Search results for: solar steam production
7347 Agriroofs and Agriwalls: Applications of Food Production in Green Roofs and Green Walls
Authors: Eman M. Elmazek
Abstract:
Green roofs and walls are a rising technology in the global sustainable architectural industry. The idea takes great steps towards the future of sustainable design due to its many benefits. However, there are many barriers and constraints. Economical, structural, and knowledge barriers prevent the spread of the usage of green roofs and living walls. Understanding the benefits and expanding them will spread the idea. Benefits provided by these green spots interrupt and maintain the current urban cover. Food production is one of the benefits of green roofs. It can save money and energy spent in food transportation. The goal of this paper is to put a better understanding of implementing green systems. The paper aims to identify gains versus challenges facing the technology. It surveys with case studies buildings with green roofs and walls used for food production.Keywords: green roof, green walls, urban farming, roof herb garden
Procedia PDF Downloads 5307346 Optimal Evaluation of Weather Risk Insurance for Wheat
Authors: Slim Amami
Abstract:
A model is developed to prevent the risks related to climate conditions in the agricultural sector. It will determine the yearly optimum premium to be paid by a farmer in order to reach his required turnover. The model is mainly based on both climatic stability and 'soft' responses of usually grown species to average climate variations at the same place and inside a safety ball which can be determined from past meteorological data. This allows the use of linear regression expression for dependence of production result in terms of driving meteorological parameters, main ones of which are daily average sunlight, rainfall and temperature. By a simple best parameter fit from the expert table drawn with professionals, optimal representation of yearly production is deduced from records of previous years, and yearly payback is evaluated from minimum yearly produced turnover. Optimal premium is then deduced, and gives the producer a useful bound for negotiating an offer by insurance companies to effectively protect their harvest. The application to wheat production in the French Oise department illustrates the reliability of the present model with as low as 6% difference between predicted and real data. The model can be adapted to almost every agricultural field by changing state parameters and calibrating their associated coefficients.Keywords: agriculture, database, meteorological factors, production model, optimal price
Procedia PDF Downloads 2227345 Influence of Photophysical Parameters of Photoactive Materials on Exciton Diffusion Length and Diffusion Coefficient in Bulk Heterojunction Organic Solar Cells
Authors: Douglas Yeboah, Jai Singh
Abstract:
It has been experimentally demonstrated that exciton diffusion length in organic solids can be improved by fine-tuning the material parameters that govern exciton transfer. Here, a theoretical study is carried out to support this finding. We have therefore derived expressions for the exciton diffusion length and diffusion coefficient of singlet and triplet excitons using Förster resonance energy transfer and Dexter carrier transfer mechanisms and are plotted as a function of photoluminescence (PL) quantum yield, spectral overlap integral, refractive index and dipole moment of the photoactive material. We found that singlet exciton diffusion length increases with PL quantum yield and spectral overlap integral, and decreases with increase in refractive index. Likewise, the triplet exciton diffusion length increases when PL quantum yield increases and dipole moment decreases. The calculated diffusion lengths in different organic materials are compared with existing experimental values and found to be in reasonable agreement. The results are expected to provide insight in developing new organic materials for fabricating bulk heterojunction (BHJ) organic solar cells (OSCs) with better photoconversion efficiency.Keywords: Dexter carrier transfer, diffusion coefficient, exciton diffusion length, Föster resonance energy transfer, photoactive materials, photophysical parameters
Procedia PDF Downloads 3337344 Utilization of Treated Spend Pot Lining by Product from the Primary Aluminum Production in Cement and Concrete
Authors: Hang Tran, Victor Brial, Luca Sorelli, Claudiane Ouellet-Plamondon, David Conciatori, Laurent Birry
Abstract:
Spend pot lining (SPL) is a by-product generated from primary aluminum production. SPL consists of two parts, the first cut is rich in carbonaceous materials, and the second cut is rich in aluminum and silicon oxides. After treating by the hydrometallurgical Low Caustic Leaching and Liming process, the refractory part of SPL becomes an inert material, called LCLL ash in this project. LCLL ash was calcined at different temperatures (800 and 1000°C) and Calcined LCLL ash ground as fines of cement and replacement a part of cement in concrete production. The effect of LCLL ash on the chemical properties, mechanical properties and fresh behavior of concrete was evaluated by isothermal calorimetry, compressive test, and slump test. These results were compared to the reference mixture.Keywords: spend pot lining, concrete, cement, compressive strength, calorimetry
Procedia PDF Downloads 2187343 Design and Analysis of Piping System with Supports Using CAESAR-II
Authors: M. Jamuna Rani, K. Ramanathan
Abstract:
A steam power plant is housed with various types of equipments like boiler, turbine, heat exchanger etc. These equipments are mainly connected with piping systems. Such a piping layout design depends mainly on stress analysis and flexibility. It will vary with respect to pipe geometrical properties, pressure, temperature, and supports. The present paper is to analyze the presence and effect of hangers and expansion joints in the piping layout/routing using CAESAR-II software. Main aim of piping stress analysis is to provide adequate flexibility for absorbing thermal expansion, code compliance for stresses and displacement incurred in piping system. The design is said to be safe if all these are in allowable range as per code. In this study, a sample problem is considered for analysis as per power piping ASME B31.1 code and the results thus obtained are compared.Keywords: ASTM B31.1, hanger, expansion joint, CAESAR-II
