a DIC based strain measurement technique. Error percentage difference between experimental centroid measurements and previously estimated analytical centroid results are observed to be in good agreement. The developed analytical modified-shell theory provides the capability to understand the fundamental behavior of thin-walled cylindrical shells and offers the potential to generate novel avenues to understand the physics of such structures at a laminate level.Keywords: anisotropy, composites, curved cylindrical shells, digital image correlation
Procedia PDF Downloads 31650 Effect of Printing Process on Mechanical Properties and Porosity of 3D Printed Concrete Strips
Authors: Wei Chen
Abstract:
3D concrete printing technology is a novel and highly efficient construction method that holds significant promise for advancing low-carbon initiatives within the construction industry. In contrast to traditional construction practices, 3D printing offers a manual and formwork-free approach, resulting in a transformative shift in labor requirements and fabrication techniques. This transition yields substantial reductions in carbon emissions during the construction phase, as well as decreased on-site waste generation. Furthermore, when compared to conventionally printed concrete, 3D concrete exhibits mechanical anisotropy due to its layer-by-layer construction methodology. Therefore, it becomes imperative to investigate the influence of the printing process on the mechanical properties of 3D printed strips and to optimize the mechanical characteristics of these coagulated strips. In this study, we conducted three-dimensional reconstructions of printed blocks using both circular and directional print heads, incorporating various overlap distances between strips, and employed CT scanning for comprehensive analysis. Our research focused on assessing mechanical properties and micro-pore characteristics under different loading orientations.Our findings reveal that increasing the overlap degree between strips leads to enhanced mechanical properties of the strips. However, it's noteworthy that once full overlap is achieved, further increases in the degree of coincidence do not lead to a decrease in porosity between strips. Additionally, due to its superior printing cross-sectional area, the square printing head exhibited the most favorable impact on mechanical properties.This paper aims to improve the tensile strength, tensile ductility, and bending toughness of a recently developed ‘one-part’ geopolymer for 3D concrete printing (3DCP) applications, in order to address the insufficient tensile strength and brittle fracture characteristics of geopolymer materials in 3D printing scenarios where materials are subjected to tensile stress. The effects of steel fiber content, and aspect ratio, on mechanical properties, were systematically discussed, including compressive strength, flexure strength, splitting tensile strength, uniaxial tensile strength, bending toughness, and the anisotropy of 3DP-OPGFRC, respectively. The fiber distribution in the printed samples was obtained through x-ray computed tomography (X-CT) testing. In addition, the underlying mechanisms were discussed to provide a deep understanding of the role steel fiber played in the reinforcement. The experimental results showed that the flexural strength increased by 282% to 26.1MP, and the compressive strength also reached 104.5Mpa. A high tensile ductility, appreciable bending toughness, and strain-hardening behavior can be achieved with steel fiber incorporation. In addition, it has an advantage over the OPC-based steel fiber-reinforced 3D printing materials given in the existing literature (flexural strength 15 Mpa); It is also superior to the tensile strength (<6Mpa) of current geopolymer fiber reinforcements used for 3D printing. It is anticipated that the development of this 3D printable steel fiber reinforced ‘one-part’ geopolymer will be used to meet high tensile strength requirements for printing scenarios.Keywords: 3D printing concrete, mechanical anisotropy, micro-pore structure, printing technology
Procedia PDF Downloads 7849 Investigation of Attitude of Production Workers towards Job Rotation in Automotive Industry against the Background of Demographic Change
Authors: Franciska Weise, Ralph Bruder
Abstract:
Due to the demographic change in Germany along with the declining birth rate and the increasing age of population, the share of older people in society is rising. This development is also reflected in the work force of German companies. Therefore companies should focus on improving ergonomics, especially in the area of age-related work design. Literature shows that studies on age-related work design have been carried out in the past, some of whose results have been put into practice. However, there is still a need for further research. One of the most important methods for taking into account the needs of an aging population is job rotation. This method aims at preventing or reducing health risks and inappropriate physical strain. It is conceived as a systematic change of workplaces within a group. Existing literature does not cover any methods for the investigation of the attitudes of employees towards job rotation. However, in order to evaluate job rotation, it is essential to have knowledge of the views of people towards rotation. In addition to an investigation of attitudes, the design of rotation plays a crucial role. The sequence of activities and the rotation frequency influence the worker and as well the work result. The evaluation of preliminary talks on the shop floor showed that team speakers and foremen share a common understanding of job rotation. In practice, different varieties of job rotation exist. One important aspect is the frequency of rotation. It is possible to rotate never, more than one time or even during every break, or more often than every break. It depends on the opportunity or possibility to rotate whenever workers want to rotate. From the preliminary talks some challenges can be derived. For example a