Search results for: automatic impedance matching
207 Optical and Near-UV Spectroscopic Properties of Low-Redshift Jetted Quasars in the Main Sequence in the Main Sequence Context
Authors: Shimeles Terefe Mengistue, Ascensión Del Olmo, Paola Marziani, Mirjana Pović, María Angeles Martínez-Carballo, Jaime Perea, Isabel M. Árquez
Abstract:
Quasars have historically been classified into two distinct classes, radio-loud (RL) and radio-quiet (RQ), taking into account the presence and absence of relativistic radio jets, respectively. The absence of spectra with a high S/N ratio led to the impression that all quasars (QSOs) are spectroscopically similar. Although different attempts were made to unify these two classes, there is a long-standing open debate involving the possibility of a real physical dichotomy between RL and RQ quasars. In this work, we present new high S/N spectra of 11 extremely powerful jetted quasars with radio-to-optical flux density ratio > 1000 that concomitantly cover the low-ionization emission of Mgii𝜆2800 and Hbeta𝛽 as well as the Feii blends in the redshift range 0.35 < z < 1, observed at Calar Alto Observatory (Spain). This work aims to quantify broad emission line differences between RL and RQ quasars by using the four-dimensional eigenvector 1 (4DE1) parameter space and its main sequence (MS) and to check the effect of powerful radio ejection on the low ionization broad emission lines. Emission lines are analysed by making two complementary approaches, a multicomponent non-linear fitting to account for the individual components of the broad emission lines and by analysing the full profile of the lines through parameters such as total widths, centroid velocities at different fractional intensities, asymmetry, and kurtosis indices. It is found that broad emission lines show large reward asymmetry both in Hbeta𝛽 and Mgii2800A. The location of our RL sources in a UV plane looks similar to the optical one, with weak Feii UV emission and broad Mgii2800A. We supplement the 11 sources with large samples from previous work to gain some general inferences. The result shows, compared to RQ, our extreme RL quasars show larger median Hbeta full width at half maximum (FWHM), weaker Feii emission, larger 𝑀BH, lower 𝐿bol/𝐿Edd, and a restricted space occupation in the optical and UV MS planes. The differences are more elusive when the comparison is carried out by restricting the RQ population to the region of the MS occupied by RL quasars, albeit an unbiased comparison matching 𝑀BH and 𝐿bol/𝐿Edd suggests that the most powerful RL quasars show the highest redward asymmetries in Hbeta.Keywords: galaxies, active, line, profiles, quasars, emission lines, supermassive black holes
Procedia PDF Downloads 60206 Computational Study on Traumatic Brain Injury Using Magnetic Resonance Imaging-Based 3D Viscoelastic Model
Authors: Tanu Khanuja, Harikrishnan N. Unni
Abstract:
Head is the most vulnerable part of human body and may cause severe life threatening injuries. As the in vivo brain response cannot be recorded during injury, computational investigation of the head model could be really helpful to understand the injury mechanism. Majority of the physical damage to living tissues are caused by relative motion within the tissue due to tensile and shearing structural failures. The present Finite Element study focuses on investigating intracranial pressure and stress/strain distributions resulting from impact loads on various sites of human head. This is performed by the development of the 3D model of a human head with major segments like cerebrum, cerebellum, brain stem, CSF (cerebrospinal fluid), and skull from patient specific MRI (magnetic resonance imaging). The semi-automatic segmentation of head is performed using AMIRA software to extract finer grooves of the brain. To maintain the accuracy high number of mesh elements are required followed by high computational time. Therefore, the mesh optimization has also been performed using tetrahedral elements. In addition, model validation with experimental literature is performed as well. Hard tissues like skull is modeled as elastic whereas soft tissues like brain is modeled with viscoelastic prony series material model. This paper intends to obtain insights into the severity of brain injury by analyzing impacts on frontal, top, back, and temporal sites of the head. Yield stress (based on von Mises stress criterion for tissues) and intracranial pressure distribution due to impact on different sites (frontal, parietal, etc.) are compared and the extent of damage to cerebral tissues is discussed in detail. This paper finds that how the back impact is more injurious to overall head than the other. The present work would be helpful to understand the injury mechanism of traumatic brain injury more effectively.Keywords: dynamic impact analysis, finite element analysis, intracranial pressure, MRI, traumatic brain injury, von Misses stress
Procedia PDF Downloads 163205 Improve Divers Tracking and Classification in Sonar Images Using Robust Diver Wake Detection Algorithm
Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy
Abstract:
Harbor protection systems are so important. The need for automatic protection systems has increased over the last years. Diver detection active sonar has great significance. It used to detect underwater threats such as divers and autonomous underwater vehicle. To automatically detect such threats the sonar image is processed by algorithms. These algorithms used to detect, track and classify of underwater objects. In this work, divers tracking and classification algorithm is improved be proposing a robust wake detection method. To detect objects the sonar images is normalized then segmented based on fixed threshold. Next, the centroids of the segments are found and clustered based on distance metric. Then to track the objects linear Kalman filter is applied. To reduce effect of noise and creation of false tracks, the Kalman tracker is fine tuned. The tuning is done based on our active sonar specifications. After the tracks are initialed and updated they are subjected to a filtering stage to eliminate the noisy and unstable tracks. Also to eliminate object with a speed out of the diver speed range such as buoys and fast boats. Afterwards the result tracks are subjected to a classification stage to deiced the type of the object been tracked. Here the classification stage is to deice wither if the tracked object is an open circuit diver or a close circuit diver. At the classification stage, a small area around the object is extracted and a novel wake detection method is applied. The morphological features of the object with his wake is extracted. We used support vector machine to find the best classifier. The sonar training images and the test images are collected by ARMELSAN Defense Technologies Company using the portable diver detection sonar ARAS-2023. After applying the algorithm to the test sonar data, we get fine and stable tracks of the divers. The total classification accuracy achieved with the diver type is 97%.Keywords: harbor protection, diver detection, active sonar, wake detection, diver classification
Procedia PDF Downloads 238204 Evaluation of Different Liquid Scintillation Counting Methods for 222Rn Determination in Waters
Authors: Jovana Nikolov, Natasa Todorovic, Ivana Stojkovic
Abstract:
Monitoring of 222Rn in drinking or surface waters, as well as in groundwater has been performed in connection with geological, hydrogeological and hydrological surveys and health hazard studies. Liquid scintillation counting (LSC) is often preferred analytical method for 222Rn measurements in waters because it allows multiple-sample automatic analysis. LSC method implies mixing of water samples with organic scintillation cocktail, which triggers radon diffusion from the aqueous into organic phase for which it has a much greater affinity, eliminating possibility of radon emanation in that manner. Two direct LSC methods that assume different sample composition have been presented, optimized and evaluated in this study. One-phase method assumed direct mixing of 10 ml sample with 10 ml of emulsifying cocktail (Ultima Gold AB scintillation cocktail is used). Two-phase method involved usage of water-immiscible cocktails (in this study High Efficiency Mineral Oil Scintillator, Opti-Fluor O and Ultima Gold F are used). Calibration samples were prepared with aqueous 226Ra standard in glass 20 ml vials and counted on ultra-low background spectrometer Quantulus 1220TM equipped with PSA (Pulse Shape Analysis) circuit which discriminates alpha/beta spectra. Since calibration procedure is carried out with 226Ra standard, which has both alpha and beta progenies, it is clear that PSA discriminator has vital importance in order to provide reliable and precise spectra separation. Consequentially, calibration procedure was done through investigation of PSA discriminator level influence on 222Rn efficiency detection, using 226Ra calibration standard in wide range of activity concentrations. Evaluation of presented methods was based on obtained efficiency detections and achieved Minimal Detectable Activity (MDA). Comparison of presented methods, accuracy and precision as well as different scintillation cocktail’s performance was considered from results of measurements of 226Ra spiked water samples with known activity and environmental samples.Keywords: 222Rn in water, Quantulus1220TM, scintillation cocktail, PSA parameter
Procedia PDF Downloads 201203 Response Surface Methodology for the Optimization of Radioactive Wastewater Treatment with Chitosan-Argan Nutshell Beads
Authors: Fatima Zahra Falah, Touria El. Ghailassi, Samia Yousfi, Ahmed Moussaif, Hasna Hamdane, Mouna Latifa Bouamrani
Abstract:
The management and treatment of radioactive wastewater pose significant challenges to environmental safety and public health. This study presents an innovative approach to optimizing radioactive wastewater treatment using a novel biosorbent: chitosan-argan nutshell beads. By employing Response Surface Methodology (RSM), we aimed to determine the optimal conditions for maximum removal efficiency of radioactive contaminants. Chitosan, a biodegradable and non-toxic biopolymer, was combined with argan nutshell powder to create composite beads. The argan nutshell, a waste product from argan oil production, provides additional adsorption sites and mechanical stability to the biosorbent. The beads were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) to confirm their structure and composition. A three-factor, three-level Box-Behnken design was utilized to investigate the effects of pH (3-9), contact time (30-150 minutes), and adsorbent dosage (0.5-2.5 g/L) on the removal efficiency of radioactive isotopes, primarily focusing on cesium-137. Batch adsorption experiments were conducted using synthetic radioactive wastewater with known concentrations of these isotopes. The RSM analysis revealed that all three factors significantly influenced the adsorption process. A quadratic model was developed to describe the relationship between the factors and the removal efficiency. The model's adequacy was confirmed through analysis of variance (ANOVA) and various diagnostic plots. Optimal conditions for maximum removal efficiency were pH 6.8, a contact time of 120 minutes, and an adsorbent dosage of 0.8 g/L. Under these conditions, the experimental removal efficiency for cesium-137 was 94.7%, closely matching the model's predictions. Adsorption isotherms and kinetics were also investigated to elucidate the mechanism of the process. The Langmuir isotherm and pseudo-second-order kinetic model best described the adsorption behavior, indicating a monolayer adsorption process on a homogeneous surface. This study demonstrates the potential of chitosan-argan nutshell beads as an effective and sustainable biosorbent for radioactive wastewater treatment. The use of RSM allowed for the efficient optimization of the process parameters, potentially reducing the time and resources required for large-scale implementation. Future work will focus on testing the biosorbent's performance with real radioactive wastewater samples and investigating its regeneration and reusability for long-term applications.Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology
Procedia PDF Downloads 38202 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration
Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger
Abstract:
Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration
Procedia PDF Downloads 52201 Development of an Implicit Coupled Partitioned Model for the Prediction of the Behavior of a Flexible Slender Shaped Membrane in Interaction with Free Surface Flow under the Influence of a Moving Flotsam
Authors: Mahtab Makaremi Masouleh, Günter Wozniak
Abstract:
This research is part of an interdisciplinary project, promoting the design of a light temporary installable textile defence system against flood. In case river water levels increase abruptly especially in winter time, one can expect massive extra load on a textile protective structure in term of impact as a result of floating debris and even tree trunks. Estimation of this impulsive force on such structures is of a great importance, as it can ensure the reliability of the design in critical cases. This fact provides the motivation for the numerical analysis of a fluid structure interaction application, comprising flexible slender shaped and free-surface water flow, where an accelerated heavy flotsam tends to approach the membrane. In this context, the analysis on both the behavior of the flexible membrane and its interaction with moving flotsam is conducted by finite elements based solvers of the explicit solver and implicit Abacus solver available as products of SIMULIA software. On the other hand, a study on how free surface water flow behaves in response to moving structures, has been investigated using the finite volume solver of Star CCM+ from Siemens PLM Software. An automatic communication tool (CSE, SIMULIA Co-Simulation Engine) and the implementation of an effective partitioned strategy in form of an implicit coupling algorithm makes it possible for partitioned domains to be interconnected powerfully. The applied procedure ensures stability and convergence in the solution of these complicated issues, albeit with high computational cost; however, the other complexity of this study stems from mesh criterion in the fluid domain, where the two structures approach each other. This contribution presents the approaches for the establishment of a convergent numerical solution and compares the results with experimental findings.Keywords: co-simulation, flexible thin structure, fluid-structure interaction, implicit coupling algorithm, moving flotsam
Procedia PDF Downloads 389200 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning
Authors: Madhawa Basnayaka, Jouni Paltakari
Abstract:
Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.Keywords: artificial intelligence, chipless RFID, deep learning, machine learning
Procedia PDF Downloads 51199 The Use of Political Savviness in Dealing with Workplace Ostracism: A Social Information Processing Perspective
Authors: Amy Y. Wang, Eko L. Yi
Abstract:
Can vicarious experiences of workplace ostracism affect employees’ willingness to voice? Given the increasingly interdependent nature of the modern workplace in which employees rely on social interactions to fulfill organizational goals, workplace ostracism –the extent to which an individual perceives that he or she is ignored or excluded by others in the workplace– has garnered significant interest from scholars and practitioners alike. Extending beyond conventional studies that largely focus on the perspectives and outcomes of ostracized targets, we address the indirect effects of workplace ostracism on third-party employees embedded in the same social context. Using a social information processing approach, we propose that the ostracism of coworkers acts as political information that influences third-party employees in their decisions to engage in risky and discretionary behaviors such as employee voice. To make sense of and to navigate through experiences of workplace ostracism, we posit that both political understanding and political skill allow third party employees to minimize the risks and uncertainty of voicing. This conceptual model was tested by a study involving 154 supervisor-subordinate dyads of a publicly listed bio-technology firm located in Mainland China. Each supervisor and their direct subordinates composed of a work team; each team had a minimum of two subordinates and a maximum of four subordinates. Human resources used the master list to distribute the ID coded questionnaires to the matching names. All studied constructs were measured using existing scales proved effective in previous literature. Hypotheses were tested using Confirmatory Factor Analysis and Hierarchal Multiple Regression. All three hypotheses were supported which showed that employees were less likely to engage in voice behaviors when their coworkers reported having experienced ostracism in the workplace. Results also showed a significant three-way interaction between political understanding and political skill on the relationship between coworkers’ ostracism and employee voice, indicating that political savviness is a valuable resource in mitigating ostracism’s negative and indirect effects. Our results illustrated that an employee’s coworkers being ostracized indeed adversely impacted his or her own voice behavior. However, not all individuals reacted passively to the social context; rather, we found that politically savvy individuals – possessing both political understanding and political skill – and their voice behaviors were less impacted by ostracism in their work environment. At the same time, we found that having only political understanding or only political skill was significantly less effective in mitigating ostracism’s negative effects, suggesting a necessary duality of political knowledge and political skill in combatting ostracism. Organizational implications, recommendations, and future research ideas are also discussed.Keywords: employee voice, organizational politics, social information processing, workplace ostracism
Procedia PDF Downloads 140198 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band
Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman
Abstract:
In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite
Procedia PDF Downloads 236197 Learning and Teaching Strategies in Association with EXE Program for Master Course Students of Yerevan Brusov State University of Languages and Social Sciences
Authors: Susanna Asatryan
Abstract:
The author will introduce a single module related to English teaching methodology for master course students getting specialization “A Foreign Language Teacher of High Schools And Professional Educational Institutions” of Yerevan Brusov State University of Languages and Social Sciences. The overall aim of the presentation is to introduce learning and teaching strategies within EXE Computer program for Mastery student-teachers of the University. The author will display the advantages of the use of this program. The learners interact with the teacher in the classroom as well as they are provided an opportunity for virtual domain to carry out their learning procedures in association with assessment and self-assessment. So they get integrated into blended learning. As this strategy is in its piloting stage, the author has elaborated a single module, embracing 3 main sections: -Teaching English vocabulary at high school, -Teaching English grammar at high school, and -Teaching English pronunciation at high school. The author will present the above mentioned topics with corresponding sections and subsections. The strong point is that preparing this module we have planned to display it on the blended learning landscape. So for this account working with EXE program is highly effective. As it allows the users to operate several tools for self-learning and self-testing/assessment. The author elaborated 3 single EXE files for each topic. Each file starts with the section’s subject-specific description: - Objectives and Pre-knowledge, followed by the theoretical part. The author associated and flavored her observations with appropriate samples of charts, drawings, diagrams, recordings, video-clips, photos, pictures, etc. to make learning process more effective and enjoyable. Before or after the article the author has downloaded a video clip, related to the current topic. EXE offers a wide range of tools to work out or prepare different activities and exercises for the learners: 'Interactive/non-interactive' and 'Textual/non-textual'. So with the use of these tools Multi-Select, Multi-Choice, Cloze, Drop-Down, Case Study, Gap-Filling, Matching and different other types of activities have been elaborated and submitted to the appropriate sections. The learners task is to prepare themselves for the coming module or seminar, related to teaching methodology of English vocabulary, grammar, and pronunciation. The point is that the teacher has an opportunity for face to face communication, as well as to connect with the learners through the Moodle, or as a single EXE file offer it to the learners for their self-study and self-assessment. As for the students’ feedback –EXE environment also makes it available.Keywords: blended learning, EXE program, learning/teaching strategies, self-study/assessment, virtual domain,
Procedia PDF Downloads 468196 Construction of a Dynamic Model of Cerebral Blood Circulation for Future Integrated Control of Brain State
Authors: Tomohiko Utsuki
Abstract:
Currently, brain resuscitation becomes increasingly important due to revising various clinical guidelines pertinent to emergency care. In brain resuscitation, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) is required for stabilizing physiological state of brain, and is described as the essential treatment points in many guidelines of disorder and/or disease such as brain injury, stroke, and encephalopathy. Thus, an integrated control system of BT, ICP, and CBF will greatly contribute to alleviating the burden on medical staff and improving treatment effect in brain resuscitation. In order to develop such a control system, models related to BT, ICP, and CBF are required for control simulation, because trial and error experiments using patients are not ethically allowed. A static model of cerebral blood circulation from intracranial arteries and vertebral artery to jugular veins has already constructed and verified. However, it is impossible to represent the pooling of blood in blood vessels, which is one cause of cerebral hypertension in this model. And, it is also impossible to represent the pulsing motion of blood vessels caused by blood pressure change which can have an affect on the change of cerebral tissue pressure. Thus, a dynamic model of cerebral blood circulation is constructed in consideration of the elasticity of the blood vessel and the inertia of the blood vessel wall. The constructed dynamic model was numerically analyzed using the normal data, in which each arterial blood flow in cerebral blood circulation, the distribution of blood pressure in the Circle of Willis, and the change of blood pressure along blood flow were calculated for verifying against physiological knowledge. As the result, because each calculated numerical value falling within the generally known normal range, this model has no problem in representing at least the normal physiological state of the brain. It is the next task to verify the accuracy of the present model in the case of disease or disorder. Currently, the construction of a migration model of extracellular fluid and a model of heat transfer in cerebral tissue are in progress for making them parts of an integrated model of brain physiological state, which is necessary for developing an future integrated control system of BT, ICP and CBF. The present model is applicable to constructing the integrated model representing at least the normal condition of brain physiological state by uniting with such models.Keywords: dynamic model, cerebral blood circulation, brain resuscitation, automatic control