Procedia PDF Downloads 3647342 NLRP3-Inflammassome Participates in the Inflammatory Response Induced by Paracoccidioides brasiliensis
Authors: Eduardo Kanagushiku Pereira, Frank Gregory Cavalcante da Silva, Barbara Soares Gonçalves, Ana Lúcia Bergamasco Galastri, Ronei Luciano Mamoni
Abstract:
The inflammatory response initiates after the recognition of pathogens by receptors expressed by innate immune cells. Among these receptors, the NLRP3 was associated with the recognition of pathogenic fungi in experimental models. NLRP3 operates forming a multiproteic complex called inflammasome, which actives caspase-1, responsible for the production of the inflammatory cytokines IL-1beta and IL-18. In this study, we aimed to investigate the involvement of NLRP3 in the inflammatory response elicited in macrophages against Paracoccidioides brasiliensis (Pb), the etiologic agent of PCM. Macrophages were differentiated from THP-1 cells by treatment with phorbol-myristate-acetate. Following differentiation, macrophages were stimulated by Pb yeast cells for 24 hours, after previous treatment with specific NLRP3 (3,4-methylenedioxy-beta-nitrostyrene) and/or caspase-1 (VX-765) inhibitors, or specific inhibitors of pathways involved in NLRP3 activation such as: Reactive Oxigen Species (ROS) production (N-Acetyl-L-cysteine), K+ efflux (Glibenclamide) or phagossome acidification (Bafilomycin). Quantification of IL-1beta and IL-18 in supernatants was performed by ELISA. Our results showed that the production of IL-1beta and IL-18 by THP-1-derived-macrophages stimulated with Pb yeast cells was dependent on NLRP3 and caspase-1 activation, once the presence of their specific inhibitors diminished the production of these cytokines. Furthermore, we found that the major pathways involved in NLRP3 activation, after Pb recognition, were dependent on ROS production and K+ efflux. In conclusion, our results showed that NLRP3 participates in the recognition of Pb yeast cells by macrophages, leading to the activation of the NLRP3-inflammasome and production of IL-1beta and IL-18. Together, these cytokines can induce an inflammatory response against P. brasiliensis, essential for the establishment of the initial inflammatory response and for the development of the subsequent acquired immune response.Keywords: inflammation, IL-1beta, IL-18, NLRP3, Paracoccidioidomycosis
Procedia PDF Downloads 2737341 Energy Use and Econometric Models of Soybean Production in Mazandaran Province of Iran
Authors: Majid AghaAlikhani, Mostafa Hojati, Saeid Satari-Yuzbashkandi
Abstract:
This paper studies energy use patterns and relationship between energy input and yield for soybean (Glycine max (L.) Merrill) in Mazandaran province of Iran. In this study, data were collected by administering a questionnaire in face-to-face interviews. Results revealed that the highest share of energy consumption belongs to chemical fertilizers (29.29%) followed by diesel (23.42%) and electricity (22.80%). Our investigations showed that a total energy input of 23404.1 MJ.ha-1 was consumed for soybean production. The energy productivity, specific energy, and net energy values were estimated as 0.12 kg MJ-1, 8.03 MJ kg-1, and 49412.71 MJ.ha-1, respectively. The ratio of energy outputs to energy inputs was 3.11. Obtained results indicated that direct, indirect, renewable and non-renewable energies were (56.83%), (43.17%), (15.78%) and (84.22%), respectively. Three econometric models were also developed to estimate the impact of energy inputs on yield. The results of econometric models revealed that impact of chemical, fertilizer, and water on yield were significant at 1% probability level. Also, direct and non-renewable energies were found to be rather high. Cost analysis revealed that total cost of soybean production per ha was around 518.43$. Accordingly, the benefit-cost ratio was estimated as 2.58. The energy use efficiency in soybean production was found as 3.11. This reveals that the inputs used in soybean production are used efficiently. However, due to higher rate of nitrogen fertilizer consumption, sustainable agriculture should be extended and extension staff could be proposed substitution of chemical fertilizer by biological fertilizer or green manure.Keywords: Cobbe Douglas function, economical analysis, energy efficiency, energy use patterns, soybean
Procedia PDF Downloads 3347340 IoT and Advanced Analytics Integration in Biogas Modelling
Authors: Rakesh Choudhary, Ajay Kumar, Deepak Sharma
Abstract:
The main goal of this paper is to investigate the challenges and benefits of IoT integration in biogas production. This overview explains how the inclusion of IoT can enhance biogas production efficiency. Therefore, such collected data can be explored by advanced analytics, including Artificial intelligence (AI) and Machine Learning (ML) algorithms, consequently improving bio-energy processes. To boost biogas generation efficiency, this report examines the use of IoT devices for real-time data collection on key parameters, e.g., pH, temperature, gas composition, and microbial growth. Real-time monitoring through big data has made it possible to detect diverse, complex trends in the process of producing biogas. The Informed by advanced analytics can also help in improving bio-energy production as well as optimizing operational conditions. Moreover, IoT allows remote observation, control and management, which decreases manual intervention needed whilst increasing process effectiveness. Such a paradigm shift in the incorporation of IoT technologies into biogas production systems helps to achieve higher productivity levels as well as more practical biomass quality biomethane through real-time monitoring-based proactive decision-making, thus driving continuous performance improvement.Keywords: internet of things, biogas, renewable energy, sustainability, anaerobic digestion, real-time monitoring, optimization
Procedia PDF Downloads 217339 Cost Valuation Method for Development Concurrent, Phase Appropriate Requirement Valuation Using the Example of Load Carrier Development in the Lithium-Ion-Battery Production
Authors: Achim Kampker, Christoph Deutskens, Heiner Hans Heimes, Mathias Ordung, Felix Optehostert
Abstract:
In the past years electric mobility became part of a public discussion. The trend to fully electrified vehicles instead of vehicles fueled with fossil energy has notably gained momentum. Today nearly every big car manufacturer produces and sells fully electrified vehicles, but electrified vehicles are still not as competitive as conventional powered vehicles. As the traction battery states the largest cost driver, lowering its price is a crucial objective. In addition to improvements in product and production processes a non-negligible, but widely underestimated cost driver of production can be found in logistics, since the production technology is not continuous yet and neither are the logistics systems. This paper presents an approach to evaluate cost factors on different designs of load carrier systems. Due to numerous interdependencies, the combination of costs factors for a particular scenario is not transparent. This is effecting actions for cost reduction negatively, but still cost reduction is one of the major goals for simultaneous engineering processes. Therefore a concurrent and phase appropriate cost valuation method is necessary to serve cost transparency. In this paper the four phases of this cost valuation method are defined and explained, which based upon a new approach integrating the logistics development process in to the integrated product and process development.Keywords: research and development, technology and innovation, lithium-ion-battery production, load carrier development process, cost valuation method
Procedia PDF Downloads 5947338 Exploring the Impact of Location on Urban and Peri-Urban Farming: A Case Study from Lusaka, Zambia
Authors: Cecilia Elisabeth Fåhraeus
Abstract:
In 2016, this author conducted a study on agricultural livelihoods in urban and peri-urban low-income settings in Lusaka, Zambia. The overarching aim was to determine the impact of physical space on agricultural activities, with a particular emphasis on geographical distinctions between urban and peri-urban environments. Agricultural activities among the areas’ residents were mapped through questionnaires, interviews and observations, and included variables such as type of activity and product; degree of marketization; inputs; location of production, storage and vending; labour distribution; production constraints, and associated mobility patterns, among others. The study confirmed that spatial idiosyncrasies of urban and peri-urban environments both enabled and constrained agricultural activity, but not always as anticipated. There were also cross-cutting issues on which physical space appeared to have a limited impact.Keywords: agricultural production systems, geography, low-income settlements, Lusaka, peri-urban, urban
Procedia PDF Downloads 3317337 Production and Mechanical Properties of Alkali–Activated Inorganic Binders Made from Wastes Solids
Authors: Sonia Vanessa Campos Moreira
Abstract:
The aim of this research is the production and mechanical properties of Alkali-Activated Inorganic Binders (AAIB) made from The Basic Oxygen Furnace Slag (BOF Slag) and Thin Film Transistor Liquid Crystal Display (TFT-LCD), glass powder (waste and industrial by-products). Many factors have an influence on the production of AAIB like the glass powder finesses, the alkaline equivalent content (AE %), water binder ratios (w/b ratios) and the differences curing process. The findings show different behavior in the AAIB related to the factors mentioned, the best results are given with a glass powder fineness of 4,500 cm²/g, w/b=0.30, a curing temperature of 70 ℃, curing duration of 4 days and an aging duration of 14 days results in the highest compressive strength of 18.51 MPa.Keywords: alkaline activators, BOF slag, glass powder fineness, TFT-LCD, w/b ratios
Procedia PDF Downloads 1607336 Organic Waste Valorization for Biodiesel Production: Chemical and Biological Approach
Authors: Meha Alouini, Wissem Mnif, Yasmine Souissi
Abstract:
This work will be conducted within the framework of the environmental sustainable development. It involves waste recovering into biodiesel fuel. Low cost feedstocks such as waste of frying oil and animal fats have been utilized to replace refined vegetable oil for biodiesel production. Biodiesel which refers to fatty acid methyl esters (FAME) was carried out by both chemical and enzymatic reaction of transesterification. In order to compare the two studied reactions the obtained biodiesel was characterized by determining its esters content and its fuel properties according to the European standard EN 14214. It was noted that the chemical method gave the product with the best physical property. But the biological one was found more effective for obtaining important ester content. Thus it would be interesting to optimize the enzymatic pathway of production of biodiesel to obtain a better property of biodiesel.Keywords: biodiesel, fatty acid methyl esters, transesterification, waste frying oil, waste beef fat
Procedia PDF Downloads 5017335 Increasing Value Added and Competitive Advantage by Technology Adoption
Authors: Fidiana Suwitho
Abstract:
Research and community service is one of important lecturer assignment in Indonesia. This article was made to meet those needs by assisting home industry entrepreneurs of various chips in Banyuwangi. Community service in this scheme are intended to increase the revenue of craftsmen of chips by improving value added of chips through food engineering technology. Ibu Anisa has produced various kinds of chips that are breadfruit chips, banana chips, yam chips, and cassava chips. In business development, Ibu Anisa facing various problems both in terms of production and management aspects. The process of production and management and marketing are still conventional so that increased demand cannot be offset by production capacity. A researcher team of STIESIA has assist partners in the processing stage, from manually to the technologically. This activity has a positive impact to However, this process has not been reached on sustainable marketing aspect, which is where the partners are still difficult to reach a wider market because of limited access.Keywords: food engineering technology, value added of chips, community service
Procedia PDF Downloads 2757334 Evaluating the Effects of Rainfall and Agricultural Practices on Soil Erosion (Palapye Case Study)
