Search results for: drug prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4194

Search results for: drug prediction

2574 Anti-tuberculosis, Resistance Modulatory, Anti-pulmonary Fibrosis and Anti-silicosis Effects of Crinum Asiaticum Bulbs and Its Active Metabolite, Betulin

Authors: Theophilus Asante, Comfort Nyarko, Daniel Antwi

Abstract:

Drug-resistant tuberculosis, together with the associated comorbidities like pulmonary fibrosis and silicosis, has been one of the most serious global public health threats that requires immediate action to curb or mitigate it. This prolongs hospital stays, increases the cost of medication, and increases the death toll recorded annually. Crinum asiaticum bulb (CAE) and betulin (BET) are known for their biological and pharmacological effects. Pharmacological effects reported on CAE include antimicrobial, anti-inflammatory, anti-pyretic, anti-analgesic, and anti-cancer effects. Betulin has exhibited a multitude of powerful pharmacological properties ranging from antitumor, anti-inflammatory, anti-parasitic, anti-microbial, and anti-viral activities. This work sought to investigate the anti-tuberculosis and resistant modulatory effects and also assess their effects on mitigating pulmonary fibrosis and silicosis. In the anti-tuberculosis and resistant modulatory effects, both CAE and BET showed strong antimicrobial activities (31.25 ≤ MIC ≤ 500) µg/ml against the studied microorganisms and also produced significant anti-efflux pump and biofilm inhibitory effects (ρ < 0.0001) as well as exhibiting resistance modulatory and synergistic effects when combined with standard antibiotics. Crinum asiaticum bulbs extract and betulin were shown to possess anti-pulmonary fibrosis effects. There was an increased survival rate in the CAE and BET treatment groups compared to the BLM-induced group. There was a marked decrease in the levels of hydroxyproline and collagen I and III in the CAE and BET treatment groups compared to the BLM-treated group. The treatment groups of CAE and BET significantly downregulated the levels of pro-fibrotic and pro-inflammatory cytokine concentrations such as TGF-β1, MMP9, IL-6, IL-1β and TNF-alpha compared to an increase in the BLM-treated groups. The histological findings of the lungs suggested the curative effects of CAE and BET following BLM-induced pulmonary fibrosis in mice. The study showed improved lung functions with a wide focal area of viable alveolar spaces and few collagen fibers deposition on the lungs of the treatment groups. In the anti-silicosis and pulmonoprotective effects of CAE and BET, the levels of NF-κB, TNF-α, IL-1β, IL-6 and hydroxyproline, collagen types I and III were significantly reduced by CAE and BET (ρ < 0.0001). Both CAE and BET significantly (ρ < 0.0001) inhibited the levels of hydroxyproline, collagen I and III when compared with the negative control group. On BALF biomarkers such as macrophages, lymphocytes, monocytes, and neutrophils, CAE and BET were able to reduce their levels significantly (ρ < 0.0001). The CAE and BET were examined for anti-oxidant activity and shown to raise the levels of catalase (CAT) and superoxide dismutase (SOD) while lowering the level of malondialdehyde (MDA). There was an improvement in lung function when lung tissues were examined histologically. Crinum asiaticum bulbs extract and betulin were discovered to exhibit anti-tubercular and resistance-modulatory properties, as well as the capacity to minimize TB comorbidities such as pulmonary fibrosis and silicosis. In addition, CAE and BET may act as protective mechanisms, facilitating the preservation of the lung's physiological integrity. The outcomes of this study might pave the way for the development of leads for producing single medications for the management of drug-resistant tuberculosis and its accompanying comorbidities.

Keywords: fibrosis, crinum, tuberculosis, antiinflammation, drug resistant

Procedia PDF Downloads 84
2573 Rapid Sexual and Reproductive Health Pathways for Women Accessing Drug and Alcohol Treatment

Authors: Molly Parker

Abstract:

Unintended pregnancy rates in Australia are amongst the highest in the developed world. Women with Substance Use Disorder often have riskier sexual behavior with nil contraceptive use and face disproportionately higher unintended pregnancies and Sexually Transmitted Infections, alongside Substance Use in Pregnancy (SUP) climbing at an alarming rate. In an inner-city Drug and Alcohol (D&A) service, significant barriers to sexual and reproductive health services have been identified, aligning with research. Rapid pathways were created for women seeking D&A treatment to be referred to Sexual and Reproductive Health services for the administration of Long-acting reversible contraception (LARC) and sexual health screening. For clients attending a D&A service, this is an opportunistic time to offer sexual and reproductive health services. Collaboration and multidisciplinary team input between D&A and sexual health and reproductive services are paramount, with rapid referral pathways being identified as the main strategy to improve access to sexual and reproductive health support for this population. With this evidence, a rapid referral pathway was created for women using the D&A service to access LARC, particularly in view of fertility often returning once stable on D&A treatment. A closed-ended survey was used for D&A staff to identify gaps in reproductive health knowledge and views of referral accessibility. Results demonstrated a lack of knowledge of contraception and appropriate referral processes. A closed-ended survey for clients was created to establish the need and access to services and to quantify data. A follow-up data collection will be reviewed to access uptake and satisfaction of the intervention from clients. Sexual health screening access was also identified as a deficit, particularly concerning due to the higher rates of STIs in this cohort. A rapid referral pathway will be undergoing implementation, reducing risks of untreated STIS both pre and post-conception. Similarly, pre and post-intervention structured surveys will be used to identify client satisfaction from the pathway. Although currently in progress, the research and pathway aim to be completed by December 2023. This research and implementation of sexual and reproductive health pathways from the D&A service have significant health and well-being benefits to clients and the wider community, including possible fetal/infancy outcomes. Women now have rapid access to sexual and reproductive health services, with the aim of reducing unplanned pregnancies, poor outcomes associated with SUP, client/staff trauma from termination of pregnancy, and client/staff trauma following the assumption of care of the child due to substance use, the financial cost for out of home care as required, the poor outcomes of untreated STIs to the fetus in pregnancy and the spread of STIs in the wider community. As evidence suggests, the implementation of a streamlined referral process is required between D&A and sexual and reproductive health services and has positive feedback from both clinicians and clients in improving care.