Procedia PDF Downloads 154195 The Relationship between Body Fat Percent and Metabolic Syndrome Indices in Childhood Morbid Obesity
Authors: Mustafa Metin Donma
Abstract:
Metabolic syndrome (MetS) is characterized by a series of biochemical, physiological and anthropometric indicators and is a life-threatening health problem due to its close association with chronic diseases such as diabetes mellitus, hypertension, cancer and cardiovascular diseases. The syndrome deserves great interest both in adults and children. Central obesity is the indispensable component of MetS. Particularly, children, who are morbidly obese have a great tendency to develop the disease, because they are under the threat in their future lives. Preventive measures at this stage should be considered. For this, investigators seek for an informative scale or an index for the purpose. So far, several, but not many suggestions come into the stage. However, the diagnostic decision is not so easy and may not be complete particularly in the pediatric population. The aim of the study was to develop a MetS index capable of predicting MetS, while children are at the morbid obesity stage. This study was performed on morbid obese (MO) children, which were divided into two groups. Morbid obese children, who do not possess MetS criteria comprised the first group (n=44). The second group was composed of children (n=42) with MetS diagnosis. Parents were informed about the signed consent forms, which are required for the participation of their children in the study. The approval of the study protocol was taken from the institutional ethics committee of Tekirdag Namik Kemal University. Helsinki Declaration was accepted prior to and during the study. Anthropometric measurements including weight, height, waist circumference (WC), hip C, head C, neck C, biochemical tests including fasting blood glucose (FBG), insulin (INS), triglycerides (TRG), high density lipoprotein cholesterol (HDL-C) and blood pressure measurements (systolic (SBP) and diastolic (DBP)) were performed. Body fat percentage (BFP) values were determined by TANITA’s Bioelectrical Impedance Analysis technology. Body mass index and MetS indices were calculated. The equations for MetS index (MetSI) and advanced Donma MetS index (ADMI) were [(INS/FBG)/(HDL-C/TRG)]*100 and MetSI*[(SBP+DBP/Height)], respectively. Descriptive statistics including median values, compare means tests, correlation-regression analysis were performed within the scope of data evaluation using the statistical package program, SPSS. Statistically significant mean differences were determined by a p value smaller than 0.05. Median values for MetSI and ADMI in MO (MetS-) and MO (MetS+) groups were calculated as (25.9 and 36.5) and (74.0 and 106.1), respectively. Corresponding mean±SD values for BFPs were 35.9±7.1 and 38.2±7.7 in groups. Correlation analysis of these two indices with corresponding general BFP values exhibited significant association with ADMI, close to significance with MetSI in MO group. Any significant correlation was found with neither of the indices in MetS group. In conclusion, important associations observed with MetS indices in MO group were quite meaningful. The presence of these associations in MO group was important for showing the tendency towards the development of MetS in MO (MetS-) participants. The other index, ADMI, was more helpful for predictive purpose.Keywords: body fat percentage, child, index, metabolic syndrome, obesity
Procedia PDF Downloads 59194 Aromatic Medicinal Plant Classification Using Deep Learning
Authors: Tsega Asresa Mengistu, Getahun Tigistu
Abstract:
Computer vision is an artificial intelligence subfield that allows computers and systems to retrieve meaning from digital images. It is applied in various fields of study self-driving cars, video surveillance, agriculture, Quality control, Health care, construction, military, and everyday life. Aromatic and medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, and other natural health products for therapeutic and Aromatic culinary purposes. Herbal industries depend on these special plants. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs, and going to export not only industrial raw materials but also valuable foreign exchange. There is a lack of technologies for the classification and identification of Aromatic and medicinal plants in Ethiopia. The manual identification system of plants is a tedious, time-consuming, labor, and lengthy process. For farmers, industry personnel, academics, and pharmacists, it is still difficult to identify parts and usage of plants before ingredient extraction. In order to solve this problem, the researcher uses a deep learning approach for the efficient identification of aromatic and medicinal plants by using a convolutional neural network. The objective of the proposed study is to identify the aromatic and medicinal plant Parts and usages using computer vision technology. Therefore, this research initiated a model for the automatic classification of aromatic and medicinal plants by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides the root, flower and fruit, latex, and barks. The study was conducted on aromatic and medicinal plants available in the Ethiopian Institute of Agricultural Research center. An experimental research design is proposed for this study. This is conducted in Convolutional neural networks and Transfer learning. The Researcher employs sigmoid Activation as the last layer and Rectifier liner unit in the hidden layers. Finally, the researcher got a classification accuracy of 66.4 in convolutional neural networks and 67.3 in mobile networks, and 64 in the Visual Geometry Group.Keywords: aromatic and medicinal plants, computer vision, deep convolutional neural network
Procedia PDF Downloads 443193 Pattern of Deliberate Self-Harm Repetition in Rural Sri Lanka
Authors: P. H. G. J. Pushpakumara, Andrew Dawson
Abstract:
Introduction: Deliberate self harm (DSH) is a major public health problem globally. Suicide rates of Sri Lanka are being among the highest national rates in the world, since 1950. Previous DSH is the most important independent predictor of repetition. The estimated 1 year non-fatal repeat self-harm rate was 16.3%. Asian countries had considerably lower rate, 10.0%. Objectives: To calculate incidence of deliberate self-poisoning (DSP) and suicides, repetition rate of DSP in Kurunegala District (KD). To determine the pattern of repeated DSP in KD. Methods: Study had two components. In the first component, demographic and event related details of, DSP admission in 46 hospitals and suicides in 28 police stations of KD were collected for 3 years from January 2011. Demographic details of cohort of DSP patients admitted to above hospitals in 2011 were linked with hospital admissions and police records of next two years period from the index admission. Records were screened for links with high sensitivity using the computer then did manual matching which would have been much more specific. In the second component, randomly selected DSP patients (n=438), who admitted to main referral centre which receives 60% of DSP cases of the district, were interviewed to assess life-time repetition. Results: There were 16,993 DSP admissions and 1078 suicides for the three year period. Suicide incidences in KD were, 21.6, 20.7 and 24.3 per 100,000 population in 2011, 2012 and 2013. Average male to female ratio for suicide incidences was 5.5. DSP incidences were 205.4, 248.3 and 202.5 per 100,000 population. Male incidences were slightly greater than the female incidences, male: female ratio was 1.1:1. Highest age standardized male and female incidence was reported in 20-24 years age group, 769.6/100,000, and 15-19 years age group 1304.0/100,000. Male to female ratio of the incidence increased with the age. There were 318 (179 male and 139 female) patients attempted DSH within two years. Female repetitive patients were ounger compared to the males, p < 0.0001, median age: males 28 and females 19 years. 