Search results for: data infrastructure
24929 Performance Evaluation of the Classic seq2seq Model versus a Proposed Semi-supervised Long Short-Term Memory Autoencoder for Time Series Data Forecasting
Authors: Aswathi Thrivikraman, S. Advaith
Abstract:
The study is aimed at designing encoders for deciphering intricacies in time series data by redescribing the dynamics operating on a lower-dimensional manifold. A semi-supervised LSTM autoencoder is devised and investigated to see if the latent representation of the time series data can better forecast the data. End-to-end training of the LSTM autoencoder, together with another LSTM network that is connected to the latent space, forces the hidden states of the encoder to represent the most meaningful latent variables relevant for forecasting. Furthermore, the study compares the predictions with those of a traditional seq2seq model.Keywords: LSTM, autoencoder, forecasting, seq2seq model
Procedia PDF Downloads 16024928 The Role of the University Campus in Shaping the Built Environment of Its Local Communities
Authors: Lawrence Babatunde Ogunsanya
Abstract:
The university has been in existence, in one form or another, for over a thousand years and has contributed in multiple ways to modern society. It is considered a center of culture, aesthetic direction, and moral forces shaping the civilized society. Universities also contribute in important ways to the economic health and physical landscape of neighborhoods and cities, serving as permanent fixtures of the urban economy and the built environment. Due to the size and location of university campuses, they put demands on the urban character, systems, and infrastructure of the neighboring communities. These demands or impacts have substantial implications for the built environment. It is important to understand the impacts university campuses have on their surrounding communities and urban environments because the destiny of the university is inextricably linked to the destiny of the adjacent neighborhoods. This paper identifies the diverse factors generated by universities in shaping the built environments of their local communities within different spatial contexts such as urban, rural, and township regions situated in South Africa.By applying a mixed methods approach in four university campuses within the province of KwaZulu-Natal in South Africa. Several data collection instruments were used, such as in-depth interviews, a survey, remote sensing, and onsite observations. The thematic findings revealed numerous factors which influence the morphology of neighbourhood built environments and the myriad of relationships the university has with its local community. This paper also reveals that the university campus is more than a precinct which accommodates buildings and academic endeavours, the role of the university in this century has changed dramatically from its traditional roots of being an elite enclave of academics to a more inclusive and engaged entity that is concerned about providing relevant holistic solutions to society’s current challenges in the built environment.Keywords: university campus, built environment, architecture, neighborhood planning
Procedia PDF Downloads 13324927 Towards Sustainable Construction in the United Arab Emirates: Challenges and Opportunities
Authors: Yousef Alqaryouti, Mariam Al Suwaidi, Raed Mohmood AlKhuwaildi, Hind Kolthoum, Issa Youssef, Mohammed Al Imam
Abstract:
The UAE has experienced rapid economic growth due to its mature oil production industry, leading to a surge in urbanization and infrastructure development in the construction sector. Sustainable development practices are becoming increasingly important, and the UAE government has taken proactive measures to promote them, including the introduction of sustainable building codes, energy-efficient technologies, and renewable energy sources. Initiatives such as the Masdar City project and the Emirates Green Building Council further demonstrate the government's commitment to a cleaner and healthier environment. By adopting sustainable practices, the UAE can reduce its carbon footprint, lessen its reliance on fossil fuels, and achieve cost savings in the long run. The purpose of this paper is to conduct a thorough review of the current state of sustainability in the construction industry of the UAE. Our research methodology includes a local market survey and qualitative observational analysis of executed housing construction projects by the Mohammed Bin Rashid Housing Establishment. The market survey assesses eleven different challenging factors that affect sustainable construction project delivery. The qualitative observational research is based on data collected from three projects, including construction progress, bill of quantity, and construction program. The study concludes that addressing these challenges requires a collaborative team approach, incentivized contracts, traditional project management practices, an integrated project team, and an increase in sustainability awareness among stakeholders. The recommendations proposed in this study aim to promote and improve the application of sustainability in the UAE's construction industry for the future.Keywords: sustainability, construction, challenges, opportunities, case study, market survey
Procedia PDF Downloads 6024926 The Analysis of Emergency Shutdown Valves Torque Data in Terms of Its Use as a Health Indicator for System Prognostics
Authors: Ewa M. Laskowska, Jorn Vatn
Abstract:
Industry 4.0 focuses on digital optimization of industrial processes. The idea is to use extracted data in order to build a decision support model enabling use of those data for real time decision making. In terms of predictive maintenance, the desired decision support tool would be a model enabling prognostics of system's health based on the current condition of considered equipment. Within area of system prognostics and health management, a commonly used health indicator is Remaining Useful Lifetime (RUL) of a system. Because the RUL is a random variable, it has to be estimated based on available health indicators. Health indicators can be of different types and come from different sources. They can be process variables, equipment performance variables, data related to number of experienced failures, etc. The aim of this study is the analysis of performance variables of emergency shutdown valves (ESV) used in oil and gas industry. ESV is inspected periodically, and at each inspection torque and time of valve operation are registered. The data will be analyzed by means of machine learning or statistical analysis. The purpose is to investigate whether the available data could be used as a health indicator for a prognostic purpose. The second objective is to examine what is the most efficient way to incorporate the data into predictive model. The idea is to check whether the data can be applied in form of explanatory variables in Markov process or whether other stochastic processes would be a more convenient to build an RUL model based on the information coming from registered data.Keywords: emergency shutdown valves, health indicator, prognostics, remaining useful lifetime, RUL
