Search results for: machine failures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3305

Search results for: machine failures

1685 Snapchat’s Scanning Feature

Authors: Reham Banwair, Lana Alshehri, Sara Hadrawi

Abstract:

The purpose of this project is to identify user satisfaction with the AI functions on Snapchat, in order to generate improvement proposals that allow its development within the app. To achieve this, a qualitative analysis was carried out through interviews to people who usually use the application, revealing their satisfaction or dissatisfaction with the usefulness of the AI. In addition, the background of the company and its introduction in these algorithms were analyzed. Furthermore, the characteristics of the three main functions of AI were explained: identify songs, solve mathematical problems, and recognize plants. As a result, it was obtained that 50% still do not know the characteristics of AI, 50% still believe song recognition is not always correct, 41.7% believe that math problems are usually accurate and 91.7% believes the plant detection tool is working properly.

Keywords: artificial intelligence, scanning, Snapchat, machine learning

Procedia PDF Downloads 134
1684 Design and Implementation of Wireless Syncronized AI System for Security

Authors: Saradha Priya

Abstract:

Developing virtual human is very important to meet the challenges occurred in many applications where human find difficult or risky to perform the task. A robot is a machine that can perform a task automatically or with guidance. Robotics is generally a combination of artificial intelligence and physical machines (motors). Computational intelligence involves the programmed instructions. This project proposes a robotic vehicle that has a camera, PIR sensor and text command based movement. It is specially designed to perform surveillance and other few tasks in the most efficient way. Serial communication has been occurred between a remote Base Station, GUI Application, and PC.

Keywords: Zigbee, camera, pirsensor, wireless transmission, DC motor

Procedia PDF Downloads 349
1683 Study of Composite Materials for Aisha Containment Chamber

Authors: G. Costa, F. Noto, L. Celona, F. Chines, G. Ciavola, G. Cuttone, S. Gammino, O. Leonardi, S. Marletta, G. Torrisi

Abstract:

The ion sources for accelerators devoted to medical applications must provide intense ion beams, with high reproducibility, stability and brightness. AISHa (Advanced Ion Source for Hadron-therapy) is a compact ECRIS whose hybrid magnetic system consists of a permanent Halbach-type hexapole magnet and a set of independently energized superconducting coils. These coils will be enclosed in a compact cryostat with two cryocoolers for LHe-free operation. The AISHa ion source has been designed by taking into account the typical requirements of hospital-based facilities, where the minimization of the mean time between failures (MTBF) is a key point together with the maintenance operations which should be fast and easy. It is intended to be a multipurpose device, operating at 18 GHz, in order to achieve higher plasma densities. It should provide enough versatility for future needs of the hadron therapy, including the ability to run at larger microwave power to produce different species and highly charged ion beams. The source is potentially interesting for any hadrontherapy center using heavy ions. In the paper, we designed an innovative solution for the plasma containment chamber that allows us to solve our isolation and structural problems. We analyzed the materials chosen for our aim (glass fibers and carbon fibers) and we illustrated the all process (spinning, curing and machining) of the assembly of our chamber. The glass fibers and carbon fibers are used to reinforce polymer matrices and give rise to structural composites and composites by molding.

Keywords: hadron-therapy, carbon fiber, glass fiber, vacuum-bag, ECR, ion source

Procedia PDF Downloads 210
1682 Educase–Intelligent System for Pedagogical Advising Using Case-Based Reasoning

Authors: Elionai Moura, José A. Cunha, César Analide

Abstract:

This work introduces a proposal scheme for an Intelligent System applied to Pedagogical Advising using Case-Based Reasoning, to find consolidated solutions before used for the new problems, making easier the task of advising students to the pedagogical staff. We do intend, through this work, introduce the motivation behind the choices for this system structure, justifying the development of an incremental and smart web system who learns bests solutions for new cases when it’s used, showing technics and technology.

Keywords: case-based reasoning, pedagogical advising, educational data-mining (EDM), machine learning

Procedia PDF Downloads 421
1681 Research the Causes of Defects and Injuries of Reinforced Concrete and Stone Construction

Authors: Akaki Qatamidze

Abstract:

Implementation of the project will be a step forward in terms of reliability in Georgia and the improvement of the construction and the development of construction. Completion of the project is expected to result in a complete knowledge, which is expressed in concrete and stone structures of assessing the technical condition of the processing. This method is based on a detailed examination of the structure, in order to establish the injuries and the elimination of the possibility of changing the structural scheme of the new requirements and architectural preservationists. Reinforced concrete and stone structures research project carried out in a systematic analysis of the important approach is to optimize the process of research and development of new knowledge in the neighboring areas. In addition, the problem of physical and mathematical models of rational consent, the main pillar of the physical (in-situ) data and mathematical calculation models and physical experiments are used only for the calculation model specification and verification. Reinforced concrete and stone construction defects and failures the causes of the proposed research to enhance the effectiveness of their maximum automation capabilities and expenditure of resources to reduce the recommended system analysis of the methodological concept-based approach, as modern science and technology major particularity of one, it will allow all family structures to be identified for the same work stages and procedures, which makes it possible to exclude subjectivity and addresses the problem of the optimal direction. It discussed the methodology of the project and to establish a major step forward in the construction trades and practical assistance to engineers, supervisors, and technical experts in the construction of the settlement of the problem.