290 (91.2%) had only one repetitive attempt, 24 (7.5%) had two, 3 (0.9%) had three and one (0.3%) had four in that period. One year repetition rate was 5.6 and two year repetition rate was 7.9%. Average intervals between indexed events and first repetitive DSP events were 246.8 (SD:223.4) and 238.5 (SD:207.0) days among males and females. One fifth of first repetitive events occurred within first two weeks in both males and females. Around 50% of males and females had the second event within 28 weeks. Within the first year of the indexed event, around 70% had the second event. First repetitive event was fatal for 28 (8.8%) individuals. Ages of those who died, mean 49.7 years (SD:15.3), were significantly higher compared to those who had non-fatal outcome, p<0.0001. 9.5% had life time history of DSH attempts. Conclusions: Both, DSP and suicide incidences were very high in KD. However, repetition rates were lesser compared regional values. Prevention of repetition alone may not produce significant impact on prevention of DSH.Keywords: deliberate self-harm, incidence, repetition, Sri Lanka, suicide
Procedia PDF Downloads 219192 Internet-Of-Things and Ergonomics, Increasing Productivity and Reducing Waste: A Case Study
Authors: V. Jaime Contreras, S. Iliana Nunez, S. Mario Sanchez
Abstract:
Inside a manufacturing facility, we can find innumerable automatic and manual operations, all of which are relevant to the production process. Some of these processes add more value to the products more than others. Manual operations tend to add value to the product since they can be found in the final assembly area o final operations of the process. In this areas, where a mistake or accident can increase the cost of waste exponentially. To reduce or mitigate these costly mistakes, one approach is to rely on automation to eliminate the operator from the production line - requires a hefty investment and development of specialized machinery. In our approach, the center of the solution is the operator through sufficient and adequate instrumentation, real-time reporting and ergonomics. Efficiency and reduced cycle time can be achieved thorough the integration of Internet-of-Things (IoT) ready technologies into assembly operations to enhance the ergonomics of the workstations. Augmented reality visual aids, RFID triggered personalized workstation dimensions and real-time data transfer and reporting can help achieve these goals. In this case study, a standard work cell will be used for real-life data acquisition and a simulation software to extend the data points beyond the test cycle. Three comparison scenarios will run in the work cell. Each scenario will introduce a dimension of the ergonomics to measure its impact independently. Furthermore, the separate test will determine the limitations of the technology and provide a reference for operating costs and investment required. With the ability, to monitor costs, productivity, cycle time and scrap/waste in real-time the ROI (return on investment) can be determined at the different levels to integration. This case study will help to show that ergonomics in the assembly lines can make significant impact when IoT technologies are introduced. Ergonomics can effectively reduce waste and increase productivity with minimal investment if compared with setting up to custom machine.Keywords: augmented reality visual aids, ergonomics, real-time data acquisition and reporting, RFID triggered workstation dimensions
Procedia PDF Downloads 215191 Features of Normative and Pathological Realizations of Sibilant Sounds for Computer-Aided Pronunciation Evaluation in Children
Authors: Zuzanna Miodonska, Michal Krecichwost, Pawel Badura
Abstract:
Sigmatism (lisping) is a speech disorder in which sibilant consonants are mispronounced. The diagnosis of this phenomenon is usually based on the auditory assessment. However, the progress in speech analysis techniques creates a possibility of developing computer-aided sigmatism diagnosis tools. The aim of the study is to statistically verify whether specific acoustic features of sibilant sounds may be related to pronunciation correctness. Such knowledge can be of great importance while implementing classifiers and designing novel tools for automatic sibilants pronunciation evaluation. The study covers analysis of various speech signal measures, including features proposed in the literature for the description of normative sibilants realization. Amplitudes and frequencies of three fricative formants (FF) are extracted based on local spectral maxima of the friction noise. Skewness, kurtosis, four normalized spectral moments (SM) and 13 mel-frequency cepstral coefficients (MFCC) with their 1st and 2nd derivatives (13 Delta and 13 Delta-Delta MFCC) are included in the analysis as well. The resulting feature vector contains 51 measures. The experiments are performed on the speech corpus containing words with selected sibilant sounds (/ʃ, ʒ/) pronounced by 60 preschool children with proper pronunciation or with natural pathologies. In total, 224 /ʃ/ segments and 191 /ʒ/ segments are employed in the study. The Mann-Whitney U test is employed for the analysis of stigmatism and normative pronunciation. Statistically, significant differences are obtained in most of the proposed features in children divided into these two groups at p < 0.05. All spectral moments and fricative formants appear to be distinctive between pathology and proper pronunciation. These metrics describe the friction noise characteristic for sibilants, which makes them particularly promising for the use in sibilants evaluation tools. Correspondences found between phoneme feature values and an expert evaluation of the pronunciation correctness encourage to involve speech analysis tools in diagnosis and therapy of sigmatism. Proposed feature extraction methods could be used in a computer-assisted stigmatism diagnosis or therapy systems.Keywords: computer-aided pronunciation evaluation, sigmatism diagnosis, speech signal analysis, statistical verification
Procedia PDF Downloads 302190 An Overview on Micro Irrigation-Accelerating Growth of Indian Agriculture
Authors: Rohit Lall
Abstract:
The adoption of Micro Irrigation (MI) technologies in India has helped in achieving higher cropping and irrigation intensity with significant savings on resource savings such as labour, fertilizer and improved crop yields. These technologies have received considerable attention from policymakers, growers and researchers over the years for its perceived ability to contribute towards agricultural productivity and economic growth with the well-being of the growers of the country. Keeping the pace with untapped theoretical potential to cover government had launched flagship programs/centre sector schemes with earmarked budget to capture the potential under these waters saving techniques envisaged under these technologies by way of providing financial assistance to the beneficiaries for adopting these technologies. Micro Irrigation technologies have been in the special attention of the policymakers over the years. India being an agrarian economy having engaged 75% of the population directly or indirectly having skilled, semi-skilled and entrepreneurs in the sector with focused attention and financial allocations from the government under these technologies in covering the untapped potential under Pradhan Mantri Krishi Sinchayee Yojana (PMKSY) 'Per Drop More Crop component.' During the year 2004, a Taskforce on Micro Irrigation was constituted to estimate the potential of these technologies in India which was estimated 69.5 million hectares by the Task Force Report on MI however only 10.49 million hectares have been achieved so far. Technology collaborations by leading manufacturing companies in overseas have proved to a stepping stone in technology advancement and product up gradation with increased efficiencies. Joint ventures by the leading MI companies have added huge business volumes which have not only accelerated the momentum of achieving the desired goal but in terms of area coverage but had also generated opportunities for the polymer manufacturers in the country. To provide products matching the global standards Bureau of Indian Standards have constituted a sectional technical committee under the Food and Agriculture Department (FAD)-17 to formulated/devise and revise standards pertaining to MI technologies. The research lobby has also contributed at large by developing in-situ analysis proving MI technologies a boon for farming community of the country with resource conservation of which water is of paramount importance. Thus, Micro Irrigation technologies have proved to be the key tool for feeding the grueling demand of food basket of the growing population besides maintaining soil health and have been contributing towards doubling of farmers’ income.Keywords: task force on MI, standards, per drop more crop, doubling farmers’ income