Authors: Mpaphi Major
Abstract:
Soil erosion is becoming an important aspect of land degradation. Therefore it is of great consideration to note any factor that may escalate the rate of soil erosion in our arable land. There exist 3 main driving forces in soil erosion which are rainfall, wind and land use of which in this project only rainfall and land use will be looked at. With the increase in world population at an alarming rate, the demand for food production is expected to increase which will in turn lead to more land being converted from forests to agricultural use of which very few of it are now fertile. In our country Botswana, the rate of crop production is decreasing due to the wearing away of the fertile top soil and poor arable land management. As a result, some studies on the rate of soil loss and farm management practices should be conducted so that best soil and water conservation practices should be employed and hence reduce the risk of soil loss and increase the rate of crop production and yield. The Soil loss estimation model for Southern Africa (SLEMSA) will be used to estimate the rate of soil loss in some selected arable farms within the Palapye watershed and some field observations will be made to determine the management practices used and their impact on the arable land. Upon observations it have been found that many arable fields have been exposed to soil erosion, of which the affected parts are no longer suitable for any crop production unless the land areas are modified. Improper land practices such as ploughing along the slope and land cultivation practices were observed. As a result farmers need to be educated on best conservation practices that can be used to manage their arable land hence reduced risk of soil erosion and improved crop production.Keywords: soil and water conservation, soil erosion, SLEMSA, land degradation
Procedia PDF Downloads 4047333 Increasing Soybean (Glycine Max L) Drought Resistance with Osmolit Sorbitol
Authors: Aminah Muchdar
Abstract:
Efforts to increase soybean production have been pursued for years in Indonesia through the process of intensification and extensification. Increased production through intensification of increasing grain yield per hectare, among others includes the improvement of cultivation system such as the use of cultivars that have superior resistance to drought. Increased soybean production has been through the expansion of planting areas utilizing available idle dry land. However, one of the constraints faced in dryland agriculture was the limited water supply due to low intensity of rainfall that leads to low crop production. In order to ensure that soybeans are cultivated on dry land remains capable of high production, it is necessary to physiologically engineer the soybean with open stomata. The study was conducted in the greenhouse of Balai Penelitian Tanaman Serealia (BALITSEREAL) Maros, Sulawesi, Indonesia with a completely randomized block design h factorial pattern. The first factor was the water stress stadia while the second was the amount of sorbitol osmolit concentration application. Results indicated that there was an interaction between the plant height growth and number of leaves between the water clamping time and concentration of the osmolit sorbitol. The vegetative stage especially during flowering and pod formation was inhibited when the water was clamped, but by spraying osmolit sorbitol, soybean growth in terms of its height and number of leaves was enhanced. This study implies that the application of osmolit sorbitol may enhance the drought resistance of soybean growth. Future research suggested that more work should be done on the application of osmolit sorbital to other agriculture crops to increase their drought resistance in the drylands.Keywords: DROUGHT, engineered physiology, osmolit sorbitol, soybean
Procedia PDF Downloads 2177332 Experimental Research of Biogas Production by Using Sewage Sludge and Chicken Manure Bioloadings with Wood Biochar Additive
Authors: P. Baltrenas, D. Paliulis, V. Kolodynskij, D. Urbanas
Abstract:
Bioreactor; special device, which is used for biogas production from various organic material under anaerobic conditions. In this research, a batch bioreactor with a mechanical mixer was used for biogas production from sewage sludge and chicken manure bioloadings. The process of anaerobic digestion was mesophilic (35 °C). Produced biogas was stoted in a gasholder and the concentration of its components was measured with INCA 4000 biogas analyser. Also, a specific additive (pine wood biochar) was applied to prepare bioloadings. The application of wood biochar in bioloading increases the CH₄ concentration in the produced gas by 6-7%. The highest concentrations of CH₄ were found in biogas produced during the decomposition of sewage sludge bioloadings. The maximum CH₄ reached 77.4%. Studies have shown that the application of biochar in bioloadings also reduces average CO₂ and H₂S concentrations in biogas.Keywords: biochar, biogas, bioreactor, sewage sludge
Procedia PDF Downloads 1707331 Digital Transformation of Lean Production: Systematic Approach for the Determination of Digitally Pervasive Value Chains
Authors: Peter Burggräf, Matthias Dannapfel, Hanno Voet, Patrick-Benjamin Bök, Jérôme Uelpenich, Julian Hoppe
Abstract:
The increasing digitalization of value chains can help companies to handle rising complexity in their processes and thereby reduce the steadily increasing planning and control effort in order to raise performance limits. Due to technological advances, companies face the challenge of smart value chains for the purpose of improvements in productivity, handling the increasing time and cost pressure and the need of individualized production. Therefore, companies need to ensure quick and flexible decisions to create self-optimizing processes and, consequently, to make their production more efficient. Lean production, as the most commonly used paradigm for complexity reduction, reaches its limits when it comes to variant flexible production and constantly changing market and environmental conditions. To lift performance limits, which are inbuilt in current value chains, new methods and tools must be applied. Digitalization provides the potential to derive these new methods and tools. However, companies lack the experience