Keywords: building, reinforced concrete, expertise, stone structures

Procedia PDF Downloads 336
1680 Automata-Based String Analysis for Detecting Malware in Android Programs

Authors: Assad Maalouf, Lunjin Lu, James Lynott

Abstract:

We design and implement a precise model of string operations using finite state machine transformers and state transformers to approximate the values string variables can take throughout the execution of the program.We use our model to analyze Android program string variables. Our experimental results show that our string analysis is very efficient at detecting the contextual effect of string operations on the string variables. Our model proved to be very useful when it came to verifying statements about the string variables of the program.

Keywords: abstract interpretation, android, static analysis, string analysis

Procedia PDF Downloads 179
1679 The Association of Anthropometric Measurements, Blood Pressure Measurements, and Lipid Profiles with Mental Health Symptoms in University Students

Authors: Ammaarah Gamieldien

Abstract:

Depression is a very common and serious mental illness that has a significant impact on both the social and economic aspects of sufferers worldwide. This study aimed to investigate the association between body mass index (BMI), blood pressure, and lipid profiles with mental health symptoms in university students. Secondary objectives included the associations between the variables (BMI, blood pressure, and lipids) with themselves, as they are key factors in cardiometabolic disease. Sixty-three (63) students participated in the study. Thirty-two (32) were assigned to the control group (minimal-mild depressive symptoms), while 31 were assigned to the depressive group (moderate to severe depressive symptoms). Montgomery-Asberg Depression Rating Scale (MADRS) and Beck Depression Inventory (BDI) were used to assess depressive scores. Anthropometric measurements such as weight (kg), height (m), waist circumference (WC), and hip circumference were measured. Body mass index (BMI) and ratios such as waist-to-hip ratio (WHR) and waist-to-height ratio (WtHR) were also calculated. Blood pressure was measured using an automated AfriMedics blood pressure machine, while lipids were measured using a CardioChek plus analyzer machine. Statistics were analyzed via the SPSS statistics program. There were no significant associations between anthropometric measurements and depressive scores (p > 0.05). There were no significant correlations between lipid profiles and depression when running a Spearman’s rho correlation (P > 0.05). However, total cholesterol and LDL-C were negatively associated with depression, and triglycerides were positively associated with depression after running a point-biserial correlation (P < 0.05). Overall, there were no significant associations between blood pressure measurements and depression (P > 0.05). However, there was a significant moderate positive correlation between systolic blood pressure and MADRS scores in males (P < 0.05). Depressive scores positively and strongly correlated to how long it takes participants to fall asleep. There were also significant associations with regard to the secondary objectives. This study indicates the importance of determining the prevalence of depression among university students in South Africa. If the prevalence and factors associated with depression are addressed, depressive symptoms in university students may be improved.

Keywords: depression, blood pressure, body mass index, lipid profiles, mental health symptoms

Procedia PDF Downloads 64
1678 Comparison between Classical and New Direct Torque Control Strategies of Induction Machine

Authors: Mouna Essaadi, Mohamed Khafallah, Abdallah Saad, Hamid Chaikhy

Abstract:

This paper presents a comparative analysis between conventional direct torque control (C_DTC), Modified direct torque control (M_DTC) and twelve sectors direct torque control (12_DTC).Those different strategies are compared by simulation in term of torque, flux and stator current performances. Finally, a summary of the comparative analysis is presented.

Keywords: C_DTC, M_DTC, 12_DTC, torque dynamic, stator current, flux, performances

Procedia PDF Downloads 619
1677 Bond Strength of Different Strengthening Systems: Concrete Elements under Freeze–Thaw Cycles and Salt Water Immersion Exposure

Authors: Firas Al-Mahmoud, Jean-Michel Mechling, Mohamed Shaban

Abstract:

The long-term durability of fibre reinforced polymer (FRP) composites is often stated as being the main reason for the use of these materials. Indeed, structures externally or Near Surface Mounted (NSM) reinforced with Carbon Fibre Reinforcement Polymer CFRP are often in contact with temperature cycles and salt water immersion and other environmental conditions that reduce the expected durability of the system. Bond degradation is a frequent cause of premature failure of structural elements and environmental conditions are known to relate to such failures. The purpose of this study is to investigate the effect of environmental exposure on the bond for different CFRP strengthening systems. Bending tests were conducted to evaluate the bond with and without environmental exposure. The specimens were strengthened with CFRP sheets, CFRP plates and NSM CFRP rods embedded in two filling materials: epoxy resin and mortar. Then, they were exposed to up to 300 freeze–thaw cycles. One freeze–thaw cycle consisted of four stages according to ASTM or immersed in 3.5% salted tap water. A total of thirty-six specimens were prepared for this purpose. Results showed a decrease in ultimate bond strength for specimens strengthened by CFRP sheets that were immersed in salt water for 120 days, while a reduction was shown for CFRP sheet and plate bonded specimens that were subjected to 300 freeze–thaw cycles. Exposing NSM CFRP rod strengthened specimens, embedded in resin or mortar, to freeze–thaw cycles or to immersion in salt water does not affect the bond strength.