Keywords: substance use in pregnancy, drug and alcohol, substance use disorder, sexual health, reproductive health, contraception, long-acting reversible contraception, neonatal abstinence syndrome, FASD, sexually transmitted infections, sexually transmitted infections pregnancy

Procedia PDF Downloads 65
2572 Therapeutic Efficacy of Clompanus Pubescens Leaves Fractions via Downregulation of Neuronal Cholinesterases/NA⁺-K⁺ ATPase/IL-1 β and Improving the Neurocognitive and Antioxidants Status of Streptozotocin-Induced Diabetic Rats

Authors: Amos Sunday Onikanni, Bashir Lawal, Babatunji Emmanuel Oyinloye, Gomaa Mostafa-Hedeab, Mohammed Alorabi, Simona Cavalu, Augustine O. Olusola, Chih-Hao Wang, Gaber El-Saber Batiha

Abstract:

The increasing global burden of diabetes mellitus has called for the search for a therapeutic alternative that offers better activities and safety than conventional chemotherapy. Herein, we evaluated the neuroprotective and antioxidant properties of different fractions (ethyl acetate, N-butanol and residual aqueous) of Clompanus pubescens leaves in streptozotocin (STZ)-induced diabetic rats. Our results revealed a significant elevation in the levels of blood glucose, pro-inflammatory cytokines, lipid peroxidation, neuronal activities of acetylcholinesterase, butyrylcholinesterase, nitric oxide, epinephrine, norepinephrine, and Na+/K+-ATPase in diabetic non treated rats. In addition, decreased levels of enzymatic and non-enzymatic antioxidants were observed. Treatment with different fractions of C. pubescens leaves resulted in a significant reversal of the biochemical alteration and improved the neurocognitive deficit in STZ-induced diabetic rats. However, the ethyl-acetate fraction demonstrated higher activities than the other fractions and was characterized for its phytoconstituents, revealing the presence of Gallic acid (713.00 ppm), catechin (0.91 ppm), ferulic acid (0.98 ppm), rutin (59.82 ppm), quercetin (3.22 ppm) and kaempferol (4.07 ppm). Our molecular docking analysis revealed that these compounds exhibited different binding affinities and potentials for targeting BChE/AChE/ IL-1 β/Na+-K+-ATPase. However, only Kampferol and ferulic exhibited good drug-like, ADMET, and permeability properties suitable for use as a neuronal drug target agent. Hence, the ethyl-acetate fraction of C. pubescent leaves could be considered a source of promising bioactive metabolite for the treatment and management of cognitive impairments related to type II diabetes mellitus.

Keywords: diabetes mellitus, neuroprotective, antioxidant, pro-inflammatory cytokines

Procedia PDF Downloads 118
2571 Applying Semi-Automatic Digital Aerial Survey Technology and Canopy Characters Classification for Surface Vegetation Interpretation of Archaeological Sites

Authors: Yung-Chung Chuang

Abstract:

The cultural layers of archaeological sites are mainly affected by surface land use, land cover, and root system of surface vegetation. For this reason, continuous monitoring of land use and land cover change is important for archaeological sites protection and management. However, in actual operation, on-site investigation and orthogonal photograph interpretation require a lot of time and manpower. For this reason, it is necessary to perform a good alternative for surface vegetation survey in an automated or semi-automated manner. In this study, we applied semi-automatic digital aerial survey technology and canopy characters classification with very high-resolution aerial photographs for surface vegetation interpretation of archaeological sites. The main idea is based on different landscape or forest type can easily be distinguished with canopy characters (e.g., specific texture distribution, shadow effects and gap characters) extracted by semi-automatic image classification. A novel methodology to classify the shape of canopy characters using landscape indices and multivariate statistics was also proposed. Non-hierarchical cluster analysis was used to assess the optimal number of canopy character clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy character classification (seven categories). Therefore, people could easily predict the forest type and vegetation land cover by corresponding to the specific canopy character category. The results showed that the semi-automatic classification could effectively extract the canopy characters of forest and vegetation land cover. As for forest type and vegetation type prediction, the average prediction accuracy reached 80.3%~91.7% with different sizes of test frame. It represented this technology is useful for archaeological site survey, and can improve the classification efficiency and data update rate.

Keywords: digital aerial survey, canopy characters classification, archaeological sites, multivariate statistics

Procedia PDF Downloads 142
2570 Upon Poly(2-Hydroxyethyl Methacrylate-Co-3, 9-Divinyl-2, 4, 8, 10-Tetraoxaspiro (5.5) Undecane) as Polymer Matrix Ensuring Intramolecular Strategies for Further Coupling Applications

Authors: Aurica P. Chiriac, Vera Balan, Mihai Asandulesa, Elena Butnaru, Nita Tudorachi, Elena Stoleru, Loredana E. Nita, Iordana Neamtu, Alina Diaconu, Liliana Mititelu-Tartau

Abstract:

The interest for studying ‘smart’ materials is entirely justified and in this context were realized investigations on poly(2-hydroxyethylmethacrylate-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane), which is a macromolecular compound with sensibility at pH and temperature, gel formation capacity, binding properties, amphilicity, good oxidative and thermal stability. Physico-chemical characteristics in terms of the molecular weight, temperature-sensitive abilities and thermal stability, as well rheological, dielectric and spectroscopic properties were evaluated in correlation with further coupling capabilities. Differential scanning calorimetry investigation indicated Tg at 36.6 °C and a melting point at Tm=72.8°C, for the studied copolymer, and up to 200oC two exothermic processes (at 99.7°C and 148.8°C) were registered with losing weight of about 4 %, respective 19.27%, which indicate just processes of thermal decomposition (and not phenomena of thermal transition) owing to scission of the functional groups and breakage of the macromolecular chains. At the same time, the rheological studies (rotational tests) confirmed the non-Newtonian shear-thinning fluid behavior of the copolymer solution. The dielectric properties of the copolymer have been evaluated in order to investigate the relaxation processes and two relaxation processes under Tg value were registered and attributed to localized motions of polar groups from side chain macromolecules, or parts of them, without disturbing the main chains. According to literature and confirmed as well by our investigations, β-relaxation is assigned with the rotation of the ester side group and the γ-relaxation corresponds to the rotation of hydroxy- methyl side groups. The fluorescence spectroscopy confirmed the copolymer structure, the spiroacetal moiety getting an axial conformation, more stable, with lower energy, able for specific interactions with molecules from environment, phenomena underlined by different shapes of the emission spectra of the copolymer. Also, the copolymer was used as template for indomethacin incorporation as model drug, and the biocompatible character of the complex was confirmed. The release behavior of the bioactive compound was dependent by the copolymer matrix composition, the increasing of 3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane comonomer amount attenuating the drug release. At the same time, the in vivo studies did not show significant differences of leucocyte formula elements, GOT, GPT and LDH levels, nor immune parameters (OC, PC, and BC) between control mice group and groups treated just with copolymer samples, with or without drug, data attesting the biocompatibility of the polymer samples. The investigation of the physico-chemical characteristics of poly(2-hydrxyethyl methacrylate-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane) in terms of temperature-sensitive abilities, rheological and dielectrical properties, are bringing useful information for further specific use of this polymeric compound.