Procedia PDF Downloads 9624925 Comparative Analysis of Physical Natural Parameters Influencing Baltic Sea Coastal Tourism in the Context of Climate Change
Authors: Akvelina Čuladytė, Inga Dailidienė
Abstract:
Climate change and sustainable development are among the most significant global challenges, directly impacting various economic sectors, including coastal tourism. The United Nations (UN) and its specialized agencies, such as the World Tourism Organization (UNWTO) and the United Nations Convention on the Law of the Sea (UNCLOS), examine coastal tourism from multiple perspectives, emphasizing its economic, social, and environmental importance, as well as the challenges related to sustainability. Sustainability, linked to climate change, is an integral concept requiring a holistic approach to managing natural resources, reducing emissions, protecting ecosystems, and implementing adaptation strategies. Only by integrating these principles can we adapt to the impacts of climate change, reduce the carbon footprint of the tourism sector, and manage tourist flows to prevent excessive strain on marine and coastal ecosystems. Climate change is having an increasing impact on the Baltic Sea region, causing rising temperatures, sea level rise, more frequent extreme weather events, and coastal erosion. These changes can significantly affect the tourism sector, which is important not only economically but also socially. The primary aim of this study is to analyze changes in physical natural parameters (temperature, precipitation, water quality, sea level rise, and coastal erosion) that influence Baltic Sea coastal tourism in order to identify and assess how climate change impacts coastal tourism. The Baltic States, with its long and diverse coastlines, are particularly sensitive to the impacts of climate change, which can influence the geography of coastal tourism. Therefore, the aim is to assess how these factors determine the attractiveness and opportunities for tourism. In studying the effects of climate change on the geography of coastal tourism, methods used in climatology, as well as historical meteorological and hydrological data, are applied. Analyzing historical data on extreme events, such as storms, heatwaves, and floods, helps determine their impact on tourism infrastructure and visitor numbers. Based on the North Atlantic Oscillation (NAO) index, both limiting and enhancing factors for tourism are identified, including the benefits of a longer warm season and the increasing frequency of extreme weather conditions. The expected research results provide insights into how climate change and sustainable development strategies can shape and transform the structure and trends of coastal tourism in the region. The findings indicate that meteorological conditions and climate change play a significant role in regulating tourism flows.Keywords: coastal tourism, climate change impacts, physical natural parameters, NAO index
Procedia PDF Downloads 1324924 Block Mining: Block Chain Enabled Process Mining Database
Authors: James Newman
Abstract:
Process mining is an emerging technology that looks to serialize enterprise data in time series data. It has been used by many companies and has been the subject of a variety of research papers. However, the majority of current efforts have looked at how to best create process mining from standard relational databases. This paper is the first pass at outlining a database custom-built for the minimal viable product of process mining. We present Block Miner, a blockchain protocol to store process mining data across a distributed network. We demonstrate the feasibility of storing process mining data on the blockchain. We present a proof of concept and show how the intersection of these two technologies helps to solve a variety of issues, including but not limited to ransomware attacks, tax documentation, and conflict resolution.Keywords: blockchain, process mining, memory optimization, protocol
Procedia PDF Downloads 11024923 Ethereum Based Smart Contracts for Trade and Finance
Authors: Rishabh Garg
Abstract:
Traditionally, business parties build trust with a centralized operating mechanism, such as payment by letter of credit. However, the increase in cyber-attacks and malicious hacking has jeopardized business operations and finance practices. Emerging markets, owing to their higher banking risks and bigger presence of digital financing, are looking forward to technology-driven solutions, financial inclusion and innovative working paradigms. Blockchain has the potential to enhance transaction transparency and supply chain traceability. It has captured a vast landscape with 200 million crypto users worldwide. Fintech and blockchain products are popping up across brokerage, digital wallets, exchanges, post-trade clearance, settlement, middleware, infrastructure, and base protocols.Keywords: blockchain, distributed ledger technology, decentralized applications, ethereum, smart contracts, trade finance
Procedia PDF Downloads 16024922 Vulnerability of Groundwater to Pollution in Akwa Ibom State, Southern Nigeria, using the DRASTIC Model and Geographic Information System (GIS)
Authors: Aniedi A. Udo, Magnus U. Igboekwe, Rasaaq Bello, Francis D. Eyenaka, Michael C. Ohakwere-Eze
Abstract:
Groundwater vulnerability to pollution was assessed in Akwa Ibom State, Southern Nigeria, with the aim of locating areas with high potentials for resource contamination, especially due to anthropogenic influence. The electrical resistivity method was utilized in the collection of the initial field data. Additional data input, which included depth to static water level, drilled well log data, aquifer recharge data, percentage slope, as well as soil information, were sourced from secondary sources. The initial field data were interpreted both manually and with computer modeling to provide information on the geoelectric properties of the subsurface. Interpreted results together with the secondary data were used to develop the DRASTIC thematic maps. A vulnerability assessment was performed using the DRASTIC model in a GIS environment and areas with high vulnerability which needed immediate attention was clearly mapped out and presented using an aquifer vulnerability map. The model was subjected to validation and the rate of validity was 73% within the area of study.Keywords: groundwater, vulnerability, DRASTIC model, pollution
Procedia PDF Downloads 21124921 A Review Paper on Data Security in Precision Agriculture Using Internet of Things
Authors: Tonderai Muchenje, Xolani Mkhwanazi
Abstract:
Precision agriculture uses a number of technologies, devices, protocols, and computing paradigms to optimize agricultural processes. Big data, artificial intelligence, cloud computing, and edge computing are all used to handle the huge amounts of data generated by precision agriculture. However, precision agriculture is still emerging and has a low level of security features. Furthermore, future solutions will demand data availability and accuracy as key points to help farmers, and security is important to build robust and efficient systems. Since precision agriculture comprises a wide variety and quantity of resources, security addresses issues such as compatibility, constrained resources, and massive data. Moreover, conventional protection schemes used in the traditional internet may not be useful for agricultural systems, creating extra demands and opportunities. Therefore, this paper aims at reviewing state of the art of precision agriculture security, particularly in open field agriculture, discussing its architecture, describing security issues, and presenting the major challenges and future directions.Keywords: precision agriculture, security, IoT, EIDE
Procedia PDF Downloads 9324920 ePAM: Advancing Sustainable Mobility through Digital Parking, AI-Driven Vehicle Recognition, and CO₂ Reporting
Authors: Robert Monsberger
Abstract:
The increasing scarcity of resources and the pressing challenge of climate change demand transformative technological, economic, and societal approaches. In alignment with the European Green Deal's goal to achieve net-zero greenhouse gas emissions by 2050, this paper presents the development and implementation of an electronic parking and mobility system (ePAM). This system offers a distinct, integrated solution aimed at promoting climate-positive mobility, reducing individual vehicle use, and advancing the digital transformation of off-street parking. The core objectives include the accurate recognition of electric vehicles and occupant counts using advanced camera-based systems, achieving a very high accuracy. This capability enables the dynamic categorization and classification of vehicles to provide fair and automated tariff adjustments. The study also seeks to replace physical barriers with virtual ‘digital gates’ using augmented reality, significantly improving user acceptance as shown in studies conducted. The system is designed to operate as an end-to-end software solution, enabling a fully digital and paperless parking management system by leveraging license plate recognition (LPR) and metadata processing. By eliminating physical infrastructure like gates and terminals, the system significantly reduces resource consumption, maintenance complexity, and operational costs while enhancing energy efficiency. The platform also integrates CO₂ reporting tools to support compliance with upcoming EU emission trading schemes and to incentivize eco-friendly transportation behaviors. By fostering the adoption of electric vehicles and ride-sharing models, the system contributes to the optimization of traffic flows and the minimization of search traffic in urban centers. The platform's open data interfaces enable seamless integration into multimodal transport systems, facilitating a transition from individual to public transportation modes. This study emphasizes sustainability, data privacy, and compliance with the AI Act, aiming to achieve a market share of at least 4.5% in the DACH region by 2030. ePAM sets a benchmark for innovative mobility solutions, driving significant progress toward climate-neutral urban mobility.Keywords: sustainable mobility, digital parking, AI-driven vehicle recognition, license plate recognition, virtual gates, multimodal transport integration
Procedia PDF Downloads 1024919 Commercial Automobile Insurance: A Practical Approach of the Generalized Additive Model
Authors: Nicolas Plamondon, Stuart Atkinson, Shuzi Zhou
Abstract:
The insurance industry is usually not the first topic one has in mind when thinking about applications of data science. However, the use of data science in the finance and insurance industry is growing quickly for several reasons, including an abundance of reliable customer data, ferocious competition requiring more accurate pricing, etc. Among the top use cases of data science, we find pricing optimization, customer segmentation, customer risk assessment, fraud detection, marketing, and triage analytics. The objective of this paper is to present an application of the generalized additive model (GAM) on a commercial automobile insurance product: an individually rated commercial automobile. These are vehicles used for commercial purposes, but for which there is not enough volume to apply pricing to several vehicles at the same time. The GAM model was selected as an improvement over GLM for its ease of use and its wide range of applications. The model was trained using the largest split of the data to determine model parameters. The remaining part of the data was used as testing data to verify the quality of the modeling activity. We used the Gini coefficient to evaluate the performance of the model. For long-term monitoring, commonly used metrics such as RMSE and MAE will be used. Another topic of interest in the insurance industry is to process of producing the model. We will discuss at a high level the interactions between the different teams with an insurance company that needs to work together to produce a model and then monitor the performance of the model over time. Moreover, we will discuss the regulations in place in the insurance industry. Finally, we will discuss the maintenance of the model and the fact that new data does not come constantly and that some metrics can take a long time to become meaningful.Keywords: insurance, data science, modeling, monitoring, regulation, processes