Keywords: durability, strengthening, FRP, bond, freeze–thaw

Procedia PDF Downloads 350
1676 Strengthening Regulation and Supervision of Microfinance Sector for Development in Ethiopia

Authors: Megersa Dugasa Fite

Abstract:

This paper analyses regulatory and supervisory issues in the Ethiopian micro finance sector, which caters to the needs of those who have been excluded from the formal financial sector. Micro-finance has received increased importance in development because of its grand goal to give credits to the poor to raise their economic and social well-being and improve the quality of lives. The micro-finance at present has been moving towards a credit-plus period through covering savings and insurance functions. It thus helps in reducing the rate of financial exclusion and social segregation, alleviating poverty and, consequently, stimulating development. The Ethiopian micro finance policy has been generally positive and developmental but major regulatory and supervisory limitations such as the absolute prohibition of NGOs to participate in micro credit functions, higher risks for depositors of micro-finance institutions, lack of credit information services with research and development, the unmet demand, and risks of market failures due to over-regulation are disappointing. Therefore, to remove the limited reach and high degree of problems typical in the informal means of financial intermediation plus to deal with the failure of formal banks to provide basic financial services to a significant portion of the country’s population, more needs to be done on micro finance. Certain key regulatory and supervisory revisions hence need to be taken to strengthen the Ethiopian micro finance sector so that it can practically provide majority poor access to a range of high quality financial services that help them work their way out of poverty and the incapacity it imposes.

Keywords: micro-finance, micro-finance regulation and supervision, micro-finance institutions, financial access, social segregation, poverty alleviation, development, Ethiopia

Procedia PDF Downloads 396
1675 Time-Dependent Reliability Analysis of Corrosion Affected Cast Iron Pipes with Mixed Mode Fracture

Authors: Chun-Qing Li, Guoyang Fu, Wei Yang

Abstract:

A significant portion of current water networks is made of cast iron pipes. Due to aging and deterioration with corrosion being the most predominant mechanism, the failure rate of cast iron pipes is very high. Although considerable research has been carried out in the past few decades, most are on the effect of corrosion on the structural capacity of pipes using strength theory as the failure criterion. This paper presents a reliability-based methodology for the assessment of corrosion affected cast iron pipe cracking failures. A nonlinear limit state function taking into account all three fracture modes is proposed for brittle metal pipes with mixed mode fracture. A stochastic model of the load effect is developed, and time-dependent reliability method is employed to quantify the probability of failure and predict the remaining service life. A case study is carried out using the proposed methodology, followed by sensitivity analysis to investigate the effects of the random variables on the probability of failure. It has been found that the larger the inclination angle or the Mode I fracture toughness is, the smaller the probability of pipe failure is. It has also been found that the multiplying and exponential coefficients k and n in the power law corrosion model and the internal pressure have the most influence on the probability of failure for cast iron pipes. The methodology presented in this paper can assist pipe engineers and asset managers in developing a risk-informed and cost-effective strategy for better management of corrosion-affected pipelines.

Keywords: corrosion, inclined surface cracks, pressurized cast iron pipes, stress intensity

Procedia PDF Downloads 321
1674 [Keynote Talk] The Practices and Issues of Career Education: Focusing on Career Development Course on Various Problems of Society

Authors: Azusa Katsumata

Abstract:

Several universities in Japan have introduced activities aimed at the mutual enlightenment of a diversity of people in career education. However, several programs emphasize on delivering results, and on practicing the prepared materials as planned. Few programs focus on unexpected failures and setbacks. This way of learning is important in career education so that classmates can help each other, overcome difficulties, draw out each other’s strengths, and learn from them. Seijo University in Tokyo offered excursion focusing Various Problems of Society, as second year career education course, Students will learn about contraception, infertility, homeless people, LGBT, and they will discuss based on the excursion. This paper aims to study the ‘learning platform’ created by a series of processes such as the excursion, the discussion, and the presentation. In this course, students looked back on their lives and imagined the future in concrete terms, performing tasks in groups. The students came across a range of values through lectures and conversations, thereby developing feelings of self-efficacy. We conducted a questionnaire to measure the development of career in class. From the results of the questionnaire, we can see, in the example of this class, that students respected diversity and understood the importance of uncertainty and discontinuity. Whereas the students developed career awareness, they actually did not come across that scene and would do so only in the future when it became necessary. In this class, students consciously considered social problems, but did not develop the practical skills necessary to deal with these. This is appropriate for one of project, but we need to consider how this can be incorporated into future courses. University constitutes only a single period in life-long career formation. Thus, further research may be indicated to determine whether the positive effects of career education at university continue to contribute to individual careers going forward.