Keywords: bioapplications, dielectric and spectroscopic properties, dual sensitivity at pH and temperature, smart materials

Procedia PDF Downloads 282
2569 Magnetic Carriers of Organic Selenium (IV) Compounds: Physicochemical Properties and Possible Applications in Anticancer Therapy

Authors: E. Mosiniewicz-Szablewska, P. Suchocki, P. C. Morais

Abstract:

Despite the significant progress in cancer treatment, there is a need to search for new therapeutic methods in order to minimize side effects. Chemotherapy, the main current method of treating cancer, is non-selective and has a number of limitations. Toxicity to healthy cells is undoubtedly the biggest problem limiting the use of many anticancer drugs. The problem of how to kill cancer without harming a patient can be solved by using organic selenium (IV) compounds. Organic selenium (IV) compounds are a new class of materials showing a strong anticancer activity. They are first organic compounds containing selenium at the +4 oxidation level and therefore they eliminate the multidrug-resistance for all tumor cell lines tested so far. These materials are capable of selectively killing cancer cells without damaging the healthy ones. They are obtained by the incorporation of selenous acid (H2SeO3) into molecules of fatty acids of sunflower oil and therefore, they are inexpensive to manufacture. Attaching these compounds to magnetic carriers enables their precise delivery directly to the tumor area and the simultaneous application of the magnetic hyperthermia, thus creating a huge opportunity to effectively get rid of the tumor without any side effects. Polylactic-co-glicolic acid (PLGA) nanocapsules loaded with maghemite (-Fe2O3) nanoparticles and organic selenium (IV) compounds are successfully prepared by nanoprecipitation method. In vitro antitumor activity of the nanocapsules were evidenced using murine melanoma (B16-F10), oral squamos carcinoma (OSCC) and murine (4T1) and human (MCF-7) breast lines. Further exposure of these cells to an alternating magnetic field increased the antitumor effect of nanocapsules. Moreover, the nanocapsules presented antitumor effect while not affecting normal cells. Magnetic properties of the nanocapsules were investigated by means of dc magnetization, ac susceptibility and electron spin resonance (ESR) measurements. The nanocapsules presented a typical superparamagnetic behavior around room temperature manifested itself by the split between zero field-cooled/field-cooled (ZFC/FC) magnetization curves and the absence of hysteresis on the field-dependent magnetization curve above the blocking temperature. Moreover, the blocking temperature decreased with increasing applied magnetic field. The superparamagnetic character of the nanocapsules was also confirmed by the occurrence of a maximum in temperature dependences of both real ′(T) and imaginary ′′ (T) components of the ac magnetic susceptibility, which shifted towards higher temperatures with increasing frequency. Additionally, upon decreasing the temperature the ESR signal shifted to lower fields and gradually broadened following closely the predictions for the ESR of superparamagnetoc nanoparticles. The observed superparamagnetic properties of nanocapsules enable their simple manipulation by means of magnetic field gradient, after introduction into the blood stream, which is a necessary condition for their use as magnetic drug carriers. The observed anticancer and superparamgnetic properties show that the magnetic nanocapsules loaded with organic selenium (IV) compounds should be considered as an effective material system for magnetic drug delivery and magnetohyperthermia inductor in antitumor therapy.

Keywords: cancer treatment, magnetic drug delivery system, nanomaterials, nanotechnology

Procedia PDF Downloads 204
2568 A Generalized Weighted Loss for Support Vextor Classification and Multilayer Perceptron

Authors: Filippo Portera

Abstract:

Usually standard algorithms employ a loss where each error is the mere absolute difference between the true value and the prediction, in case of a regression task. In the present, we present several error weighting schemes that are a generalization of the consolidated routine. We study both a binary classification model for Support Vextor Classification and a regression net for Multylayer Perceptron. Results proves that the error is never worse than the standard procedure and several times it is better.

Keywords: loss, binary-classification, MLP, weights, regression

Procedia PDF Downloads 95
2567 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients

Authors: Bliss Singhal

Abstract:

Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.

Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels

Procedia PDF Downloads 84
2566 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data

Authors: Gayathri Nagarajan, L. D. Dhinesh Babu

Abstract:

Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.

Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform

Procedia PDF Downloads 241
2565 Validation of Asymptotic Techniques to Predict Bistatic Radar Cross Section

Authors: M. Pienaar, J. W. Odendaal, J. C. Smit, J. Joubert

Abstract:

Simulations are commonly used to predict the bistatic radar cross section (RCS) of military targets since characterization measurements can be expensive and time consuming. It is thus important to accurately predict the bistatic RCS of targets. Computational electromagnetic (CEM) methods can be used for bistatic RCS prediction. CEM methods are divided into full-wave and asymptotic methods. Full-wave methods are numerical approximations to the exact solution of Maxwell’s equations. These methods are very accurate but are computationally very intensive and time consuming. Asymptotic techniques make simplifying assumptions in solving Maxwell's equations and are thus less accurate but require less computational resources and time. Asymptotic techniques can thus be very valuable for the prediction of bistatic RCS of electrically large targets, due to the decreased computational requirements. This study extends previous work by validating the accuracy of asymptotic techniques to predict bistatic RCS through comparison with full-wave simulations as well as measurements. Validation is done with canonical structures as well as complex realistic aircraft models instead of only looking at a complex slicy structure. The slicy structure is a combination of canonical structures, including cylinders, corner reflectors and cubes. Validation is done over large bistatic angles and at different polarizations. Bistatic RCS measurements were conducted in a compact range, at the University of Pretoria, South Africa. The measurements were performed at different polarizations from 2 GHz to 6 GHz. Fixed bistatic angles of β = 30.8°, 45° and 90° were used. The measurements were calibrated with an active calibration target. The EM simulation tool FEKO was used to generate simulated results. The full-wave multi-level fast multipole method (MLFMM) simulated results together with the measured data were used as reference for validation. The accuracy of physical optics (PO) and geometrical optics (GO) was investigated. Differences relating to amplitude, lobing structure and null positions were observed between the asymptotic, full-wave and measured data. PO and GO were more accurate at angles close to the specular scattering directions and the accuracy seemed to decrease as the bistatic angle increased. At large bistatic angles PO did not perform well due to the shadow regions not being treated appropriately. PO also did not perform well for canonical structures where multi-bounce was the main scattering mechanism. PO and GO do not account for diffraction but these inaccuracies tended to decrease as the electrical size of objects increased. It was evident that both asymptotic techniques do not properly account for bistatic structural shadowing. Specular scattering was calculated accurately even if targets did not meet the electrically large criteria. It was evident that the bistatic RCS prediction performance of PO and GO depends on incident angle, frequency, target shape and observation angle. The improved computational efficiency of the asymptotic solvers yields a major advantage over full-wave solvers and measurements; however, there is still much room for improvement of the accuracy of these asymptotic techniques.