Procedia PDF Downloads 7924918 Companies’ Internationalization: Multi-Criteria-Based Prioritization Using Fuzzy Logic
Authors: Jorge Anibal Restrepo Morales, Sonia Martín Gómez
Abstract:
A model based on a logical framework was developed to quantify SMEs' internationalization capacity. To do so, linguistic variables, such as human talent, infrastructure, innovation strategies, FTAs, marketing strategies, finance, etc. were integrated. It is argued that a company’s management of international markets depends on internal factors, especially capabilities and resources available. This study considers internal factors as the biggest business challenge because they force companies to develop an adequate set of capabilities. At this stage, importance and strategic relevance have to be defined in order to build competitive advantages. A fuzzy inference system is proposed to model the resources, skills, and capabilities that determine the success of internationalization. Data: 157 linguistic variables were used. These variables were defined by international trade entrepreneurs, experts, consultants, and researchers. Using expert judgment, the variables were condensed into18 factors that explain SMEs’ export capacity. The proposed model is applied by means of a case study of the textile and clothing cluster in Medellin, Colombia. In the model implementation, a general index of 28.2 was obtained for internationalization capabilities. The result confirms that the sector’s current capabilities and resources are not sufficient for a successful integration into the international market. The model specifies the factors and variables, which need to be worked on in order to improve export capability. In the case of textile companies, the lack of a continuous recording of information stands out. Likewise, there are very few studies directed towards developing long-term plans, and., there is little consistency in exports criteria. This method emerges as an innovative management tool linked to internal organizational spheres and their different abilities.Keywords: business strategy, exports, internationalization, fuzzy set methods
Procedia PDF Downloads 29924917 Modeling Pan Evaporation Using Intelligent Methods of ANN, LSSVM and Tree Model M5 (Case Study: Shahroud and Mayamey Stations)
Authors: Hamidreza Ghazvinian, Khosro Ghazvinian, Touba Khodaiean
Abstract:
The importance of evaporation estimation in water resources and agricultural studies is undeniable. Pan evaporation are used as an indicator to determine the evaporation of lakes and reservoirs around the world due to the ease of interpreting its data. In this research, intelligent models were investigated in estimating pan evaporation on a daily basis. Shahroud and Mayamey were considered as the studied cities. These two cities are located in Semnan province in Iran. The mentioned cities have dry weather conditions that are susceptible to high evaporation potential. Meteorological data of 11 years of synoptic stations of Shahrood and Mayamey cities were used. The intelligent models used in this study are Artificial Neural Network (ANN), Least Squares Support Vector Machine (LSSVM), and M5 tree models. Meteorological parameters of minimum and maximum air temperature (Tmax, Tmin), wind speed (WS), sunshine hours (SH), air pressure (PA), relative humidity (RH) as selected input data and evaporation data from pan (EP) to The output data was considered. 70% of data is used at the education level, and 30 % of the data is used at the test level. Models used with explanation coefficient evaluation (R2) Root of Mean Squares Error (RMSE) and Mean Absolute Error (MAE). The results for the two Shahroud and Mayamey stations showed that the above three models' operations are rather appropriate.Keywords: pan evaporation, intelligent methods, shahroud, mayamey
Procedia PDF Downloads 8024916 A Study on Unplanned Settlement in Kabul City
Authors: Samir Ranjbar, Nasrullah Istanekzai
Abstract:
According to a report published in The Guardian, Kabul, the capital city of Afghanistan is the fifth fastest growing city in the world, whose population has increased fourfold since 2001 from 1.2 million to 4.8 million people. The main reason for this increment is identified as the return of Afghans migrated during the civil war. In addition to the return of immigrants, a steep economic growth due to foreign assistance in last decade creating lots of job opportunities in Kabul resulted in the attraction of individuals from the neighboring provinces as well. However, the development of urban facilities such as water supply system, housing transportation and waste management systems has yet to catch up with this rapid increase in population. Since Kabul city has developed traditionally and municipal governance had very limited capacity to implement municipal bylaws. As an unwanted consequence of this growth 70% of Kabul citizens contributed to developing informal settlement for which we can say that around three million people living in informally settled areas, lacking the very vital social and physical infrastructures of livelihood. This research focuses on a region with 30 ha area and 2100 people residents in the center of Kabul city. A comprehensive land readjustment concept plan has been formulated for this area. Through this concept plan, physical and social infrastructure has been demonstrated and analyzed. Findings of this paper propose a solution for the problems of this unplanned area in Kabul which is readjusting of unplanned area by a self-supporting process. This process does not need governmental budget and can be applied by government, private sectors and landowner associations. Furthermore, by implementing the Land Readjustment process, conceptual plans can be built for unplanned areas, maximum facilities can be brought to the residents’ urban life, improve the environment for the users’ benefit, promote the culture and sense