Keywords: career education of university, excursion, learning platform, problems of society

Procedia PDF Downloads 262
1673 Optimal Continuous Scheduled Time for a Cumulative Damage System with Age-Dependent Imperfect Maintenance

Authors: Chin-Chih Chang

Abstract:

Many manufacturing systems suffer failures due to complex degradation processes and various environment conditions such as random shocks. Consider an operating system is subject to random shocks and works at random times for successive jobs. When successive jobs often result in production losses and performance deterioration, it would be better to do maintenance or replacement at a planned time. A preventive replacement (PR) policy is presented to replace the system before a failure occurs at a continuous time T. In such a policy, the failure characteristics of the system are designed as follows. Each job would cause a random amount of additive damage to the system, and the system fails when the cumulative damage has exceeded a failure threshold. Suppose that the deteriorating system suffers one of the two types of shocks with age-dependent probabilities: type-I (minor) shock is rectified by a minimal repair, or type-II (catastrophic) shock causes the system to fail. A corrective replacement (CR) is performed immediately when the system fails. In summary, a generalized maintenance model to scheduling replacement plan for an operating system is presented below. PR is carried out at time T, whereas CR is carried out when any type-II shock occurs and the total damage exceeded a failure level. The main objective is to determine the optimal continuous schedule time of preventive replacement through minimizing the mean cost rate function. The existence and uniqueness of optimal replacement policy are derived analytically. It can be seen that the present model is a generalization of the previous models, and the policy with preventive replacement outperforms the one without preventive replacement.

Keywords: preventive replacement, working time, cumulative damage model, minimal repair, imperfect maintenance, optimization

Procedia PDF Downloads 363
1672 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.

Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning

Procedia PDF Downloads 244
1671 Artificial Intelligence in Patient Involvement: A Comprehensive Review

Authors: Igor A. Bessmertny, Bidru C. Enkomaryam

Abstract:

Active involving patients and communities in health decisions can improve both people’s health and the healthcare system. Adopting artificial intelligence can lead to more accurate and complete patient record management. This review aims to identify the current state of researches conducted using artificial intelligence techniques to improve patient engagement and wellbeing, medical domains used in patient engagement context, and lastly, to assess opportunities and challenges for patient engagement in the wellness process. A search of peer-reviewed publications, reviews, conceptual analyses, white papers, author’s manuscripts and theses was undertaken. English language literature published in 2013– 2022 period and publications, report and guidelines of World Health Organization (WHO) were also assessed. About 281 papers were retrieved. Duplicate papers in the databases were removed. After application of the inclusion and exclusion criteria, 41 papers were included to the analysis. Patient counseling in preventing adverse drug events, in doctor-patient risk communication, surgical, drug development, mental healthcare, hypertension & diabetes, metabolic syndrome and non-communicable chronic diseases are implementation areas in healthcare where patient engagement can be implemented using artificial intelligence, particularly machine learning and deep learning techniques and tools. The five groups of factors that potentially affecting patient engagement in safety are related to: patient, health conditions, health care professionals, tasks and health care setting. Active involvement of patients and families can help accelerate the implementation of healthcare safety initiatives. In sub-Saharan Africa, using digital technologies like artificial intelligence in patient engagement context is low due to poor level of technological development and deployment. The opportunities and challenges available to implement patient engagement strategies vary greatly from country to country and from region to region. Thus, further investigation will be focused on methods and tools using the potential of artificial intelligence to support more simplified care that might be improve communication with patients and train health care professionals.

Keywords: artificial intelligence, patient engagement, machine learning, patient involvement

Procedia PDF Downloads 76
1670 A Textile-Based Scaffold for Skin Replacements

Authors: Tim Bolle, Franziska Kreimendahl, Thomas Gries, Stefan Jockenhoevel

Abstract:

The therapeutic treatment of extensive, deep wounds is limited. Autologous split-skin grafts are used as a so-called ‘gold standard’. Most common deficits are the defects at the donor site, the risk of scarring as well as the limited availability and quality of the autologous grafts. The aim of this project is a tissue engineered dermal-epidermal skin replacement to overcome the limitations of the gold standard. A key requirement for the development of such a three-dimensional implant is the formation of a functional capillary-like network inside the implant to ensure a sufficient nutrient and gas supply. Tailored three-dimensional warp knitted spacer fabrics are used to reinforce the mechanically week fibrin gel-based scaffold and further to create a directed in vitro pre-vascularization along the parallel-oriented pile yarns within a co-culture. In this study various three-dimensional warp knitted spacer fabrics were developed in a factorial design to analyze the influence of the machine parameters such as the stitch density and the pattern of the fabric on the scaffold performance and further to determine suitable parameters for a successful fibrin gel-incorporation and a physiological performance of the scaffold. The fabrics were manufactured on a Karl Mayer double-bar raschel machine DR 16 EEC/EAC. A fine machine gauge of E30 was used to ensure a high pile yarn density for sufficient nutrient, gas and waste exchange. In order to ensure a high mechanical stability of the graft, the fabrics were made of biocompatible PVDF yarns. Key parameters such as the pore size, porosity and stress/strain behavior were investigated under standardized, controlled climate conditions. The influence of the input parameters on the mechanical and morphological properties as well as the ability of fibrin gel incorporation into the spacer fabric was analyzed. Subsequently, the pile yarns of the spacer fabrics were colonized with Human Umbilical Vein Endothelial Cells (HUVEC) to analyze the ability of the fabric to further function as a guiding structure for a directed vascularization. The cells were stained with DAPI and investigated using fluorescence microscopy. The analysis revealed that the stitch density and the binding pattern have a strong influence on both the mechanical and morphological properties of the fabric. As expected, the incorporation of the fibrin gel was significantly improved with higher pore sizes and porosities, whereas the mechanical strength decreases. Furthermore, the colonization trials revealed a high cell distribution and density on the pile yarns of the spacer fabrics. For a tailored reinforcing structure, the minimum porosity and pore size needs to be evaluated which still ensures a complete incorporation of the reinforcing structure into the fibrin gel matrix. That will enable a mechanically stable dermal graft with a dense vascular network for a sufficient nutrient and oxygen supply of the cells. The results are promising for subsequent research in the field of reinforcing mechanically weak biological scaffolds and develop functional three-dimensional scaffolds with an oriented pre-vascularization.