Keywords: asymptotic techniques, bistatic RCS, geometrical optics, physical optics

Procedia PDF Downloads 258
2564 Contribution of Artificial Intelligence in the Studies of Natural Compounds Against SARS-COV-2

Authors: Salah Belaidi

Abstract:

We have carried out extensive and in-depth research to search for bioactive compounds based on Algerian plants. A selection of 50 ligands from Algerian medicinal plants. Several compounds used in herbal medicine have been drawn using Marvin Sketch software. We determined the three-dimensional structures of the ligands with the MMFF94 force field in order to prepare these ligands for molecular docking. The 3D protein structure of the SARS-CoV-2 main protease was taken from the Protein Data Bank. We used AutoDockVina software to apply molecular docking. The hydrogen atoms were added during the molecular docking process, and all the twist bonds of the ligands were added using the (ligand) module in the AutoDock software. The COVID-19 main protease (Mpro) is a key enzyme that plays a vital role in viral transcription and mediating replication, so it is a very attractive drug target for SARS-CoV-2. In this work, an evaluation was carried out on the biologically active compounds present in these selected medicinal plants as effective inhibitors of the protease enzyme of COVID-19, with an in-depth computational calculation of the molecular docking using the Autodock Vina software. The top 7 ligands: Phloroglucinol, Afzelin, Myricetin-3-O- rutinosidTricin 7-neohesperidoside, Silybin, Silychristinthat and Kaempferol are selected among the 50 molecules studied which are Algerian medicinal plants, whose selection is based on the best binding energy which is relatively low compared to the reference molecule with binding affinities of -9.3, -9.3, -9, -8.9, -8 .5, 8.3 and -8.3 kcal mol-1 respectively. Then, we analyzed the ADME properties of the best7 ligands using the web server SwissADME. Two ligands (Silybin, Silychristin) were found to be potential candidates for the discovery and design of novel drug inhibitors of the protease enzyme of SARS-CoV-2. The stability of the two ligands in complexing with the Mpro protease was validated by molecular dynamics simulation; they revealed a stable trajectory in both techniques, RMSD and RMSF, by showing molecular properties with coherent interactions in molecular dynamics simulations. Finally, we conclude that the Silybin ligand forms a more stable complex with the Mpro protease compared to the Silychristin ligand.

Keywords: COVID-19, medicinal plants, molecular docking, ADME properties, molecular dynamics

Procedia PDF Downloads 36
2563 Field Prognostic Factors on Discharge Prediction of Traumatic Brain Injuries

Authors: Mohammad Javad Behzadnia, Amir Bahador Boroumand

Abstract:

Introduction: Limited facility situations require allocating the most available resources for most casualties. Accordingly, Traumatic Brain Injury (TBI) is the one that may need to transport the patient as soon as possible. In a mass casualty event, deciding when the facilities are restricted is hard. The Extended Glasgow Outcome Score (GOSE) has been introduced to assess the global outcome after brain injuries. Therefore, we aimed to evaluate the prognostic factors associated with GOSE. Materials and Methods: In a multicenter cross-sectional study conducted on 144 patients with TBI admitted to trauma emergency centers. All the patients with isolated TBI who were mentally and physically healthy before the trauma entered the study. The patient’s information was evaluated, including demographic characteristics, duration of hospital stays, mechanical ventilation on admission laboratory measurements, and on-admission vital signs. We recorded the patients’ TBI-related symptoms and brain computed tomography (CT) scan findings. Results: GOSE assessments showed an increasing trend by the comparison of on-discharge (7.47 ± 1.30), within a month (7.51 ± 1.30), and within three months (7.58 ± 1.21) evaluations (P < 0.001). On discharge, GOSE was positively correlated with Glasgow Coma Scale (GCS) (r = 0.729, P < 0.001) and motor GCS (r = 0.812, P < 0.001), and inversely with age (r = −0.261, P = 0.002), hospitalization period (r = −0.678, P < 0.001), pulse rate (r = −0.256, P = 0.002) and white blood cell (WBC). Among imaging signs and trauma-related symptoms in univariate analysis, intracranial hemorrhage (ICH), interventricular hemorrhage (IVH) (P = 0.006), subarachnoid hemorrhage (SAH) (P = 0.06; marginally at P < 0.1), subdural hemorrhage (SDH) (P = 0.032), and epidural hemorrhage (EDH) (P = 0.037) were significantly associated with GOSE at discharge in multivariable analysis. Conclusion: Our study showed some predictive factors that could help to decide which casualty should transport earlier to a trauma center. According to the current study findings, GCS, pulse rate, WBC, and among imaging signs and trauma-related symptoms, ICH, IVH, SAH, SDH, and EDH are significant independent predictors of GOSE at discharge in TBI patients.

Keywords: field, Glasgow outcome score, prediction, traumatic brain injury.

Procedia PDF Downloads 76
2562 Risk Factors and Regional Difference in the Prevalence of Fecal Carriage Third-Generation Cephalosporin-Resistant E. Coli in Taiwan

Authors: Wan-Ling Jiang, Hsin Chi, Jia-Lu Cheng, Ming-Fang Cheng

Abstract:

Background: Investigating the risk factors for the fecal carriage of third-generation cephalosporin-resistant E.coli could contribute to further disease prevention. Previous research on third-generation cephalosporin-resistant prevalence in children in different regions of Taiwan is limited. This project aims to explore the risk factors and regional differences in the prevalence of third-generation cephalosporin-resistant and other antibiotic-resistant E. coli in the northern, southern, and eastern regions of Taiwan. Methods: We collected data from children aged 0 to 18 from community or outpatient clinics from July 2022 to May 2023 in southern, northern, and eastern Taiwan. The questionnaire was designed to survey the characteristics of participants and possible risk factors, such as clinical information, household environment, drinking water, and food habits. After collecting fecal samples and isolating stool culture with E.coli, antibiotic sensitivity tests and MLST typing were performed. Questionnaires were used to analyze the risk factors of third-generation cephalosporin-resistant E. coli in the three different regions of Taiwan. Results: In the total 246 stool samples, third-generation cephalosporin-resistant E.coli accounted for 37.4% (97/246) of all isolates. Among the three different regions of Taiwan, the highest prevalence of fecal carriage with third-generation cephalosporin-resistant E.coli was observed in southern Taiwan (42.7%), followed by northern Taiwan (35.5%) and eastern Taiwan (28.4%). Multi-drug resistant E. coli had prevalence rates of 51.9%, 66.3%, and 37.1% in the northern, southern, and eastern regions, respectively. MLST typing revealed that ST131 was the most prevalent type (11.8%). The prevalence of ST131 in northern, southern, and eastern Taiwan was 10.1%, 12.3%, and 13.2%, respectively. Risk factors analysis identified lower paternal education, overweight status, and non-vegetarian diet as statistical significance risk factors for third-generation cephalosporin-resistant E.coli. Conclusion: The fecal carriage rates of antibiotic-resistant E. coli among Taiwanese children were on the rise. This study found regional disparities in the prevalence of third-generation cephalosporin-resistant and multi-drug-resistant E. coli, with southern Taiwan having the highest prevalence. Lower paternal education, overweight, and non-vegetarian diet were the potential risk factors of third-generation cephalosporin-resistant E. coli in this study.