of cooperation, participation and coexistence in the mind of people, improving the transport system, improvement in economic status (the value of land increases due to infrastructure availability and land legalization). In addition to all these benefits for the public, we can raise the revenue of government by collecting the taxes from landowners. This process is implemented in most of countries of the world, it was implemented for the first time in Germany and after that in most cities of Japan as well, and is known as one of the effective processes for infrastructural development. To sum up, the notable characteristic of the Land readjustment process is that it works on the concept of mutual interest in which both landowners and the government take advantage. However, in this process, the engagement of community is very important and without public cooperation, this process can face the failure.Keywords: land readjustment, informal settlement, Kabul, Afghanistan
Procedia PDF Downloads 25924915 Overview of E-government Adoption and Implementation in Ghana
Authors: Isaac Kofi Mensah
Abstract:
E-government has been adopted and used by many governments/countries around the world including Ghana to provide citizens and businesses with more accurate, real-time, and high quality services and information. The objective of this paper is to present an overview of the Government of Ghana’s (GoG) adoption and implement of e-government and its usage by the Ministries, Departments and its agencies (MDAs) as well as other public sector institutions to deliver efficient public service to the general public i.e. citizens, business etc. Government implementation of e-government focused on facilitating effective delivery of government service to the public and ultimately to provide efficient government-wide electronic means of sharing information and knowledge through a network infrastructure developed to connect all major towns and cities, Ministries, Departments and Agencies and other public sector organizations in Ghana. One aim for the Government of Ghana use of ICT in public administration is to improve productivity in government administration and service by facilitating the exchange of information to enable better interaction and coordination of work among MDAs, citizens and private businesses. The study was prepared using secondary sources of data from government policy documents, national and international published reports, journal articles, and web sources. This study indicates that through the e-government initiative, currently citizens and businesses can access and pay for services such as renewal of driving license, business registration, payment of taxes, acquisition of marriage and birth certificates as well as application for passport through the GoG electronic service (eservice) and electronic payment (epay) portal. Further, this study shows that there is an enormous commitment from GoG to adopt and implement e-government as a tool not only to transform the business of government but also to bring efficiency in public services delivered by the MDAs. To ascertain this, a further study need to be carried out to determine if the use of e-government has brought about the anticipated improvements and efficiency in service delivery of MDAs and other state institutions in Ghana.Keywords: electronic government, electronic services, electronic pay, MDAs
Procedia PDF Downloads 51724914 Street Begging: A Loss of Human Resource in Nigeria
Authors: Sulaiman Kassim Ibrahim
Abstract:
Human Resource is one of the most important elements in any country. They are very important in actualizing the potential of every sector in the country, i.e Agric, Education, Finance, Judiciary and all formal and informal sectors. The purpose of this study is to investigate the loss of human resource in Nigeria through street begging. The study used intensive literature review. Finding from the review indicate that a significant number of human resource are into street begging in the country undeveloped and untapped. The paper recommend that policy should be initiated to discourage street begging, develop this resource through education and empowerment, stop rural-urban migration by providing infrastructure in the rural areas and abolish informal (Almajiri or beggars school) and transform it into formal school.Keywords: human resource, street begging, Nigeria, Almajiri
Procedia PDF Downloads 25724913 Generating Insights from Data Using a Hybrid Approach
Authors: Allmin Susaiyah, Aki Härmä, Milan Petković
Abstract:
Automatic generation of insights from data using insight mining systems (IMS) is useful in many applications, such as personal health tracking, patient monitoring, and business process management. Existing IMS face challenges in controlling insight extraction, scaling to large databases, and generalising to unseen domains. In this work, we propose a hybrid approach consisting of rule-based and neural components for generating insights from data while overcoming the aforementioned challenges. Firstly, a rule-based data 2CNL component is used to extract statistically significant insights from data and represent them in a controlled natural language (CNL). Secondly, a BERTSum-based CNL2NL component is used to convert these CNLs into natural language texts. We improve the model using task-specific and domain-specific fine-tuning. Our approach has been evaluated using statistical techniques and standard evaluation metrics. We overcame the aforementioned challenges and observed significant improvement with domain-specific fine-tuning.Keywords: data mining, insight mining, natural language generation, pre-trained language models
Procedia PDF Downloads 12624912 Review of K0-Factors and Related Nuclear Data of the Selected Radionuclides for Use in K0-NAA
Authors: Manh-Dung Ho, Van-Giap Pham, Van-Doanh Ho, Quang-Thien Tran, Tuan-Anh Tran
Abstract:
The k0-factors and related nuclear data, i.e. the Q0-factors and effective resonance energies (Ēr) of the selected radionuclides which are used in the k0-based neutron activation analysis (k0-NAA), were critically reviewed to be integrated in the “k0-DALAT” software. The k0- and Q0-factors of some short-lived radionuclides: 46mSc, 110Ag, 116m2In, 165mDy, and 183mW, were experimentally determined at the Dalat research reactor. The other radionuclides selected are: 20F, 36S, 49Ca, 60mCo, 60Co, 75Se, 77mSe, 86mRb, 115Cd, 115mIn, 131Ba, 134mCs, 134Cs, 153Gd, 153Sm, 159Gd, 170Tm, 177mYb, 192Ir, 197mHg, 239U and 239Np. The reviewed data as compared with the literature data were biased within 5.6-7.3% in which the experimental re-determined factors were within 6.1 and 7.3%. The NIST standard reference materials: Oyster Tissue (1566b), Montana II Soil (2711a) and Coal Fly Ash (1633b) were used to validate the new reviewed data showing that the new data gave an improved k0-NAA using the “k0-DALAT” software with a factor of 4.5-6.8% for the investigated radionuclides.Keywords: neutron activation analysis, k0-based method, k0 factor, Q0 factor, effective resonance energy
Procedia PDF Downloads 13024911 Optimizing Electric Vehicle Charging with Charging Data Analytics
Authors: Tayyibah Khanam, Mohammad Saad Alam, Sanchari Deb, Yasser Rafat
Abstract:
Electric vehicles are considered as viable replacements to gasoline cars since they help in reducing harmful emissions and stimulate power generation through renewable energy sources, hence contributing to sustainability. However, one of the significant obstacles in the mass deployment of electric vehicles is the charging time anxiety among users and, thus, the subsequent large waiting times for available chargers at charging stations. Data analytics, on the other hand, has revolutionized the decision-making tasks of management and operating systems since its arrival. In this paper, we attempt to optimize the choice of EV charging stations for users in their vicinity by minimizing the time taken to reach the charging stations and the waiting times for available chargers. Time taken to travel to the charging station is calculated by the Google Maps API and the waiting times are predicted by polynomial regression of the historical data stored. The proposed framework utilizes real-time data and historical data from all operating charging stations in the city and assists the user in finding the best suitable charging station for their current situation and can be implemented in a mobile phone application. The algorithm successfully predicts the most optimal choice of a charging station and the minimum required time for various sample data sets.Keywords: charging data, electric vehicles, machine learning, waiting times
Procedia PDF Downloads 20024910 Modelling Affordable Waste Management Solutions for India
Authors: Pradip Baishya, D. K. Mahanta
Abstract:
Rapid and unplanned urbanisation in most cities of India has progressively increased the problem of managing municipal waste in the past few years. With insufficient infrastructure and funds, Municipalities in most cities are struggling to cope with the pace of waste generated. Open dumping is widely in practice as a cheaper option. Scientific disposal of waste in such a large scale with the elements of segregation, recycling, landfill, and incineration involves sophisticated and expensive plants. In an effort to finding affordable and simple solutions to address this burning issue of waste disposal, a semi-mechanized plant has been designed underlying the concept of a zero waste community. The fabrication work of the waste management unit is carried out by local skills from locally available materials. A resident colony in the city of Guwahati has been chosen, which is seen as a typical representative of most cities in India in terms of size and key issues surrounding waste management. Scientific management and disposal of waste on site is carried out on the principle of reduce, reuse and recycle from segregation to compositing. It is a local community participatory model, which involves all stakeholders in the process namely rag pickers, residents, municipality and local industry. Studies were conducted to testify the plant as revenue earning self-sustaining model in the long term. Current working efficiency of plant for segregation was found to be 1kg per minute. Identifying bottlenecks in the success of the model, data on efficiency of the plant, economics of its fabrication were part of the study. Similar satellite waste management plants could potentially be a solution to supplement the waste management system of municipalities of similar sized cities in India or South East Asia with similar issues surrounding waste disposal.Keywords: affordable, rag pickers, recycle, reduce, reuse, segregation, zero waste
Procedia PDF Downloads 31024909 Finding Data Envelopment Analysis Targets Using Multi-Objective Programming in DEA-R with Stochastic Data
Authors: R. Shamsi, F. Sharifi
Abstract:
In this paper, we obtain the projection of inefficient units in data envelopment analysis (DEA) in the case of stochastic inputs and outputs using the multi-objective programming (MOP) structure. In some problems, the inputs might be stochastic while the outputs are deterministic, and vice versa. In such cases, we propose a multi-objective DEA-R model because in some cases (e.g., when unnecessary and irrational weights by the BCC model reduce the efficiency score), an efficient decision-making unit (DMU) is introduced as inefficient by the BCC model, whereas the DMU is considered efficient by the DEA-R model. In some other cases, only the ratio of stochastic data may be available (e.g., the ratio of stochastic inputs to stochastic outputs). Thus, we provide a multi-objective DEA model without explicit outputs and prove that the input-oriented MOP DEA-R model in the invariable return to scale case can be replaced by the MOP-DEA model without explicit outputs in the variable return to scale and vice versa. Using the interactive methods for solving the proposed model yields a projection corresponding to the viewpoint of the DM and the analyst, which is nearer to reality and more practical. Finally, an application is provided.Keywords: DEA-R, multi-objective programming, stochastic data, data envelopment analysis
Procedia PDF Downloads 11124908 Exploring the Use of Schoolgrounds for the Integration of Environmental and Sustainability Education in Natural and Social Sciences Pedagogy: A Case Study
Authors: Headman Hebe, Arnold Taringa
Abstract:
Background of the study: The benefits derived from Environmental and Sustainability Education (ESE) go beyond obtaining knowledge about the environment and the impact of human beings on the environment. Hence, it is sensible to expose learners to various resources that could enable meaningful environment-inclined pedagogy. The schoolgrounds, where they are utilised to promote ESE, benefit holistic learner development. However, empirical evidence, globally, suggests that young children’s contact with nature is declining due to urbanization, safety concerns by parents/guardians, and greater dependency on technology. Modern children spend much time on videogames and social media with very little time in the natural environment. Furthermore, national education departments in numerous countries have made tangible efforts to embed environmental and place-based learning to their school curricula. South Africa is one of those countries whose national school education curriculum advocates for ESE in pedagogy. Nevertheless, there is paucity of research conducted in South Africa on schoolgrounds as potential enablers of ESE and tools to foster a connection between youngsters and the natural environment. Accordingly, this study was essential as it seeks to determine the extent to which environmental learning is accommodated in pedagogy. Significantly, it investigates efforts made to use schoolgrounds for pedagogical purposes to connect children with the natural environment. Therefore, this study was conducted to investigate the accessibility and use of schoolgrounds for environment-inclined pedagogy in Natural and Social Sciences in two schools located in the Mpumalanga Province of South Africa. It tries to answer the question: To what extent are schoolgrounds used to promote environmental and sustainability education in the selected schools?The sub-questions: How do teachers and learners perceive the use of schoolgrounds for environmental and sustainability education activities? How does the organization of schoolgrounds offer opportunities for environmental education activities and accessibility for learners? Research method: This qualitative–interpretive case study used purposive and convenient sampling for participant selection. Forty-six respondents: 40 learners (twenty grade 7 learners per school), 2 school principals and 4 grade 7 participated in this study. Data collection tools were observations, interviews, audio-visual recordings and questionnaires while data analysis was done thematically. Major findings: The findings of the study point to: The lack of teacher training and infrastructure in the schoolgrounds and, no administrative support. Unclear curriculum guidelines on the use of schoolgrounds for ESE. The availability various elements in the schoolgrounds that could aid ESE activities. Learners denied access to certain parts of the schoolgrounds. Lack of time and curriculum demands constrain teachers from using schoolgrounds.Keywords: affordances, environment and sustainability education, experiential learning, schoolgrounds
Procedia PDF Downloads 6724907 Integrated Model for Enhancing Data Security Processing Time in Cloud Computing
Authors: Amani A. Saad, Ahmed A. El-Farag, El-Sayed A. Helali
Abstract:
Cloud computing is an important and promising field in the recent decade. Cloud computing allows sharing resources, services and information among the people of the whole world. Although the advantages of using clouds are great, but there are many risks in a cloud. The data security is the most important and critical problem of cloud computing. In this research a new security model for cloud computing is proposed for ensuring secure communication system, hiding information from other users and saving the user's times. In this proposed model Blowfish encryption algorithm is used for exchanging information or data, and SHA-2 cryptographic hash algorithm is used for data integrity. For user authentication process a simple user-name and password is used, the password uses SHA-2 for one way encryption. The proposed system shows an improvement of the processing time of uploading and downloading files on the cloud in secure form.Keywords: cloud computing, data security, SAAS, PAAS, IAAS, Blowfish
Procedia PDF Downloads 36124906 Comparison of Statistical Methods for Estimating Missing Precipitation Data in the River Subbasin Lenguazaque, Colombia
Authors: Miguel Cañon, Darwin Mena, Ivan Cabeza
Abstract:
In this work was compared and evaluated the applicability of statistical methods for the estimation of missing precipitations data in the basin of the river Lenguazaque located in the departments of Cundinamarca and Boyacá, Colombia. The methods used were the method of simple linear regression, distance rate, local averages, mean rates, correlation with nearly stations and multiple regression method. The analysis used to determine the effectiveness of the methods is performed by using three statistical tools, the correlation coefficient (r2), standard error of estimation and the test of agreement of Bland and Altmant. The analysis was performed using real rainfall values removed randomly in each of the seasons and then estimated using the methodologies mentioned to complete the missing data values. So it was determined that the methods with the highest performance and accuracy in the estimation of data according to conditions that were counted are the method of multiple regressions with three nearby stations and a random application scheme supported in the precipitation behavior of related data sets.Keywords: statistical comparison, precipitation data, river subbasin, Bland and Altmant
Procedia PDF Downloads 47024905 Perception of Nurses and Caregivers on Fall Preventive Management for Hospitalized Children Based on Ecological Model
Authors: Mirim Kim, Won-Oak Oh
Abstract:
Purpose: The purpose of this study was to identify hospitalized children's fall risk factors, fall prevention status and fall prevention strategies recognized by nurses and caregivers of hospitalized children and present an ecological model for fall preventive management in hospitalized children. Method: The participants of this study were 14 nurses working in medical institutions and having more than one year of child care experience and 14 adult caregivers of children under 6 years of age receiving inpatient treatment at a medical institution. One to one interview was attempted to identify their perception of fall preventive management. Transcribed data were analyzed through latent content analysis method. Results: Fall risk factors in hospitalized children were 'unpredictable behavior', 'instability', 'lack of awareness about danger', 'lack of awareness about falls', 'lack of child control ability', 'lack of awareness about the importance of fall prevention', 'lack of sensitivity to children', 'untidy environment around children', 'lack of personalized facilities for children', 'unsafe facility', 'lack of partnership between healthcare provider and caregiver', 'lack of human resources', 'inadequate fall prevention policy', 'lack of promotion about fall prevention', 'a performanceism oriented culture'. Fall preventive management status of hospitalized children were 'absence of fall prevention capability', 'efforts not to fall', 'blocking fall risk situation', 'limit the scope of children's activity when there is no caregiver', 'encourage caregivers' fall prevention activities', 'creating a safe environment surrounding hospitalized children', 'special management for fall high risk children', 'mutual cooperation between healthcare providers and caregivers', 'implementation of fall prevention policy', 'providing guide signs about fall risk'. Fall preventive management strategies of hospitalized children were 'restrain dangerous behavior', 'inspiring awareness about fall', 'providing fall preventive education considering the child's eye level', 'efforts to become an active subject of fall prevention activities', 'providing customed fall prevention education', 'open communication between healthcare providers and caregivers', 'infrastructure and personnel management to create safe hospital environment', 'expansion fall prevention campaign', 'development and application of a valid fall assessment instrument', 'conversion of awareness about safety'. Conclusion: In this study, the ecological model of fall preventive management for hospitalized children reflects various factors that directly or indirectly affect the fall prevention of hospitalized children. Therefore, these results can be considered as useful baseline data for developing systematic fall prevention programs and hospital policies to prevent fall accident in hospitalized children. Funding: This study was funded by the National Research Foundation of South Korea (grant number NRF-2016R1A2B1015455).Keywords: fall down, safety culture, hospitalized children, risk factors
Procedia PDF Downloads 16924904 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network
Authors: Li Qingjian, Li Ke, He Chun, Huang Yong
Abstract:
In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.Keywords: DBN, SOM, pattern classification, hyperspectral, data compression
Procedia PDF Downloads 34424903 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images
Authors: Masood Varshosaz, Kamyar Hasanpour
Abstract:
In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.Keywords: human recognition, deep learning, drones, disaster mitigation
Procedia PDF Downloads 10124902 Insight Into Database Forensics
Authors: Enas K., Fatimah A., Abeer A., Ghadah A.
Abstract:
Database forensics is a specialized field of digital forensics that investigates and analyzes database systems to recover and evaluate data, particularly in cases of cyberattacks and data breaches. The increasing significance of securing data confidentiality, integrity, and availability has emphasized the need for robust forensic models to preserve data integrity and maintain the chain of evidence. Organizations rely on Database Forensic Investigation (DBFI) to protect critical data, maintain trust, and support legal actions in the event of breaches. To address the complexities of relational and non-relational databases, structured forensic frameworks and tools have been developed. These include the Three-Tier Database Forensic Model (TT-DF) for comprehensive investigations, blockchain-backed logging systems for enhanced evidence reliability, and the FORC tool for mobile SQLite database forensics. Such advancements facilitate data recovery, identify unauthorized access, and reconstruct events for legal proceedings. Practical demonstrations of these tools and frameworks further illustrate their real-world applicability, advancing the effectiveness of database forensics in mitigating modern cybersecurity threats.Keywords: database forensics, cybersecurity, SQLite forensics, digital forensics
Procedia PDF Downloads 1024901 Emotional Artificial Intelligence and the Right to Privacy
Authors: Emine Akar
Abstract:
The majority of privacy-related regulation has traditionally focused on concepts that are perceived to be well-understood or easily describable, such as certain categories of data and personal information or images. In the past century, such regulation appeared reasonably suitable for its purposes. However, technologies such as AI, combined with ever-increasing capabilities to collect, process, and store “big data”, not only require calibration of these traditional understandings but may require re-thinking of entire categories of privacy law. In the presentation, it will be explained, against the background of various emerging technologies under the umbrella term “emotional artificial intelligence”, why modern privacy law will need to embrace human emotions as potentially private subject matter. This argument can be made on a jurisprudential level, given that human emotions can plausibly be accommodated within the various concepts that are traditionally regarded as the underlying foundation of privacy protection, such as, for example, dignity, autonomy, and liberal values. However, the practical reasons for regarding human emotions as potentially private subject matter are perhaps more important (and very likely more convincing from the perspective of regulators). In that respect, it should be regarded as alarming that, according to most projections, the usefulness of emotional data to governments and, particularly, private companies will not only lead to radically increased processing and analysing of such data but, concerningly, to an exponential growth in the collection of such data. In light of this, it is also necessity to discuss options for how regulators could address this emerging threat.Keywords: AI, privacy law, data protection, big data
Procedia PDF Downloads 9124900 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform
Authors: Reza Mohammadzadeh
Abstract:
The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.Keywords: data model, geotechnical risks, machine learning, underground coal mining
Procedia PDF Downloads 280