Keywords: fibrin-gel, skin replacement, spacer fabric, pre-vascularization

Procedia PDF Downloads 257
1669 Geological and Geotechnical Investigation of a Landslide Prone Slope Along Koraput- Rayagada Railway Track Odisha, India: A Case Study

Authors: S. P. Pradhan, Amulya Ratna Roul

Abstract:

A number of landslides are occurring during the rainy season along Rayagada-Koraput Railway track for past three years. The track was constructed about 20 years ago. However, the protection measures are not able to control the recurring slope failures now. It leads to a loss to Indian Railway and its passengers ultimately leading to wastage of time and money. The slopes along Rayagada-Koraput track include both rock and soil slopes. The rock types include mainly Khondalite and Charnockite whereas soil slopes are mainly composed of laterite ranging from less weathered to highly weathered laterite. The field studies were carried out in one of the critical slope. Field study was followed by the kinematic analysis to assess the type of failure. Slake Durability test, Uniaxial Compression test, specific gravity test and triaxial test were done on rock samples to calculate and assess properties such as weathering index, unconfined compressive strength, density, cohesion, and friction angle. Following all the laboratory tests, rock mass rating was calculated. Further, from Kinematic analysis and Rock Mass Ratingbasic, Slope Mass Rating was proposed for each slope. The properties obtained were used to do the slope stability simulations using finite element method based modelling. After all the results, suitable protection measures, to prevent the loss due to slope failure, were suggested using the relation between Slope Mass Rating and protection measures.

Keywords: landslides, slope stability, rock mass rating, slope mass rating, numerical simulation

Procedia PDF Downloads 184
1668 Cluster Analysis and Benchmarking for Performance Optimization of a Pyrochlore Processing Unit

Authors: Ana C. R. P. Ferreira, Adriano H. P. Pereira

Abstract:

Given the frequent variation of mineral properties throughout the Araxá pyrochlore deposit, even if a good homogenization work has been carried out before feeding the processing plants, an operation with quality and performance’s high variety standard is expected. These results could be improved and standardized if the blend composition parameters that most influence the processing route are determined, and then the types of raw materials are grouped by them, finally presenting a great reference with operational settings for each group. Associating the physical and chemical parameters of a unit operation through benchmarking or even an optimal reference of metallurgical recovery and product quality reflects in the reduction of the production costs, optimization of the mineral resource, and guarantee of greater stability in the subsequent processes of the production chain that uses the mineral of interest. Conducting a comprehensive exploratory data analysis to identify which characteristics of the ore are most relevant to the process route, associated with the use of Machine Learning algorithms for grouping the raw material (ore) and associating these with reference variables in the process’ benchmark is a reasonable alternative for the standardization and improvement of mineral processing units. Clustering methods through Decision Tree and K-Means were employed, associated with algorithms based on the theory of benchmarking, with criteria defined by the process team in order to reference the best adjustments for processing the ore piles of each cluster. A clean user interface was created to obtain the outputs of the created algorithm. The results were measured through the average time of adjustment and stabilization of the process after a new pile of homogenized ore enters the plant, as well as the average time needed to achieve the best processing result. Direct gains from the metallurgical recovery of the process were also measured. The results were promising, with a reduction in the adjustment time and stabilization when starting the processing of a new ore pile, as well as reaching the benchmark. Also noteworthy are the gains in metallurgical recovery, which reflect a significant saving in ore consumption and a consequent reduction in production costs, hence a more rational use of the tailings dams and life optimization of the mineral deposit.

Keywords: mineral clustering, machine learning, process optimization, pyrochlore processing

Procedia PDF Downloads 143
1667 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks

Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi

Abstract:

Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.

Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex

Procedia PDF Downloads 177
1666 Measurement and Analysis of Human Hand Kinematics

Authors: Tamara Grujic, Mirjana Bonkovic

Abstract:

Measurements and quantitative analysis of kinematic parameters of human hand movements have an important role in different areas such as hand function rehabilitation, modeling of multi-digits robotic hands, and the development of machine-man interfaces. In this paper the assessment and evaluation of the reach-to-grasp movement by using computerized and robot-assisted method is described. Experiment involved the measurements of hand positions of seven healthy subjects during grasping three objects of different shapes and sizes. Results showed that three dominant phases of reach-to-grasp movements could be clearly identified.