Keywords: Escherichia coli, fecal carriage, antimicrobial resistance, risk factors, prevalence

Procedia PDF Downloads 67
2561 Hansen Solubility Parameters, Quality by Design Tool for Developing Green Nanoemulsion to Eliminate Sulfamethoxazole from Contaminated Water

Authors: Afzal Hussain, Mohammad A. Altamimi, Syed Sarim Imam, Mudassar Shahid, Osamah Abdulrahman Alnemer

Abstract:

Exhaustive application of sulfamethoxazole (SUX) became as a global threat for human health due to water contamination through diverse sources. The addressed combined application of Hansen solubility (HSPiP software) parameters and Quality by Design tool for developing various green nanoemulsions. HSPiP program assisted to screen suitable excipients based on Hansen solubility parameters and experimental solubility data. Various green nanoemulsions were prepared and characterized for globular size, size distribution, zeta potential, and removal efficiency. Design Expert (DoE) software further helped to identify critical factors responsible to have direct impact on percent removal efficiency, size, and viscosity. Morphological investigation was visualized under transmission electron microscopy (TEM). Finally, the treated was studied to negate the presence of the tested drug employing ICP-OES (inductively coupled plasma optical emission microscopy) technique and HPLC (high performance liquid chromatography). Results showed that HSPiP predicted biocompatible lipid, safe surfactant (lecithin), and propylene glycol (PG). Experimental solubility of the drug in the predicted excipients were quite convincing and vindicated. Various green nanoemulsions were fabricated, and these were evaluated for in vitro findings. Globular size (100-300 nm), PDI (0.1-0.5), zeta potential (~ 25 mV), and removal efficiency (%RE = 70-98%) were found to be in acceptable range for deciding input factors with level in DoE. Experimental design tool assisted to identify the most critical variables controlling %RE and optimized content of nanoemulsion under set constraints. Dispersion time was varied from 5-30 min. Finally, ICP-OES and HPLC techniques corroborated the absence of SUX in the treated water. Thus, the strategy is simple, economic, selective, and efficient.

Keywords: quality by design, sulfamethoxazole, green nanoemulsion, water treatment, icp-oes, hansen program (hspip software

Procedia PDF Downloads 82
2560 Evaluation of Antimicrobial Susceptibility Profile of Urinary Tract Infections in Massoud Medical Laboratory: 2018-2021

Authors: Ali Ghorbanipour

Abstract:

The aim of this study is to investigate the drug resistance pattern and the value of the MIC (minimum inhibitory concentration)method to reduce the impact of infectious diseases and the slow development of resistance. Method: The study was conducted on clinical specimens collected between 2018 to 2021. identification of isolates and antibiotic susceptibility testing were performed using conventional biochemical tests. Antibiotic resistance was determined using kibry-Bauer disk diffusion and MIC by E-test methods comparative with microdilution plate elisa method. Results were interpreted according to CLSI. Results: Out of 249600 different clinical specimens, 18720 different pathogenic bacteria by overall detection ratio 7.7% were detected. Among pathogen bacterial were Gram negative bacteria (70%,n=13000) and Gram positive bacteria(30%,n=5720).Medically relevant gram-negative bacteria include a multitude of species such as E.coli , Klebsiella .spp , Pseudomonas .aeroginosa , Acinetobacter .spp , Enterobacterspp ,and gram positive bacteria Staphylococcus.spp , Enterococcus .spp , Streptococcus .spp was isolated . Conclusion: Our results highlighted that the resistance ratio among Gram Negative bacteria and Gram positive bacteria with different infection is high it suggest constant screening and follow-up programs for the detection of antibiotic resistance and the value of MIC drug susceptibility reporting that provide a new way to the usage of resistant antibiotic in combination with other antibiotics or accurate weight of antibiotics that inhibit or kill bacteria. Evaluation of wrong medication in the expansion of resistance and side effects of over usage antibiotics are goals. Ali ghorbanipour presently working as a supervision at the microbiology department of Massoud medical laboratory. Iran. Earlier, he worked as head department of pulmonary infection in firoozgarhospital, Iran. He received master degree in 2012 from Fergusson College. His research prime objective is a biologic wound dressing .to his credit, he has Published10 articles in various international congresses by presenting posters.

Keywords: antimicrobial profile, MIC & MBC Method, microplate antimicrobial assay, E-test

Procedia PDF Downloads 133
2559 In Silico Screening, Identification and Validation of Cryptosporidium hominis Hypothetical Protein and Virtual Screening of Inhibitors as Therapeutics

Authors: Arpit Kumar Shrivastava, Subrat Kumar, Rajani Kanta Mohapatra, Priyadarshi Soumyaranjan Sahu

Abstract:

Computational approaches to predict structure, function and other biological characteristics of proteins are becoming more common in comparison to the traditional methods in drug discovery. Cryptosporidiosis is a major zoonotic diarrheal disease particularly in children, which is caused primarily by Cryptosporidium hominis and Cryptosporidium parvum. Currently, there are no vaccines for cryptosporidiosis and recommended drugs are not effective. With the availability of complete genome sequence of C. hominis, new targets have been recognized for the development of effective and better drugs and/or vaccines. We identified a unique hypothetical epitopic protein in C. hominis genome through BLASTP analysis. A 3D model of the hypothetical protein was generated using I-Tasser server through threading methodology. The quality of the model was validated through Ramachandran plot by PROCHECK server. The functional annotation of the hypothetical protein through DALI server revealed structural similarity with human Transportin 3. Phylogenetic analysis for this hypothetical protein also showed C. hominis hypothetical protein (CUV04613) was the closely related to human transportin 3 protein. The 3D protein model is further subjected to virtual screening study with inhibitors from the Zinc Database by using Dock Blaster software. Docking study reported N-(3-chlorobenzyl) ethane-1,2-diamine as the best inhibitor in terms of docking score. Docking analysis elucidated that Leu 525, Ile 526, Glu 528, Glu 529 are critical residues for ligand–receptor interactions. The molecular dynamic simulation was done to access the reliability of the binding pose of inhibitor and protein complex using GROMACS software at 10ns time point. Trajectories were analyzed at each 2.5 ns time interval, among which, H-bond with LEU-525 and GLY- 530 are significantly present in MD trajectories. Furthermore, antigenic determinants of the protein were determined with the help of DNA Star software. Our study findings showed a great potential in order to provide insights in the development of new drug(s) or vaccine(s) for control as well as prevention of cryptosporidiosis among humans and animals.

Keywords: cryptosporidium hominis, hypothetical protein, molecular docking, molecular dynamics simulation

Procedia PDF Downloads 365
2558 Estimation of Fragility Curves Using Proposed Ground Motion Selection and Scaling Procedure

Authors: Esra Zengin, Sinan Akkar

Abstract:

Reliable and accurate prediction of nonlinear structural response requires specification of appropriate earthquake ground motions to be used in nonlinear time history analysis. The current research has mainly focused on selection and manipulation of real earthquake records that can be seen as the most critical step in the performance based seismic design and assessment of the structures. Utilizing amplitude scaled ground motions that matches with the target spectra is commonly used technique for the estimation of nonlinear structural response. Representative ground motion ensembles are selected to match target spectrum such as scenario-based spectrum derived from ground motion prediction equations, Uniform Hazard Spectrum (UHS), Conditional Mean Spectrum (CMS) or Conditional Spectrum (CS). Different sets of criteria exist among those developed methodologies to select and scale ground motions with the objective of obtaining robust estimation of the structural performance. This study presents ground motion selection and scaling procedure that considers the spectral variability at target demand with the level of ground motion dispersion. The proposed methodology provides a set of ground motions whose response spectra match target median and corresponding variance within a specified period interval. The efficient and simple algorithm is used to assemble the ground motion sets. The scaling stage is based on the minimization of the error between scaled median and the target spectra where the dispersion of the earthquake shaking is preserved along the period interval. The impact of the spectral variability on nonlinear response distribution is investigated at the level of inelastic single degree of freedom systems. In order to see the effect of different selection and scaling methodologies on fragility curve estimations, results are compared with those obtained by CMS-based scaling methodology. The variability in fragility curves due to the consideration of dispersion in ground motion selection process is also examined.