Procedia PDF Downloads 118189 Superparamagnetic Sensor with Lateral Flow Immunoassays as Platforms for Biomarker Quantification
Authors: M. Salvador, J. C. Martinez-Garcia, A. Moyano, M. C. Blanco-Lopez, M. Rivas
Abstract:
Biosensors play a crucial role in the detection of molecules nowadays due to their advantages of user-friendliness, high selectivity, the analysis in real time and in-situ applications. Among them, Lateral Flow Immunoassays (LFIAs) are presented among technologies for point-of-care bioassays with outstanding characteristics such as affordability, portability and low-cost. They have been widely used for the detection of a vast range of biomarkers, which do not only include proteins but also nucleic acids and even whole cells. Although the LFIA has traditionally been a positive/negative test, tremendous efforts are being done to add to the method the quantifying capability based on the combination of suitable labels and a proper sensor. One of the most successful approaches involves the use of magnetic sensors for detection of magnetic labels. Bringing together the required characteristics mentioned before, our research group has developed a biosensor to detect biomolecules. Superparamagnetic nanoparticles (SPNPs) together with LFIAs play the fundamental roles. SPMNPs are detected by their interaction with a high-frequency current flowing on a printed micro track. By means of the instant and proportional variation of the impedance of this track provoked by the presence of the SPNPs, quantitative and rapid measurement of the number of particles can be obtained. This way of detection requires no external magnetic field application, which reduces the device complexity. On the other hand, the major limitations of LFIAs are that they are only qualitative or semiquantitative when traditional gold or latex nanoparticles are used as color labels. Moreover, the necessity of always-constant ambient conditions to get reproducible results, the exclusive detection of the nanoparticles on the surface of the membrane, and the short durability of the signal are drawbacks that can be advantageously overcome with the design of magnetically labeled LFIAs. The approach followed was to coat the SPIONs with a specific monoclonal antibody which targets the protein under consideration by chemical bonds. Then, a sandwich-type immunoassay was prepared by printing onto the nitrocellulose membrane strip a second antibody against a different epitope of the protein (test line) and an IgG antibody (control line). When the sample flows along the strip, the SPION-labeled proteins are immobilized at the test line, which provides magnetic signal as described before. Preliminary results using this practical combination for the detection and quantification of the Prostatic-Specific Antigen (PSA) shows the validity and consistency of the technique in the clinical range, where a PSA level of 4.0 ng/mL is the established upper normal limit. Moreover, a LOD of 0.25 ng/mL was calculated with a confident level of 3 according to the IUPAC Gold Book definition. Its versatility has also been proved with the detection of other biomolecules such as troponin I (cardiac injury biomarker) or histamine.Keywords: biosensor, lateral flow immunoassays, point-of-care devices, superparamagnetic nanoparticles
Procedia PDF Downloads 232188 Development of a Feedback Control System for a Lab-Scale Biomass Combustion System Using Programmable Logic Controller
Authors: Samuel O. Alamu, Seong W. Lee, Blaise Kalmia, Marc J. Louise Caballes, Xuejun Qian
Abstract:
The application of combustion technologies for thermal conversion of biomass and solid wastes to energy has been a major solution to the effective handling of wastes over a long period of time. Lab-scale biomass combustion systems have been observed to be economically viable and socially acceptable, but major concerns are the environmental impacts of the process and deviation of temperature distribution within the combustion chamber. Both high and low combustion chamber temperature may affect the overall combustion efficiency and gaseous emissions. Therefore, there is an urgent need to develop a control system which measures the deviations of chamber temperature from set target values, sends these deviations (which generates disturbances in the system) in the form of feedback signal (as input), and control operating conditions for correcting the errors. In this research study, major components of the feedback control system were determined, assembled, and tested. In addition, control algorithms were developed to actuate operating conditions (e.g., air velocity, fuel feeding rate) using ladder logic functions embedded in the Programmable Logic Controller (PLC). The developed control algorithm having chamber temperature as a feedback signal is integrated into the lab-scale swirling fluidized bed combustor (SFBC) to investigate the temperature distribution at different heights of the combustion chamber based on various operating conditions. The air blower rates and the fuel feeding rates obtained from automatic control operations were correlated with manual inputs. There was no observable difference in the correlated results, thus indicating that the written PLC program functions were adequate in designing the experimental study of the lab-scale SFBC. The experimental results were analyzed to study the effect of air velocity operating at 222-273 ft/min and fuel feeding rate of 60-90 rpm on the chamber temperature. The developed temperature-based feedback control system was shown to be adequate in controlling the airflow and the fuel feeding rate for the overall biomass combustion process as it helps to minimize the steady-state error.Keywords: air flow, biomass combustion, feedback control signal, fuel feeding, ladder logic, programmable logic controller, temperature
Procedia PDF Downloads 130187 The Development of Local-Global Perceptual Bias across Cultures: Examining the Effects of Gender, Education, and Urbanisation
Authors: Helen J. Spray, Karina J. Linnell
Abstract:
Local-global bias in adulthood is strongly dependent on environmental factors and a global bias is not the universal characteristic of adult perception it was once thought to be: whilst Western adults typically demonstrate a global bias, Namibian adults living in traditional villages possess a strong local bias. Furthermore, environmental effects on local-global bias have been shown to be highly gender-specific; whereas urbanisation promoted a global bias in urbanised Namibian women but not men, education promoted a global bias in urbanised Namibian men but not women. Adult populations, however, provide only a snapshot of the gene-environment interactions which shape perceptual bias. Yet, to date, there has been little work on the development of local-global bias across environmental settings. In the current study, local-global bias was assessed using a similarity-matching task with Navon figures in children aged between 4 and 15 years from across three populations: traditional Namibians, urban Namibians, and urban British. For the two Namibian groups, measures of urbanisation and education were obtained. Data were subjected to both between-group and within-group analyses. Between-group analyses compared developmental trajectories across population and gender. These analyses revealed a global bias from even as early as 4 in the British sample, and showed that the developmental onset of a global bias is not fixed. Urbanised Namibian children ultimately developed a global bias that was indistinguishable from British children; however, a global bias did not emerge until much later in development. For all populations, the greatest developmental effects were observed directly following the onset of formal education. No overall gender effects were observed; however, there was a significant gender by age interaction which was difficult to reconcile with existing biological-level accounts of gender differences in the development of local-global bias. Within-group analyses compared the effects of urbanisation and education on local-global bias for traditional and urban Namibian boys and girls separately. For both traditional and urban boys, education mediated all effects of age and urbanisation; however, this was not the case for girls. Traditional Namibian girls retained a local bias regardless of age, education, or urbanisation, and in urbanised girls, the development of a global bias was not attributable to any one factor specifically. These results are broadly consistent with aforementioned findings that education promoted a global bias in urbanised Namibian men but not women. The development of local-global bias does not follow a fixed trajectory but is subject to environmental control. Understanding how variability in the development of local-global bias might arise, particularly in the context of gender, may have far-reaching implications. For example, a number of educationally important cognitive functions (e.g., spatial ability) are known to show consistent gender differences in childhood and local-global bias may mediate some of these effects. With education becoming an increasingly prevalent force across much of the developing world it will be important to understand the processes that underpin its effects and their implications.Keywords: cross-cultural, development, education, gender, local-global bias, perception, urbanisation, urbanization
Procedia PDF Downloads 141186 Enhancing the Structural and Electrochemical Performance of Li-Rich Layered Metal Oxides Cathodes for Li-Ion Battery by Coating with the Active Material
Authors: Cyril O. Ehi-Eromosele, Ajayi Kayode
Abstract:
The Li-rich layered metal oxides (LLO) are the most promising candidates for promising electrodes of high energy Li-ion battery (LIB). In literature, these electrode system has either been designed as a hetero-structure of the primary components (composite) or as a core-shell structure with improved electrochemistry reported for both configurations when compared with its primary components. With the on-going efforts to improve on the electrochemical performance of the LIB, it is important to investigate comparatively the structural and electrochemical characteristics of the core-shell like and ‘composite’ forms of these materials with the same compositions and synthesis conditions which could influence future engineering of these materials. Therefore, this study concerns the structural and electrochemical properties of the ‘composite’ and core-shell like LLO cathode materials with the same nominal composition of 0.5Li₂MnO₃-0.5LiNi₀.₅Mn₀.₃Co₀.₂O₂ (LiNi₀.₅Mn₀.₃Co₀.₂O₂ as core and Li₂MnO₃ as the shell). The results show that the core-shell sample (–CS) gave better electrochemical performance than the ‘composite’ sample (–C). Both samples gave the same initial charge capacity of ~300 mAh/g when cycled at 10 mA/g and comparable charge capacity (246 mAh/g for the –CS sample and 240 mAh/g for the –C sample) when cycled at 200 mA/g. However, the –CS sample gave a higher initial discharge capacity at both current densities. The discharge capacity of the –CS sample was 232 mAh/g and 164 mAh/g while the –C sample is 208 mAh/g and 143 mAh/g at the current densities of 10 mA/g and 200 mA/g, respectively. Electrochemical impedance spectroscopy (EIS) results show that the –CS sample generally exhibited a smaller resistance than the –C sample both for the uncycled and after 50th cycle. Detailed structural analysis is on-going, but preliminary results show that the –CS sample had bigger unit cell volume and a higher degree of cation mixing. The thermal stability of the –CS sample was higher than the –C sample. XPS investigation also showed that the pristine –C sample gave a more reactive surface (showing formation of carbonate species to a greater degree) which could result in the greater resistance seen in the EIS result. To reinforce the results obtained for the 0.5Li₂MnO₃-0.5LiNi₀.₅Mn₀.₃Co₀.₃O₂ composition, the same investigations were extended to another ‘composite’ and core-shell like LLO cathode materials also with the same nominal composition of 0.5Li₂MnO₃-0.5LiNi₀.₃Mn₀.₃Co₀.₃O₂. In this case, the aim was to determine the electrochemical performance of the material using a low Ni content (LiNi₀.₃Mn₀.₃Co₀.₃O₂) as the core to clarify the contributions of the core-shell configuration to the electrochemical performance of these materials. Ni-rich layered oxides show active catalytic surface leading to electrolyte oxidation resulting in poor thermal stability and cycle life. Here, the core-shell sample also gave better electrochemical performance than the ‘composite’ sample with 0.5Li₂MnO₃-0.5LiNi₀.₃Mn₀.₃Co₀.₃O₂ composition. Furthermore, superior electrochemical performance was also recorded for the core-shell like spinel modified LLO (0.5Li₂MnO₃-0.45LiNi₀.₅Mn₀.₃Co₀.₂O₂-0.05LiNi₀.₅Mn₁.₅O₄) when compared to the composite system. These results show that the core-shell configuration can generally be used to improve the structural and electrochemical properties of the LLO and spinel modified LLO materials.Keywords: lithium-ion battery, lithium rich oxide cathode, core-shell structure, composite structure
Procedia PDF Downloads 122185 Laboratory Indices in Late Childhood Obesity: The Importance of DONMA Indices
Authors: Orkide Donma, Mustafa M. Donma, Muhammet Demirkol, Murat Aydin, Tuba Gokkus, Burcin Nalbantoglu, Aysin Nalbantoglu, Birol Topcu
Abstract:
Obesity in childhood establishes a ground for adulthood obesity. Especially morbid obesity is an important problem for the children because of the associated diseases such as diabetes mellitus, cancer and cardiovascular diseases. In this study, body mass index (BMI), body fat ratios, anthropometric measurements and ratios were evaluated together with different laboratory indices upon evaluation of obesity in morbidly obese (MO) children. Children with nutritional problems participated in the study. Written informed consent was obtained from the parents. Study protocol was approved by the Ethics Committee. Sixty-two MO girls aged 129.5±35.8 months and 75 MO boys aged 120.1±26.6 months were included into the scope of the study. WHO-BMI percentiles for age-and-sex were used to assess the children with those higher than 99th as morbid obesity. Anthropometric measurements of the children were recorded after their physical examination. Bio-electrical impedance analysis was performed to measure fat distribution. Anthropometric ratios, body fat ratios, Index-I and Index-II as well as insulin sensitivity indices (ISIs) were calculated. Girls as well as boys were binary grouped according to homeostasis model assessment-insulin resistance (HOMA-IR) index of <2.5 and >2.5, fasting glucose to insulin ratio (FGIR) of <6 and >6 and quantitative insulin sensitivity check index (QUICKI) of <0.33 and >0.33 as the