Keywords: human hand, kinematics, measurement and analysis, reach-to-grasp movement

Procedia PDF Downloads 464
1665 Extreme Value Theory Applied in Reliability Analysis: Case Study of Diesel Generator Fans

Authors: Jelena Vucicevic

Abstract:

Reliability analysis represents a very important task in different areas of work. In any industry, this is crucial for maintenance, efficiency, safety and monetary costs. There are ways to calculate reliability, unreliability, failure density and failure rate. In this paper, the results for the reliability of diesel generator fans were calculated through Extreme Value Theory. The Extreme Value Theory is not widely used in the engineering field. Its usage is well known in other areas such as hydrology, meteorology, finance. The significance of this theory is in the fact that unlike the other statistical methods it is focused on rare and extreme values, and not on average. It should be noted that this theory is not designed exclusively for extreme events, but for extreme values in any event. Therefore, this is a great opportunity to apply the theory and test if it could be applied in this situation. The significance of the work is the calculation of time to failure or reliability in a new way, using statistic. Another advantage of this calculation is that there is no need for technical details and it can be implemented in any part for which we need to know the time to fail in order to have appropriate maintenance, but also to maximize usage and minimize costs. In this case, calculations have been made on diesel generator fans but the same principle can be applied to any other part. The data for this paper came from a field engineering study of the time to failure of diesel generator fans. The ultimate goal was to decide whether or not to replace the working fans with a higher quality fan to prevent future failures. The results achieved in this method will show the approximation of time for which the fans will work as they should, and the percentage of probability of fans working more than certain estimated time. Extreme Value Theory can be applied not only for rare and extreme events, but for any event that has values which we can consider as extreme.

Keywords: extreme value theory, lifetime, reliability analysis, statistic, time to failure

Procedia PDF Downloads 328
1664 Acoustic Emission Monitoring of Surface Roughness in Ultra High Precision Grinding of Borosilicate-Crown Glass

Authors: Goodness Onwuka, Khaled Abou-El-Hossein

Abstract:

The increase in the demand for precision optics, coupled with the absence of much research output in the ultra high precision grinding of precision optics as compared to the ultrahigh precision diamond turning of optical metals has fostered the need for more research in the ultra high precision grinding of an optical lens. Furthermore, the increase in the stringent demands for nanometric surface finishes through lapping, polishing and grinding processes necessary for the use of borosilicate-crown glass in the automotive and optics industries has created the demand to effectively monitor the surface roughness during the production process. Acoustic emission phenomenon has been proven as useful monitoring technique in several manufacturing processes ranging from monitoring of bearing production to tool wear estimation. This paper introduces a rare and unique approach with the application of acoustic emission technique to monitor the surface roughness of borosilicate-crown glass during an ultra high precision grinding process. This research was carried out on a 4-axes Nanoform 250 ultrahigh precision lathe machine using an ultra high precision grinding spindle to machine the flat surface of the borosilicate-crown glass with the tip of the grinding wheel. A careful selection of parameters and design of experiment was implemented using Box-Behnken method to vary the wheel speed, feed rate and depth of cut at three levels with a 3-center point design. Furthermore, the average surface roughness was measured using Taylor Hobson PGI Dimension XL optical profilometer, and an acoustic emission data acquisition device from National Instruments was utilized to acquire the signals while the data acquisition codes were designed with National Instrument LabVIEW software for acquisition at a sampling rate of 2 million samples per second. The results show that the raw and root mean square amplitude values of the acoustic signals increased with a corresponding increase in the measured average surface roughness values for the different parameter combinations. Therefore, this research concludes that acoustic emission monitoring technique is a potential technique for monitoring the surface roughness in the ultra high precision grinding of borosilicate-crown glass.

Keywords: acoustic emission, borosilicate-crown glass, surface roughness, ultra high precision grinding