Keywords: ground motion selection, scaling, uncertainty, fragility curve

Procedia PDF Downloads 583
2557 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 136
2556 Measuring Enterprise Growth: Pitfalls and Implications

Authors: N. Šarlija, S. Pfeifer, M. Jeger, A. Bilandžić

Abstract:

Enterprise growth is generally considered as a key driver of competitiveness, employment, economic development and social inclusion. As such, it is perceived to be a highly desirable outcome of entrepreneurship for scholars and decision makers. The huge academic debate resulted in the multitude of theoretical frameworks focused on explaining growth stages, determinants and future prospects. It has been widely accepted that enterprise growth is most likely nonlinear, temporal and related to the variety of factors which reflect the individual, firm, organizational, industry or environmental determinants of growth. However, factors that affect growth are not easily captured, instruments to measure those factors are often arbitrary, causality between variables and growth is elusive, indicating that growth is not easily modeled. Furthermore, in line with heterogeneous nature of the growth phenomenon, there is a vast number of measurement constructs assessing growth which are used interchangeably. Differences among various growth measures, at conceptual as well as at operationalization level, can hinder theory development which emphasizes the need for more empirically robust studies. In line with these highlights, the main purpose of this paper is twofold. Firstly, to compare structure and performance of three growth prediction models based on the main growth measures: Revenues, employment and assets growth. Secondly, to explore the prospects of financial indicators, set as exact, visible, standardized and accessible variables, to serve as determinants of enterprise growth. Finally, to contribute to the understanding of the implications on research results and recommendations for growth caused by different growth measures. The models include a range of financial indicators as lag determinants of the enterprises’ performances during the 2008-2013, extracted from the national register of the financial statements of SMEs in Croatia. The design and testing stage of the modeling used the logistic regression procedures. Findings confirm that growth prediction models based on different measures of growth have different set of predictors. Moreover, the relationship between particular predictors and growth measure is inconsistent, namely the same predictor positively related to one growth measure may exert negative effect on a different growth measure. Overall, financial indicators alone can serve as good proxy of growth and yield adequate predictive power of the models. The paper sheds light on both methodology and conceptual framework of enterprise growth by using a range of variables which serve as a proxy for the multitude of internal and external determinants, but are unlike them, accessible, available, exact and free of perceptual nuances in building up the model. Selection of the growth measure seems to have significant impact on the implications and recommendations related to growth. Furthermore, the paper points out to potential pitfalls of measuring and predicting growth. Overall, the results and the implications of the study are relevant for advancing academic debates on growth-related methodology, and can contribute to evidence-based decisions of policy makers.

Keywords: growth measurement constructs, logistic regression, prediction of growth potential, small and medium-sized enterprises

Procedia PDF Downloads 252
2555 Valorization, Conservation and Sustainable Production of Medicinal Plants in Morocco

Authors: Elachouri Mostafa, Fakchich Jamila, Lazaar Jamila, Elmadmad Mohammed, Marhom Mostafa

Abstract:

Of course, there has been a great growth in scientific information about medicinal plants in recent decades, but in many ways this has proved poor compensation, because such information is accessible, in practice, only to a very few people and anyway, rather little of it is relevant to problems of management and utilization, as encountered in the field. Active compounds are used in most traditional medicines and play an important role in advancing sustainable rural livelihoods through their conservation, cultivation, propagation, marketing and commercialization. Medicinal herbs are great resources for various pharmaceutical compounds and urgent measures are required to protect these plant species from their natural destruction and disappearance. Indeed, there is a real danger of indigenous Arab medicinal practices and knowledge disappearing altogether, further weakening traditional Arab culture and creating more insecurity, as well as forsaking a resource of inestimable economic and health care importance. As scientific approach, the ethnopharmacological investigation remains the principal way to improve, evaluate, and increase the odds of finding of biologically active compounds derived from medicinal plants. As developing country, belonging to the Mediterranean basin, Morocco country is endowed with resources of medicinal and aromatic plants. These plants have been used over the millennia for human welfare, even today. Besides, Morocco has a large plant biodiversity, in fact, its medicinal flora account more than 4200 species growing on various bioclimatic zones from subhumide to arid and Saharan. Nevertheless, the human and animal pressure resulting from the increase of rural population needs has led to degradation of this patrimony. In this paper, we focus our attention on ethnopharmacological studies carried out in Morocco. The goal of this work is to clarify the importance of herbs as platform for drugs discovery and further development, to highlight the importance of ethnopharmacological study as approach on discovery of natural products in the health care field, and to discuss the limit of ethnopharmacological investigation of drug discovery in Morocco.

Keywords: Morocco, medicinal plants, ethnopharmacology, natural products, drug-discovery

Procedia PDF Downloads 316
2554 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: recurrent neural network, players lineup, basketball data, decision making model

Procedia PDF Downloads 133
2553 Structure-Guided Optimization of Sulphonamide as Gamma–Secretase Inhibitors for the Treatment of Alzheimer’s Disease

Authors: Vaishali Patil, Neeraj Masand

Abstract:

In older people, Alzheimer’s disease (AD) is turning out to be a lethal disease. According to the amyloid hypothesis, aggregation of the amyloid β–protein (Aβ), particularly its 42-residue variant (Aβ42), plays direct role in the pathogenesis of AD. Aβ is generated through sequential cleavage of amyloid precursor protein (APP) by β–secretase (BACE) and γ–secretase (GS). Thus in the treatment of AD, γ-secretase modulators (GSMs) are potential disease-modifying as they selectively lower pathogenic Aβ42 levels by shifting the enzyme cleavage sites without inhibiting γ–secretase activity. This possibly avoids known adverse effects observed with complete inhibition of the enzyme complex. Virtual screening, via drug-like ADMET filter, QSAR and molecular docking analyses, has been utilized to identify novel γ–secretase modulators with sulphonamide nucleus. Based on QSAR analyses and docking score, some novel analogs have been synthesized. The results obtained by in silico studies have been validated by performing in vivo analysis. In the first step, behavioral assessment has been carried out using Scopolamine induced amnesia methodology. Later the same series has been evaluated for neuroprotective potential against the oxidative stress induced by Scopolamine. Biochemical estimation was performed to evaluate the changes in biochemical markers of Alzheimer’s disease such as lipid peroxidation (LPO), Glutathione reductase (GSH), and Catalase. The Scopolamine induced amnesia model has shown increased Acetylcholinesterase (AChE) levels and the inhibitory effect of test compounds in the brain AChE levels have been evaluated. In all the studies Donapezil (Dose: 50µg/kg) has been used as reference drug. The reduced AChE activity is shown by compounds 3f, 3c, and 3e. In the later stage, the most potent compounds have been evaluated for Aβ42 inhibitory profile. It can be hypothesized that this series of alkyl-aryl sulphonamides exhibit anti-AD activity by inhibition of Acetylcholinesterase (AChE) enzyme as well as inhibition of plaque formation on prolong dosage along with neuroprotection from oxidative stress.