to harmonize different digital technologies. There is no practicable framework, which instructs the transformation of current value chains into digital pervasive value chains. Current research shows that a connection between lean production and digitalization exists. This link is based on factors such as people, technology and organization. In this paper, the introduced method for the determination of digitally pervasive value chains takes the factors people, technology and organization into account and extends existing approaches by a new dimension. It is the first systematic approach for the digital transformation of lean production and consists of four steps: The first step of ‘target definition’ describes the target situation and defines the depth of the analysis with regards to the inspection area and the level of detail. The second step of ‘analysis of the value chain’ verifies the lean-ability of processes and lies in a special focus on the integration capacity of digital technologies in order to raise the limits of lean production. Furthermore, the ‘digital evaluation process’ ensures the usefulness of digital adaptions regarding their practicability and their integrability into the existing production system. Finally, the method defines actions to be performed based on the evaluation process and in accordance with the target situation. As a result, the validation and optimization of the proposed method in a German company from the electronics industry shows that the digital transformation of current value chains based on lean production achieves a raise of their inbuilt performance limits.Keywords: digitalization, digital transformation, Industrie 4.0, lean production, value chain
Procedia PDF Downloads 3137330 Virulence Phenotypes Among Multi-Drug Resistant Uropathogenic Bacteria
Authors: V. V. Lakshmi, Y. V. S. Annapurna
Abstract:
Urinary tract infection (UTI) is one of the most common infectious diseases seen in the community. Susceptible individuals experience multiple episodes, and progress to acute pyelonephritis or uro-sepsis or develop asymptomatic bacteriuria (ABU). Ability to cause extraintestinal infections depends on several virulence factors required for survival at extraintestinal sites. Presence of virulence phenotypes enhances the pathogenicity of these otherwise commensal organisms and thus augments its ability to cause extraintestinal infections, the most frequent in urinary tract infections(UTI). The present study focuses on detection of the virulence characters exhibited by the uropathogenic organism and most common factors exhibited in the local pathogens. A total of 700 isolates of E.coli and Klebsiella spp were included in the study. These were isolated from patients from local hospitals reported to be suffering with UTI over a period of three years. Isolation and identification was done based on Gram character and IMVIC reactions. Antibiotic sensitivity profile was carried out by disc diffusion method and multi drug resistant strains with MAR index of 0.7 were further selected.. Virulence features examined included their ability to produce exopolysaccharides, protease- gelatinase production, hemolysin production, haemagglutination and hydrophobicity test. Exopolysaccharide production was most predominant virulence feature among the isolates when checked by congo red method. The biofilms production examined by microtitre plates using ELISA reader confirmed that this is the major factor contributing to virulencity of the pathogens followed by hemolysin productionKeywords: Escherichia coli, Klebsiella sp, Uropathogens, Virulence features.
Procedia PDF Downloads 4217329 Comparison of Acid and Base Pretreatment of Switchgrass (Panicum virgatum L.) for Bioethanol Production
Authors: Mustafa Ümi̇t Ünal, Nafi̇z Çeli̇ktaş, Aysun Şener, Sara Betül Dolgun, Duygu Keser
Abstract:
The aim of this study was to compare acid and base pretreatment of switchgrass for bioethanol production. Switchgrass was pretreated with sulfuric acid and sodium hydroxide at 0.5, 1.0 and 1.5% (v/v) at 120, 140, 180 °C for 10, 60 and 90. Optimization of enzymatic hydrolysis of the pretreated switchgrass samples were carried out using three different enzyme mixtures (22.5 mg cellulase and 75 mg cellobiase /g biomass; 45 mg cellulase and 150 mg cellobiase /g biomass; 90 mg cellulase and 300 mg cellobiase /g biomass). Samples were removed at 24-h interval for fermentable sugar analyses with HPLC. The results showed that use of 90 mg cellulase and 300 mg cellobiase/g biomass resulted in the highest fermentable sugar formation. Furthermore, the highest fermentable sugar yield was obtained by pretreatment at 120 °C for 10 min using 1.0 % sodium hydroxide.Keywords: switchgrass, acid pretreatment, enzymatic hydrolysis, base pretreatment, ethanol production
Procedia PDF Downloads 5307328 Integrated Process Modelling of a Thermophilic Biogas Plant
Authors: Obiora E. Anisiji, Jeremiah L. Chukwuneke, Chinonso H. Achebe, Paul C. Okolie
Abstract:
This work developed a mathematical model of a biogas plant from a mechanistic point of view, for urban area clean energy requirement. It aimed at integrating thermodynamics; which deals with the direction in which a process occurs and Biochemical kinetics; which gives the understanding of the rates of biochemical reaction. The mathematical formulation of the proposed gas plant follows the fundamental principles of thermodynamics, and further analysis were accomplished to develop an algorithm for evaluating the plant performance preferably in terms of daily production capacity. In addition, the capacity of the plant is equally estimated for a given cycle of operation and presented in time histories. A nominal 1500m3 biogas plant was studied characteristically and its performance efficiency evaluated. It was observed that the rate of biogas production is essentially a function of enthalpy ratio, the reactor temperature, pH, substrate concentration, rate of degradation of the biomass, and the accumulation of matter in the system due to bacteria growth. The results of this study conform to a very large extent with reported empirical data of some existing plant and further model validations were conducted in line with classical records found in literature.Keywords: anaerobic digestion, biogas plant, biogas production, bio-reactor, energy, fermentation, rate of production, temperature, therm