rotation in the whole team is not possible, if a team member requires to be trained for a new task. In order to be able to determine the relation of the design and the attitude towards job rotation, a questionnaire is carried out in the vehicle manufacturing. The questionnaire will be employed to determine the different varieties of job rotation that exist in production, as well as the attitudes of workers towards those different frequencies of job rotation. In addition, younger and older employees will be compared with regard to their rotation frequency and their attitudes towards rotation. There are three kinds of age groups. Three questions are under examination. The first question is whether older employees rotate less frequently than younger employees. Also it is investigated to know whether the frequency of job rotation and the attitude towards the frequency of job rotation are interconnected. Moreover, the attitudes of the different age groups towards the frequency of rotation will be examined. Up to now 144 employees, all working in production, took part in the survey. 36.8 % were younger than thirty, 37.5 % were between thirty und forty-four and 25.7 % were above forty-five years old. The data shows no difference between the three age groups in relation to the frequency of job rotation (N=139, median=4, Chi²=.859, df=2, p=.651). Most employees rotate between six and seven workplaces per day. In addition there is a statistically significant correlation between the frequency of job rotation and the attitude towards the frequency (Spearman-Rho: 2-sided=.008, correlation coefficient=.223). Less than four workplaces per day are not enough for the employees. The third question, which differences can be found between older and younger people who rotate in a different way and with different attitudes towards job rotation, cannot be possible answered. Till now the data shows that younger people would like to rotate very often. Regarding to older people no correlation can be found with acceptable significance. The results of the survey will be used to improve the current practice of job rotation. In addition, the discussions during the survey are expected to help sensitize the employees with respect to rotation issues, and to contribute to optimizing rotation by means of qualification and an improved design of job rotation. Together with the employees and the results of the survey there must be found standards which show how to rotate in an ergonomic way while consider the attitude towards job rotation.Keywords: job rotation, age-related work design, questionnaire, automotive industry
Procedia PDF Downloads 30348 Eco-Friendly Cultivation
Authors: Shah Rucksana Akhter Urme
Abstract:
Agriculture is the main source of food for human consumption and feeding the world huge population, the pressure of food supply is increasing day by day. Undoubtedly, quality strain, improved plantation, farming technology, synthetic fertilizer, readily available irrigation, insecticides and harvesting technology are the main factors those to meet up the huge demand of food consumption all over the world. However, depended on this limited resources and excess amount of consuming lands, water, fertilizers leads to the end of the resources and severe climate effects has been left for our future generation. Agriculture is the most responsible to global warming, emitting more greenhouse gases than all other vehicles largely from nitrous oxide released by from fertilized fields, and carbon dioxide from the cutting of rain forests to grow crops . Farming is the thirstiest user of our precious water supplies and a major polluter, as runoff from fertilizers disrupts fragile lakes, rivers, and coastal ecosystems across the globe which accelerates the loss of biodiversity, crucial habitat and a major driver of wildlife extinction. It is needless to say that we have to more concern on how we can save the nutrients of the soil, storage of the water and avoid excessive depends on synthetic fertilizer and insecticides. In this case, eco- friendly cultivation could be a potential alternative solution to minimize effects of agriculture in our environment. The objective of this review paper is about organic cultivation following in particular biotechnological process focused on bio-fertilizer and bio-pesticides. Intense practice of chemical pesticides, insecticides has severe effect on both in human life and biodiversity. This cultivation process introduces farmer an alternative way which is nonhazardous, cost effective and ecofriendly. Organic fertilizer such as tea residue, ashes might be the best alternative to synthetic fertilizer those play important role in increasing soil nutrient and fertility. Ashes contain different essential and non-essential mineral contents that are required for plant growth. Organic pesticide such as neem spray is beneficial for crop as it is toxic for pest and insects. Recycled and composted crop wastes and animal manures, crop rotation, green manures and legumes etc. are suitable for soil fertility which is free from hazardous chemicals practice. Finally water hyacinth and algae are potential source of nutrients even alternative to soil for cultivation along with storage of water for continuous supply. Inorganic practice of agriculture, consuming fruits and vegetables becomes a threat for both human life and eco-system and synthetic fertilizer and pesticides are responsible for it. Farmers that practice eco-friendly farming have to implement steps to protect the environment, particularly by severely limiting the use of pesticides and avoiding the use of synthetic chemical fertilizers, which are necessary for organic systems to experience reduced environmental harm and health risk.Keywords: organic farming, biopesticides, organic nutrients, water storage, global warming
Procedia PDF Downloads 6047 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data
Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann
Abstract:
Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers
Procedia PDF Downloads 205