Keywords: gamma-secretase inhibitors, Alzzheimer's disease, sulphonamides, QSAR

Procedia PDF Downloads 255
2552 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan

Abstract:

Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.

Keywords: decision trees, neural network, myocardial infarction, Data Mining

Procedia PDF Downloads 429
2551 Gossypol Extraction from Cotton Seed and Evaluation of Cotton Seed and Boll-cotton-pol Extract on Treatment of Cutaneous Leishmaniasis Resistant to Drugs

Authors: M. Mirmohammadi, S. Taghdisi, F. Anali

Abstract:

Gossypol is a yellow anti-nutritional compound found in the cotton plant. This substance exists in the cottonseed and other parts of the cotton plant, such as bark, leaves, and stems. Chemically, gossypol is a very active polyphenolic aldehyde compound, and due to this polyphenolic structure, it has antioxidant and therapeutic properties. On the other hand, this compound, especially in free form, has many toxic effects, that its excessive consumption can be very dangerous for humans and animals. In this study, gossypol was extracted as a derivative compound of gossypol acetic acid from cottonseed using the n-hexane solvent with an efficiency of 0.84 ± 0.04, which compared to the Gossypol extracted from cottonseed oil with the same method (cold press) showed a significant difference with its efficiency of 1.14 ± 0.06. Therefore, it can be suggested to use cottonseed oil to extract this valuable compound. In the other part of this research, cottonseed extracts and cotton bolls extracts were obtained by two methods of soaking and Soxhlet with hydroalcoholic solvent taken with a ratio of (25:75), then by using extracts and corn starch powder, four herbal medicine code was created and after receiving the code of ethics (IR.SSU.REC.1398.136) the therapeutic effect of each one on the Cutaneous leishmaniasis resistant to drugs (caused by the leishmaniasis parasite) was investigated in real patients and its results was compared with the common drug glucantime (local ampoule) (n = 36). Statistical studies showed that the use of herbal medicines prepared with cottonseed extract and cotton bolls extract has a significant positive effect on the treatment of the disease’s wounds (p-value > 0.05) compared to the control group (only ethanol). Also, by comparing the average diameter of the wounds after a two-month treatment period, no significant difference was found between the use of ointment containing extracts and local glucantime ampoules (p-value < 0.05). Bolls extract extracted with the Soxhlet method showed the best therapeutic effects, although there was no significant difference between them (p-value < 0.05). Therefore, there is acceptable reliability to recommend this medicine for the treatment of Cutaneous leishmaniasis resistant to drugs without the side effects of the chemical drug glucantime and the pain of injecting the ampoule.

Keywords: cottonseed oil, gossypol, cotton boll, cutaneous leishmaniasis

Procedia PDF Downloads 95
2550 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation

Authors: Fidelia A. Orji, Julita Vassileva

Abstract:

This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.

Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning

Procedia PDF Downloads 128
2549 Construction of the Large Scale Biological Networks from Microarrays

Authors: Fadhl Alakwaa

Abstract:

One of the sustainable goals of the system biology is understanding gene-gene interactions. Hence, gene regulatory networks (GRN) need to be constructed for understanding the disease ontology and to reduce the cost of drug development. To construct gene regulatory from gene expression we need to overcome many challenges such as data denoising and dimensionality. In this paper, we develop an integrated system to reduce data dimension and remove the noise. The generated network from our system was validated via available interaction databases and was compared to previous methods. The result revealed the performance of our proposed method.

Keywords: gene regulatory network, biclustering, denoising, system biology

Procedia PDF Downloads 239
2548 Artificial Neural Networks and Hidden Markov Model in Landslides Prediction

Authors: C. S. Subhashini, H. L. Premaratne

Abstract:

Landslides are the most recurrent and prominent disaster in Sri Lanka. Sri Lanka has been subjected to a number of extreme landslide disasters that resulted in a significant loss of life, material damage, and distress. It is required to explore a solution towards preparedness and mitigation to reduce recurrent losses associated with landslides. Artificial Neural Networks (ANNs) and Hidden Markov Model (HMMs) are now widely used in many computer applications spanning multiple domains. This research examines the effectiveness of using Artificial Neural Networks and Hidden Markov Model in landslides predictions and the possibility of applying the modern technology to predict landslides in a prominent geographical area in Sri Lanka. A thorough survey was conducted with the participation of resource persons from several national universities in Sri Lanka to identify and rank the influencing factors for landslides. A landslide database was created using existing topographic; soil, drainage, land cover maps and historical data. The landslide related factors which include external factors (Rainfall and Number of Previous Occurrences) and internal factors (Soil Material, Geology, Land Use, Curvature, Soil Texture, Slope, Aspect, Soil Drainage, and Soil Effective Thickness) are extracted from the landslide database. These factors are used to recognize the possibility to occur landslides by using an ANN and HMM. The model acquires the relationship between the factors of landslide and its hazard index during the training session. These models with landslide related factors as the inputs will be trained to predict three classes namely, ‘landslide occurs’, ‘landslide does not occur’ and ‘landslide likely to occur’. Once trained, the models will be able to predict the most likely class for the prevailing data. Finally compared two models with regards to prediction accuracy, False Acceptance Rates and False Rejection rates and This research indicates that the Artificial Neural Network could be used as a strong decision support system to predict landslides efficiently and effectively than Hidden Markov Model.

Keywords: landslides, influencing factors, neural network model, hidden markov model

Procedia PDF Downloads 384
2547 Quality of Life Among People with Mental Illness Attending a Psychiatric Outpatient Clinic in Ethiopia: A Structural Equation Model

Authors: Wondale Getinet Alemu, Lillian Mwanri, Clemence Due, Telake Azale, Anna Ziersch

Abstract:

Background: Mental illness is one of the most severe, chronic, and disabling public health problems that affect patients' Quality of life (QoL). Improving the QoL for people with mental illness is one of the most critical steps in stopping disease progression and avoiding complications of mental illness. Therefore, we aimed to assess the QoL and its determinants in patients with mental illness in outpatient clinics in Northwest Ethiopia in 2023. Methods: A facility-based cross-sectional study was conducted among people with mental illness in an outpatient clinic in Ethiopia. The sampling interval was decided by dividing the total number of study participants who had a follow-up appointment during the data collection period (2400) by the total sample size of 638, with the starting point selected by lottery method. The interviewer-administered WHOQOL BREF-26 tool was used to measure the QoL of people with mental illness. The domains and Health-Related Quality of Life (HRQoL) were identified. The indirect and direct effects of variables were calculated using structural equation modeling with SPSS-28 and Amos-28 software. A p-value of < 0.05 and a 95% CI were used to evaluate statistical significance. Results: A total of 636 (99.7%) participants responded and completed the WHOQOL-BREF questionnaire. The mean score of overall HRQoL of people with mental illness in the outpatient clinic was (49.6 ± 10 Sd). The highest QoL was found in the physical health domain (50.67 ±9.5 Sd), and the lowest mean QoL was found in the psychological health domain (48.41±10 Sd). Rural residents, drug nonadherence, suicidal ideation, not getting counseling, moderate or severe subjective severity, the family does not participate in patient care, and a family history of mental illness had an indirect negative effect on HRQoL. Alcohol use and psychological health domain had a direct positive effect on QoL. Furthermore, objective severity of illness, having low self-esteem, and having a history of mental illness in the family had both direct and indirect effects on QoL. Furthermore, sociodemographic factors (residence, educational status, marital status), social support-related factors (self-esteem, family not participating in patient care), substance use factors (alcohol use, tobacco use,) and clinical factors (objective and subjective severity of illness, not getting counseling, suicidal ideation, number of episodes, comorbid illness, family history of mental illness, poor drug adherence) directly and indirectly affected QoL. Conclusions: In this study, the QoL of people with mental illness was poor, with the psychological health domain being the most affected. Sociodemographic factors, social support-related factors, drug use factors, and clinical factors directly and indirectly, affect QoL through the mediator variables of physical health domains, psychological health domains, social relation health domains, and environmental health domains. In order to improve the QoL of people with mental illnesses, we recommend that emphasis be given to addressing the scourge of mental health, including the development of policy and practice drivers that address the above-identified factors.