Procedia PDF Downloads 291
1663 From Theory to Practice: Harnessing Mathematical and Statistical Sciences in Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid growth of data in diverse domains has created an urgent need for effective utilization of mathematical and statistical sciences in data analytics. This abstract explores the journey from theory to practice, emphasizing the importance of harnessing mathematical and statistical innovations to unlock the full potential of data analytics. Drawing on a comprehensive review of existing literature and research, this study investigates the fundamental theories and principles underpinning mathematical and statistical sciences in the context of data analytics. It delves into key mathematical concepts such as optimization, probability theory, statistical modeling, and machine learning algorithms, highlighting their significance in analyzing and extracting insights from complex datasets. Moreover, this abstract sheds light on the practical applications of mathematical and statistical sciences in real-world data analytics scenarios. Through case studies and examples, it showcases how mathematical and statistical innovations are being applied to tackle challenges in various fields such as finance, healthcare, marketing, and social sciences. These applications demonstrate the transformative power of mathematical and statistical sciences in data-driven decision-making. The abstract also emphasizes the importance of interdisciplinary collaboration, as it recognizes the synergy between mathematical and statistical sciences and other domains such as computer science, information technology, and domain-specific knowledge. Collaborative efforts enable the development of innovative methodologies and tools that bridge the gap between theory and practice, ultimately enhancing the effectiveness of data analytics. Furthermore, ethical considerations surrounding data analytics, including privacy, bias, and fairness, are addressed within the abstract. It underscores the need for responsible and transparent practices in data analytics, and highlights the role of mathematical and statistical sciences in ensuring ethical data handling and analysis. In conclusion, this abstract highlights the journey from theory to practice in harnessing mathematical and statistical sciences in data analytics. It showcases the practical applications of these sciences, the importance of interdisciplinary collaboration, and the need for ethical considerations. By bridging the gap between theory and practice, mathematical and statistical sciences contribute to unlocking the full potential of data analytics, empowering organizations and decision-makers with valuable insights for informed decision-making.

Keywords: data analytics, mathematical sciences, optimization, machine learning, interdisciplinary collaboration, practical applications

Procedia PDF Downloads 93
1662 PSS and SVC Controller Design by BFA to Enhance the Power System Stability

Authors: Saeid Jalilzadeh

Abstract:

Designing of PSS and SVC controller based on Bacterial Foraging Algorithm (BFA) to improve the stability of power system is proposed in this paper. Same controllers for PSS and SVC has been considered and Single machine infinite bus (SMIB) system with SVC located at the terminal of generator is used to evaluate the proposed controllers. BFA is used to optimize the coefficients of the controllers. Finally simulation for a special disturbance as an input power of generator with the proposed controllers in order to investigate the dynamic behavior of generator is done. The simulation results demonstrate that the system composed with optimized controllers has an outstanding operation in fast damping of oscillations of power system.

Keywords: PSS, SVC, SMIB, optimize controller

Procedia PDF Downloads 457
1661 Book Exchange System with a Hybrid Recommendation Engine

Authors: Nilki Upathissa, Torin Wirasinghe

Abstract:

This solution addresses the challenges faced by traditional bookstores and the limitations of digital media, striking a balance between the tactile experience of printed books and the convenience of modern technology. The book exchange system offers a sustainable alternative, empowering users to access a diverse range of books while promoting community engagement. The user-friendly interfaces incorporated into the book exchange system ensure a seamless and enjoyable experience for users. Intuitive features for book management, search, and messaging facilitate effortless exchanges and interactions between users. By streamlining the process, the system encourages readers to explore new books aligned with their interests, enhancing the overall reading experience. Central to the system's success is the hybrid recommendation engine, which leverages advanced technologies such as Long Short-Term Memory (LSTM) models. By analyzing user input, the engine accurately predicts genre preferences, enabling personalized book recommendations. The hybrid approach integrates multiple technologies, including user interfaces, machine learning models, and recommendation algorithms, to ensure the accuracy and diversity of the recommendations. The evaluation of the book exchange system with the hybrid recommendation engine demonstrated exceptional performance across key metrics. The high accuracy score of 0.97 highlights the system's ability to provide relevant recommendations, enhancing users' chances of discovering books that resonate with their interests. The commendable precision, recall, and F1score scores further validate the system's efficacy in offering appropriate book suggestions. Additionally, the curve classifications substantiate the system's effectiveness in distinguishing positive and negative recommendations. This metric provides confidence in the system's ability to navigate the vast landscape of book choices and deliver recommendations that align with users' preferences. Furthermore, the implementation of this book exchange system with a hybrid recommendation engine has the potential to revolutionize the way readers interact with printed books. By facilitating book exchanges and providing personalized recommendations, the system encourages a sense of community and exploration within the reading community. Moreover, the emphasis on sustainability aligns with the growing global consciousness towards eco-friendly practices. With its robust technical approach and promising evaluation results, this solution paves the way for a more inclusive, accessible, and enjoyable reading experience for book lovers worldwide. In conclusion, the developed book exchange system with a hybrid recommendation engine represents a progressive solution to the challenges faced by traditional bookstores and the limitations of digital media. By promoting sustainability, widening access to printed books, and fostering engagement with reading, this system addresses the evolving needs of book enthusiasts. The integration of user-friendly interfaces, advanced machine learning models, and recommendation algorithms ensure accurate and diverse book recommendations, enriching the reading experience for users.