Procedia PDF Downloads 4357327 Effect of Enzymatic Hydrolysis and Ultrasounds Pretreatments on Biogas Production from Corn Cob
Authors: N. Pérez-Rodríguez, D. García-Bernet, A. Torrado-Agrasar, J. M. Cruz, A. B. Moldes, J. M. Domínguez
Abstract:
World economy is based on non-renewable, fossil fuels such as petroleum and natural gas, which entails its rapid depletion and environmental problems. In EU countries, the objective is that at least 20% of the total energy supplies in 2020 should be derived from renewable resources. Biogas, a product of anaerobic degradation of organic substrates, represents an attractive green alternative for meeting partial energy needs. Nowadays, trend to circular economy model involves efficiently use of residues by its transformation from waste to a new resource. In this sense, characteristics of agricultural residues (that are available in plenty, renewable, as well as eco-friendly) propitiate their valorisation as substrates for biogas production. Corn cob is a by-product obtained from maize processing representing 18 % of total maize mass. Corn cob importance lies in the high production of this cereal (more than 1 x 109 tons in 2014). Due to its lignocellulosic nature, corn cob contains three main polymers: cellulose, hemicellulose and lignin. Crystalline, highly ordered structures of cellulose and lignin hinders microbial attack and subsequent biogas production. For the optimal lignocellulose utilization and to enhance gas production in anaerobic digestion, materials are usually submitted to different pretreatment technologies. In the present work, enzymatic hydrolysis, ultrasounds and combination of both technologies were assayed as pretreatments of corn cob for biogas production. Enzymatic hydrolysis pretreatment was started by adding 0.044 U of Ultraflo® L feruloyl esterase per gram of dry corncob. Hydrolyses were carried out in 50 mM sodium-phosphate buffer pH 6.0 with a solid:liquid proportion of 1:10 (w/v), at 150 rpm, 40 ºC and darkness for 3 hours. Ultrasounds pretreatment was performed subjecting corn cob, in 50 mM sodium-phosphate buffer pH 6.0 with a solid: liquid proportion of 1:10 (w/v), at a power of 750W for 1 minute. In order to observe the effect of the combination of both pretreatments, some samples were initially sonicated and then they were enzymatically hydrolysed. In terms of methane production, anaerobic digestion of the corn cob pretreated by enzymatic hydrolysis was positive achieving 290 L CH4 kg MV-1 (compared with 267 L CH4 kg MV-1 obtained with untreated corn cob). Although the use of ultrasound as the only pretreatment resulted detrimentally (since gas production decreased to 244 L CH4 kg MV-1 after 44 days of anaerobic digestion), its combination with enzymatic hydrolysis was beneficial, reaching the highest value (300.9 L CH4 kg MV-1). Consequently, the combination of both pretreatments improved biogas production from corn cob.Keywords: biogas, corn cob, enzymatic hydrolysis, ultrasound
Procedia PDF Downloads 2677326 Portable Water Treatment for Flood Resilience
Authors: Alireza Abbassi Monjezi, Mohammad Hasan Shaheed
Abstract:
Flood, caused by excessive rainfall, monsoon, cyclone and tsunami is a common disaster in many countries of the world especially sea connected low-lying countries. A stand-alone self-powered water filtration module for decontamination of floodwater has been designed and modeled. A combination forward osmosis – low pressure reverse osmosis (FO-LPRO) system powered by solar photovoltaic-thermal (PVT) energy is investigated which could overcome the main barriers to water supply for remote areas and ensure off-grid filtration. The proposed system is designed to be small scale and portable to provide on-site potable water to communities that are no longer themselves mobile nor can be reached quickly by the aid agencies. FO is an osmotically driven process that uses osmotic pressure gradients to drive water across a controlled pore membrane from a feed solution (low osmotic pressure) to a draw solution (high osmotic pressure). This drops the demand for high hydraulic pressures and therefore the energy demand. There is also a tendency for lower fouling, easier fouling layer removal and higher water recovery. In addition, the efficiency of the PVT unit will be maximized through freshwater cooling which is integrated into the system. A filtration module with the capacity of 5 m3/day is modeled to treat floodwater and provide drinking water. The module can be used as a tool for disaster relief, particularly in the aftermath of flood and tsunami events.Keywords: flood resilience, membrane desalination, portable water treatment, solar energy
Procedia PDF Downloads 2887325 Two Step Biodiesel Production from High Free Fatty Acid Spent Bleaching Earth
Authors: Rajiv Arora
Abstract:
Biodiesel may be economical if produced from inexpensive feedstock which commonly contains high level of free fatty acids (FFA) as an inhibitor in production of methyl ester. In this study, a two-step process for biodiesel production from high FFA spent bleach earth oil in a batch reactor is developed. Oil sample extracted from spent bleaching earth (SBE) was utilized for biodiesel process. In the first step, FFA of the SBE oil was reduced to 1.91% through sulfuric acid catalyzed esterification. In the second step, the product prepared from the first esterification process was carried out transesterification with an alkaline catalyst. The influence of four variables on conversion efficiency to methyl ester, i.e., methanol/ SBE oil molar ratio, catalyst amount, reaction temperature and reaction time, was studied in the second stage. The optimum process variables in the transesterification were methanol/oil molar ratio 6:1, heterogeneous catalyst conc. 5 wt %, reaction temperature 65 °C and reaction time 60 minutes to produce biodiesel. Major fuel properties of SBE biodiesel were measured to comply with ASTM and EN standards. Therefore, an optimized process for production of biodiesel from a low-cost high FFA source was accomplished.Keywords: biodiesel, esterification, free fatty acids, residual oil, spent bleaching earth, transesterification
Procedia PDF Downloads 1767324 Antioxidant Defense Mechanisms in Murine Epidermis and Dermis and Their Responses to Ultraviolet Light