Keywords: quality of life, mental wellbeing, mental illness, mental disorder, Ethiopia

Procedia PDF Downloads 80
2546 Predicting Food Waste and Losses Reduction for Fresh Products in Modified Atmosphere Packaging

Authors: Matar Celine, Gaucel Sebastien, Gontard Nathalie, Guilbert Stephane, Guillard Valerie

Abstract:

To increase the very short shelf life of fresh fruits and vegetable, Modified Atmosphere Packaging (MAP) allows an optimal atmosphere composition to be maintained around the product and thus prevent its decay. This technology relies on the modification of internal packaging atmosphere due to equilibrium between production/consumption of gases by the respiring product and gas permeation through the packaging material. While, to the best of our knowledge, benefit of MAP for fresh fruits and vegetable has been widely demonstrated in the literature, its effect on shelf life increase has never been quantified and formalized in a clear and simple manner leading difficult to anticipate its economic and environmental benefit, notably through the decrease of food losses. Mathematical modelling of mass transfers in the food/packaging system is the basis for a better design and dimensioning of the food packaging system. But up to now, existing models did not permit to estimate food quality nor shelf life gain reached by using MAP. However, shelf life prediction is an indispensable prerequisite for quantifying the effect of MAP on food losses reduction. The objective of this work is to propose an innovative approach to predict shelf life of MAP food product and then to link it to a reduction of food losses and wastes. In this purpose, a ‘Virtual MAP modeling tool’ was developed by coupling a new predictive deterioration model (based on visual surface prediction of deterioration encompassing colour, texture and spoilage development) with models of the literature for respiration and permeation. A major input of this modelling tool is the maximal percentage of deterioration (MAD) which was assessed from dedicated consumers’ studies. Strawberries of the variety Charlotte were selected as the model food for its high perishability, high respiration rate; 50-100 ml CO₂/h/kg produced at 20°C, allowing it to be a good representative of challenging post-harvest storage. A value of 13% was determined as a limit of acceptability for the consumers, permitting to define products’ shelf life. The ‘Virtual MAP modeling tool’ was validated in isothermal conditions (5, 10 and 20°C) and in dynamic temperature conditions mimicking commercial post-harvest storage of strawberries. RMSE values were systematically lower than 3% for respectively, O₂, CO₂ and deterioration profiles as a function of time confirming the goodness of model fitting. For the investigated temperature profile, a shelf life gain of 0.33 days was obtained in MAP compared to the conventional storage situation (no MAP condition). Shelf life gain of more than 1 day could be obtained for optimized post-harvest conditions as numerically investigated. Such shelf life gain permitted to anticipate a significant reduction of food losses at the distribution and consumer steps. This food losses' reduction as a function of shelf life gain has been quantified using a dedicated mathematical equation that has been developed for this purpose.

Keywords: food losses and wastes, modified atmosphere packaging, mathematical modeling, shelf life prediction

Procedia PDF Downloads 183
2545 Monitoring the Responses to Nociceptive Stimuli During General Anesthesia Based on Electroencephalographic Signals in Surgical Patients Undergoing General Anesthesia with Laryngeal Mask Airway (LMA)

Authors: Ofelia Loani Elvir Lazo, Roya Yumul, Sevan Komshian, Ruby Wang, Jun Tang

Abstract:

Background: Monitoring the anti-nociceptive drug effect is useful because a sudden and strong nociceptive stimulus may result in untoward autonomic responses and muscular reflex movements. Monitoring the anti-nociceptive effects of perioperative medications has long been desiredas a way to provide anesthesiologists information regarding a patient’s level of antinociception and preclude any untoward autonomic responses and reflexive muscular movements from painful stimuli intraoperatively.To this end, electroencephalogram (EEG) based tools includingBIS and qCON were designed to provide information about the depth of sedation whileqNOXwas produced to informon the degree of antinociception.The goal of this study was to compare the reliability of qCON/qNOX to BIS asspecific indicators of response to nociceptive stimulation. Methods: Sixty-two patients undergoing general anesthesia with LMA were included in this study. Institutional Review Board(IRB) approval was obtained, and informed consent was acquired prior to patient enrollment. Inclusion criteria included American Society of Anesthesiologists (ASA) class I-III, 18 to 80 years of age, and either gender. Exclusion criteria included the inability to consent. Withdrawal criteria included conversion to endotracheal tube and EEG malfunction. BIS and qCON/qNOX electrodes were simultaneously placed o62n all patientsprior to induction of anesthesia and were monitored throughout the case, along with other perioperative data, including patient response to noxious stimuli. All intraoperative decisions were made by the primary anesthesiologist without influence from qCON/qNOX. Student’s t-distribution, prediction probability (PK), and ANOVA were used to statistically compare the relative ability to detect nociceptive stimuli for each index. Twenty patients were included for the preliminary analysis. Results: A comparison of overall intraoperative BIS, qCON and qNOX indices demonstrated no significant difference between the three measures (N=62, p> 0.05). Meanwhile, index values for qNOX (62±18) were significantly higher than those for BIS (46±14) and qCON (54±19) immediately preceding patient responses to nociceptive stimulation in a preliminary analysis (N=20, * p= 0.0408). Notably, certain hemodynamic measurements demonstrated a significant increase in response to painful stimuli (MAP increased from74±13 mm Hg at baseline to 84± 18 mm Hg during noxious stimuli [p= 0.032] and HR from 76±12 BPM at baseline to 80±13BPM during noxious stimuli[p=0.078] respectively). Conclusion: In this observational study, BIS and qCON/qNOX provided comparable information on patients’ level of sedation throughout the course of an anesthetic. Meanwhile, increases in qNOX values demonstrated a superior correlation to an imminent response to stimulation relative to all other indices.

Keywords: antinociception, bispectral index (BIS), general anesthesia, laryngeal mask airway, qCON/qNOX

Procedia PDF Downloads 92