Keywords: recommendation systems, hybrid recommendation systems, machine learning, data science, long short-term memory, recurrent neural network

Procedia PDF Downloads 94
1660 Optimizing PharmD Education: Quantifying Curriculum Complexity to Address Student Burnout and Cognitive Overload

Authors: Frank Fan

Abstract:

PharmD (Doctor of Pharmacy) education has confronted an increasing challenge — curricular overload, a phenomenon resulting from the expansion of curricular requirements, as PharmD education strives to produce graduates who are practice-ready. The aftermath of the global pandemic has amplified the need for healthcare professionals, leading to a growing trend of assigning more responsibilities to them to address the global healthcare shortage. For instance, the pharmacist’s role has expanded to include not only compounding and distributing medication but also providing clinical services, including minor ailments management, patient counselling and vaccination. Consequently, PharmD programs have responded by continually expanding their curricula adding more requirements. While these changes aim to enhance the education and training of future professionals, they have also led to unintended consequences, including curricular overload, student burnout, and a potential decrease in program quality. To address the issue and ensure program quality, there is a growing need for evidence-based curriculum reforms. My research seeks to integrate Cognitive Load Theory, emerging machine learning algorithms within artificial intelligence (AI), and statistical approaches to develop a quantitative framework for optimizing curriculum design within the PharmD program at the University of Toronto, the largest PharmD program within Canada, to provide quantification and measurement of issues that currently are only discussed in terms of anecdote rather than data. This research will serve as a guide for curriculum planners, administrators, and educators, aiding in the comprehension of how the pharmacy degree program compares to others within and beyond the field of pharmacy. It will also shed light on opportunities to reduce the curricular load while maintaining its quality and rigor. Given that pharmacists constitute the third-largest healthcare workforce, their education shares similarities and challenges with other health education programs. Therefore, my evidence-based, data-driven curriculum analysis framework holds significant potential for training programs in other healthcare professions, including medicine, nursing, and physiotherapy.

Keywords: curriculum, curriculum analysis, health professions education, reflective writing, machine learning

Procedia PDF Downloads 61
1659 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life

Authors: Desplanches Maxime

Abstract:

Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.

Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression

Procedia PDF Downloads 70
1658 Traits and Dilemma: Feminism and Multiple Demands in Young Chinese Female-Directed Films

Authors: Deng Qiaoshan

Abstract:

With the rise of feminism in the global film industry, feminist expressions in Chinese films have also evolved, reflecting societal focus on gender issues. This article focuses on young Chinese female directors such as Yang Lina, Teng Congcong, and Yang Mingming. Their films now present richer female perspectives and consciously incorporate unique female life experiences. They highlight women's real-life struggles, portraying ’struggling’ female identities—characters facing professional failures and desire identity issues, ultimately returning to family roles. These films commonly explore the ‘mother-daughter relationship’, with some using genre storytelling for commercial appeal and others deconstructing the ‘myth of motherhood’ to reflect reality, rewriting traditional maternal roles. The ‘struggling’ female identity in these directors' films shows an aesthetic of ‘pseudo-reality’, blending realistic situations with poetic, lyrical elements, reflecting their creative traits and internal conflicts. These contradictions are closely related to the unique creative context of Chinese cinema in which they operate. Emerging under China's strict film censorship system, film industrialization, consumerist culture, and internet environment, new-generation directors face multiple demands. How to ‘survive’ amidst complex commercial requirements while creating films with a clear feminist consciousness is the fundamental dilemma faced by young Chinese female directors.

Keywords: female directors, feminism film, female dilemma, film censorship system

Procedia PDF Downloads 41
1657 Laban Movement Analysis Using Kinect

Authors: Bernstein Ran, Shafir Tal, Tsachor Rachelle, Studd Karen, Schuster Assaf

Abstract:

Laban Movement Analysis (LMA), developed in the dance community over the past seventy years, is an effective method for observing, describing, notating, and interpreting human movement to enhance communication and expression in everyday and professional life. Many applications that use motion capture data might be significantly leveraged if the Laban qualities will be recognized automatically. This paper presents an automated recognition method of Laban qualities from motion capture skeletal recordings and it is demonstrated on the output of Microsoft’s Kinect V2 sensor.

Keywords: Laban movement analysis, multitask learning, Kinect sensor, machine learning

Procedia PDF Downloads 341
1656 An Analysis of the Causes of SMEs Failure in Developing Countries: The Case of South Africa

Authors: Paul Saah, Charles Mbohwa, Nelson Sizwe Madonsela

Abstract:

In the context of developing countries, this study explores a crucial component of economic development by examining the reasons behind the failure of small and medium-sized enterprises (SMEs). SMEs are acknowledged as essential drivers of economic expansion, job creation, and poverty alleviation in emerging countries. This research uses South Africa as a case study to evaluate the reasons why SMEs fail in developing nations. This study explores a quantitative research methodology to investigate the complex causes of SME failures using statistical tools and reliability tests. To ensure the viability of data collection, a sample size of 400 small business owners was chosen using a non-probability selection technique. A closed-ended questionnaire was the primary technique used to obtain detailed information from the participants. Data was analysed and interpreted using computer software packages such as the Statistical Package for the Social Sciences (SPSS). According to the findings, the main reasons why SMEs fail in developing nations are a lack of strategic business planning, a lack of funding, poor management, a lack of innovation, a lack of business research and a low level of education and training. The results of this study show that SMEs can be sustainable and successful as long as they comprehend and use the suggested small business success determining variables into their daily operations. This implies that the more SMEs in developing countries implement the proposed determinant factors of small business success in their business operations the more the businesses are likely to succeed and vice versa.

Keywords: failure, developing countries, SMEs, economic development, South Africa

Procedia PDF Downloads 77