Authors: Ben Abderrahmane Ayoub El Fateh, Bnina Rachid
Abstract:
A comprehensive comparison of antioxidant defenses in the dermis and epidermis and their response to exposure to ultraviolet (UV) irradiation has not previously been attempted. In this study, enzymic and non-enzymic antioxidants in epidermis and dermis of hairless mice were compared. Enzyme activities are presented both as units/gram of skin and units/milligram of protein; arguments are presented for the superiority of skin wet weight as a reference base. Catalase, glutathione peroxidase, and glutathione reductase (units/gram of skin) were higher in the epidermis than dermis by 49%, 86%, and 74%, respectively. Superoxide dismutase did not follow this pattern. Lipophilic antioxidants ( -tocopherol, ubiquinol 9, and ubiquinone 9) and hydrophilic antioxidants (ascorbic acid, dehydroascorbic acid, and glutathione) were 24–95% higher in the epidermis than in dermis. In contrast, oxidized glutathione was 60% lower in the epidermis than in dermis. Mice were irradiated with solar light to examine the response of these cutaneous layers to UV irradiation. After irradiation with 25 J/cm2 (UVA + UVB, from a solar simulator), 10 times the minimum erythemal dose, epidermal and dermal catalase and superoxide dismutase activities were greatly decreased. Tocopherol, ubiquinol 9, ubiquinone 9, ascorbic acid, dehydroascorbic acid, and reduced glutathione decreased in both epidermis and dermis by 26-93%. Oxidizedgiutathione showed a slight, non-significant increase. Because the reduction in total ascorbate and catalase was much more severe in the epidermis than dermis, it can be concluded that UV light is more damaging to the antioxidant defenses in the epidermis than in the dermis.Keywords: antioxidant defenses, enzymic, epidermis, oxidizedgiutathione
Procedia PDF Downloads 4397323 Productivity, Phenolic Composition and Antioxidant Activity of Arrowroot (Maranta arundinacea)
Authors: Maira C. M. Fonseca, Maria Aparecida N. Sediyama, Rosana Goncalves R. das Dores, Sanzio Mollica Vidigal, Alberto C. P. Dias
Abstract:
Among Brazilian plant diversity, many species are used as food and considered minor crops (non-conventional plant foods) (NCPF). Arrowroot (Maranta arundinacea) is a NCPF from which starch is extracted from rhizome do not have gluten. Thus, arrowroot flower starch can be consumed by celiac people. Additional, some medicinal and functional proprieties are assigned to arrowroot leaves which currently are underutilized. In Brazil, it’s cultivated mainly by small scale farmers and there is no specific recommendation for fertilization. This work aimed to determinate the best fertilization for rhizome production and to verify its influence in phenolic composition and antioxidant activity of leaf extracts. Two arrowroot varieties, “Common” and “Seta”, were cultivated in organic system at state of Minas Gerais, Brazil, using cattle manure with three levels of nitrogen (N) (0, 300 and 900 kg N ha-1). The experiment design was in randomized block with four replicates. The highest production of rhizomes in both varieties, “Common” (38198.24 kg ha-1) and “Seta” (43567.71 kg ha-1), were obtained with the use of 300 kg N ha-1. With this fertilization, the total aerial part, petiole and leaf production in the varieties were respectively: “Common” (190.312 kg ha-1; 159.312 kg ha-1; 31.100 kg ha-1) and “Seta” (207.656 kg ha-1; 180.539 kg ha-1; 27.062 kg ha-1). Methanolic leaf extracts were analysed by HPLC-DAD. The major phenolic compounds found were caffeioylquinic acids, p-coumaric derivatives and flavonoids. In general, the production of these compounds significantly decreases with the increase levels of nitrogen (900 kg N ha-1). With 300 kg N ha-1 the phenolic production was similar to control. The antioxidant activity was evaluated using DPPH method and was detected around 60% of radical scavenging when 0.1 mg/mL of plant extracts were used. We concluded that fertilization with 300 kg N ha-1 increased arrowroot rhizome production, maintaining phenolic compounds yield at leaves.Keywords: antioxidant activity, non-conventional plants, organic fertilization, phenolic compounds
Procedia PDF Downloads 2047322 Different Methods of Producing Bioemulsifier by Bacillus licheniformis Strains
Authors: Saba Pajuhan, Afshin Farahbakhsh, S. M. M. Dastgheib
Abstract:
Biosurfactants and bioemulsifiers are a structurally diverse group of surface-active molecules synthesized by microorganisms, they are amphipathic molecules which reduce surface and interfacial tensions and widely used in pharmaceutical, cosmetic, food and petroleum industries. In this paper, several methods of bioemulsifer synthesis and purification by Bacillus licheniformis strains (namely ACO1, PTCC 1595 and ACO4) were investigated. Strains were grown in nutrient broth with different conditions in order to get maximum production of bioemulsifer. The purification of bio emulsifier and the quality evaluation of the product was done by adding sulfuric acid (H₂SO₄) (98%), Ethanol or HCl to the solution followed by centrifuging. To determine the optimal conditions yielding the highest bioemulsifier production, the effect of various carbon and nitrogen sources, temperature, NaCl concentration, pH, O₂ levels, incubation time are indispensable and all of them were highly effective in bioemulsifiers production.Keywords: biosurfactant, bioemulsifier, purification, surface tension, interfacial tension
Procedia PDF Downloads 2717321 Fuel Quality of Biodiesel from Chlorella protothecoides Microalgae Species
Authors: Mukesh Kumar, Mahendra Pal Sharma
Abstract:
Depleting fossil fuel resources coupled with serious environmental degradation has led to the search for alternative resources for biodiesel production as a substitute of Petro-diesel. Currently, edible, non-edible oils and microalgal plant species are cultivated for biodiesel production. Looking at the demerits of edible and non-edible oil resources, the focus is being given to grow microalgal species having high oil productivities, less maturity time and less land requirement. Out of various microalgal species, Chlorella protothecoides is considered as the most promising species for biodiesel production owing to high oil content (58 %), faster growth rate (24–48 h) and high biomass productivity (1214 mg/l/day). The present paper reports the results of optimization of reaction parameters of transesterification process as well as the kinetics of transesterification with 97% yield of biodiesel. The measurement of fuel quality of microalgal biodiesel shows that the biodiesel exhibit very good oxidation stability (O.S) of 7 hrs, more than ASTM D6751 (3 hrs) and EN 14112 (6 hrs) specifications. The CP and PP of 0 and -3 °C are finding as per ASTM D 2500-11 and ASTM D 97-12 standards. These results show that the microalgal biodiesel does not need any enhancement in O.S & CFP and hence can be recommended to be directly used as MB100 or its blends into diesel engine operation. Further, scope is available for the production of binary blends using poor quality biodiesel for engine operation.Keywords: fuel quality, methyl ester yield, microalgae, transesterification
Procedia PDF Downloads 2157320 Evaluation of Milk Production of an Algerian Rabbit Population Raised in Aures Area
Authors: Moumen Souad, Melizi Mohamed
Abstract:
In order to characterize rabbits does of an Aures local population raised in Algeria, a study of their milk yield was realized in the experimental rabbitry of El Hadj Lakhdhar University. Milk production of does was measured every day during the days following 215 parturitions. It was estimated by weighing the female before and after the single daily suckling (10–15 min between the two weighing operations). The various calculated parameters were the quantity of milk produced per day, per week and the total quantity produced in 21 days, as well as the intake of milk by young rabbits. The analysis concerned the effects of the number of successive litters (3 classes: 1 to 3 and more) and of the average number of the number of young rabbits suckled per litter (6 classes: from 1-2 kits to more than 6). During the 21 days of controlled lactation, the average litter size was 6±3. The rabbits of the Aures area produced on average 2544.34±747 g in 21 days that is 121 g of milk/day or 21 g of milk/kit/day. The milk yield increased from 526, 1035, 1240 and 2801 g to 760, 1365, 1715 and 3840 for week 1, 2, 3 and the total period of lactation, respectively. Nevertheless, milk production available per kit and per day decreased linearly with kits number in the litter for each of the 3 weeks considered. On the other hand the milk yield was not affected by the weight at birth of kits.Keywords: milk production, litter size, rabbit, Aures area, Algeria
Procedia PDF Downloads 2647319 Virulence Phenotypes among Multi Drug Resistant Uropathogenic E. Coli and Klebsiella SPP
Authors: V. V. Lakshmi, Y. V. S. Annapurna
Abstract:
Urinary tract infection (UTI) is one of the most common infectious diseases seen in the community. Susceptible individuals experience multiple episodes, and progress to acute pyelonephritis or uro-sepsis or develop asymptomatic bacteriuria (ABU). Ability to cause extraintestinal infections depends on several virulence factors required for survival at extraintestinal sites. Presence of virulence phenotypes enhances the pathogenicity of these otherwise commensal organisms and thus augments its ability to cause extraintestinal infections, the most frequent in urinary tract infections(UTI). The present study focuses on detection of the virulence characters exhibited by the uropathogenic organism and most common factors exhibited in the local pathogens. A total of 700 isolates of E.coli and Klebsiella spp were included in the study.These were isolated from patients from local hospitals reported to be suffering with UTI over a period of three years. Isolation and identification was done based on Gram character and IMVIC reactions. Antibiotic sensitivity profile was carried out by disc diffusion method and multi drug resistant strains with MAR index of 0.7 were further selected. Virulence features examined included their ability to produce exopolysaccharides, protease- gelatinase production, hemolysin production, haemagglutination and hydrophobicity test. Exopolysaccharide production was most predominant virulence feature among the isolates when checked by congo red method. The biofilms production examined by microtitre plates using ELISA reader confirmed that this is the major factor contributing to virulencity of the pathogens followed by hemolysin production.Keywords: Escherichia coli, Klebsiella spp, Uropathogens, virulence features
Procedia PDF Downloads 3207318 Life Cycle Assessment Comparison between Methanol and Ethanol Feedstock for the Biodiesel from Soybean Oil
Authors: Pawit Tangviroon, Apichit Svang-Ariyaskul
Abstract:
As the limited availability of petroleum-based fuel has been a major concern, biodiesel is one of the most attractive alternative fuels because it is renewable and it also has advantages over the conventional petroleum-base diesel. At Present, productions of biodiesel generally perform by transesterification of vegetable oils with low molecular weight alcohol, mainly methanol, using chemical catalysts. Methanol is petrochemical product that makes biodiesel producing from methanol to be not pure renewable energy source. Therefore, ethanol as a product produced by fermentation processes. It appears as a potential feed stock that makes biodiesel to be pure renewable alternative fuel. The research is conducted based on two biodiesel production processes by reacting soybean oils with methanol and ethanol. Life cycle assessment was carried out in order to evaluate the environmental impacts and to identify the process alternative. Nine mid-point impact categories are investigated. The results indicate that better performance on Abiotic Depletion Potential (ADP) and Acidification Potential (AP) are observed in biodiesel production from methanol when compared with biodiesel production from ethanol due to less energy consumption during the production processes. Except for ADP and AP, using methanol as feed stock does not show any advantages over biodiesel from ethanol. The single score method is also included in this study in order to identify the best option between two processes of biodiesel production. The global normalization and weighting factor based on eco-taxes are used and it shows that producing biodiesel form ethanol has less environmental load compare to biodiesel from methanol.Keywords: biodiesel, ethanol, life cycle assessment, methanol, soybean oil
Procedia PDF Downloads 225