frequently used cut-off points. They were evaluated based upon their BMIs, arms, legs, trunk, whole body fat percentages, body fat ratios such as fat mass index (FMI), trunk-to-appendicular fat ratio (TAFR), whole body fat ratio (WBFR), anthropometric measures and ratios [waist-to-hip, head-to-neck, thigh-to-arm, thigh-to-ankle, height/2-to-waist, height/2-to-hip circumference (C)]. SPSS/PASW 18 program was used for statistical analyses. p≤0.05 was accepted as statistically significance level. All of the fat percentages showed differences between below and above the specified cut-off points in girls when evaluated with HOMA-IR and QUICKI. Differences were observed only in arms fat percent for HOMA-IR and legs fat percent for QUICKI in boys (p≤ 0.05). FGIR was unable to detect any differences for the fat percentages of boys. Head-to-neck C was the only anthropometric ratio recommended to be used for all ISIs (p≤0.001 for both girls and boys in HOMA-IR, p≤0.001 for girls and p≤0.05 for boys in FGIR and QUICKI). Indices which are recommended for use in both genders were Index-I, Index-II, HOMA/BMI and log HOMA (p≤0.001). FMI was also a valuable index when evaluated with HOMA-IR and QUICKI (p≤0.001). The important point was the detection of the severe significance for HOMA/BMI and log HOMA while they were evaluated also with the other indices, FGIR and QUICKI (p≤0.001). These parameters along with Index-I were unique at this level of significance for all children. In conclusion, well-accepted ratios or indices may not be valid for the evaluation of both genders. This study has emphasized the limiting properties for boys. This is particularly important for the selection process of some ratios and/or indices during the clinical studies. Gender difference should be taken into consideration for the evaluation of the ratios or indices, which will be recommended to be used particularly within the scope of obesity studies.Keywords: anthropometry, childhood obesity, gender, insulin sensitivity index
Procedia PDF Downloads 356184 Results of Three-Year Operation of 220kV Pilot Superconducting Fault Current Limiter in Moscow Power Grid
Authors: M. Moyzykh, I. Klichuk, L. Sabirov, D. Kolomentseva, E. Magommedov
Abstract:
Modern city electrical grids are forced to increase their density due to the increasing number of customers and requirements for reliability and resiliency. However, progress in this direction is often limited by the capabilities of existing network equipment. New energy sources or grid connections increase the level of short-circuit currents in the adjacent network, which can exceed the maximum rating of equipment–breaking capacity of circuit breakers, thermal and dynamic current withstand qualities of disconnectors, cables, and transformers. Superconducting fault current limiter (SFCL) is a modern solution designed to deal with the increasing fault current levels in power grids. The key feature of this device is its instant (less than 2 ms) limitation of the current level due to the nature of the superconductor. In 2019 Moscow utilities installed SuperOx SFCL in the city power grid to test the capabilities of this novel technology. The SFCL became the first SFCL in the Russian energy system and is currently the most powerful SFCL in the world. Modern SFCL uses second-generation high-temperature superconductor (2G HTS). Despite its name, HTS still requires low temperatures of liquid nitrogen for operation. As a result, Moscow SFCL is built with a cryogenic system to provide cooling to the superconductor. The cryogenic system consists of three cryostats that contain a superconductor part and are filled with liquid nitrogen (three phases), three cryocoolers, one water chiller, three cryopumps, and pressure builders. All these components are controlled by an automatic control system. SFCL has been continuously operating on the city grid for over three years. During that period of operation, numerous faults occurred, including cryocooler failure, chiller failure, pump failure, and others (like a cryogenic system power outage). All these faults were eliminated without an SFCL shut down due to the specially designed cryogenic system backups and quick responses of grid operator utilities and the SuperOx crew. The paper will describe in detail the results of SFCL operation and cryogenic system maintenance and what measures were taken to solve and prevent similar faults in the future.Keywords: superconductivity, current limiter, SFCL, HTS, utilities, cryogenics
Procedia PDF Downloads 83183 Debriefing Practices and Models: An Integrative Review
Authors: Judson P. LaGrone
Abstract:
Simulation-based education in curricula was once a luxurious component of nursing programs but now serves as a vital element of an individual’s learning experience. A debriefing occurs after the simulation scenario or clinical experience is completed to allow the instructor(s) or trained professional(s) to act as a debriefer to guide a reflection with a purpose of acknowledging, assessing, and synthesizing the thought process, decision-making process, and actions/behaviors performed during the scenario or clinical experience. Debriefing is a vital component of the simulation process and educational experience to allow the learner(s) to progressively build upon past experiences and current scenarios within a safe and welcoming environment with a guided dialog to enhance future practice. The aim of this integrative review was to assess current practices of debriefing models in simulation-based education for health care professionals and students. The following databases were utilized for the search: CINAHL Plus, Cochrane Database of Systemic Reviews, EBSCO (ERIC), PsycINFO (Ovid), and Google Scholar. The advanced search option was useful to narrow down the search of articles (full text, Boolean operators, English language, peer-reviewed, published in the past five years). Key terms included debrief, debriefing, debriefing model, debriefing intervention, psychological debriefing, simulation, simulation-based education, simulation pedagogy, health care professional, nursing student, and learning process. Included studies focus on debriefing after clinical scenarios of nursing students, medical students, and interprofessional teams conducted between 2015 and 2020. Common themes were identified after the analysis of articles matching the search criteria. Several debriefing models are addressed in the literature with similarities of effectiveness for participants in clinical simulation-based pedagogy. Themes identified included (a) importance of debriefing in simulation-based pedagogy, (b) environment for which debriefing takes place is an important consideration, (c) individuals who should conduct the debrief, (d) length of debrief, and (e) methodology of the debrief. Debriefing models supported by theoretical frameworks and facilitated by trained staff are vital for a successful debriefing experience. Models differed from self-debriefing, facilitator-led debriefing, video-assisted debriefing, rapid cycle deliberate practice, and reflective debriefing. A reoccurring finding was centered around the emphasis of continued research for systematic tool development and analysis of the validity and effectiveness of current debriefing practices. There is a lack of consistency of debriefing models among nursing curriculum with an increasing rate of ill-prepared faculty to facilitate the debriefing phase of the simulation.Keywords: debriefing model, debriefing intervention, health care professional, simulation-based education
Procedia PDF Downloads 142182 Freshwater Pinch Analysis for Optimal Design of the Photovoltaic Powered-Pumping System
Authors: Iman Janghorban Esfahani
Abstract:
Due to the increased use of irrigation in agriculture, the importance and need for highly reliable water pumping systems have significantly increased. The pumping of the groundwater is essential to provide water for both drip and furrow irrigation to increase the agricultural yield, especially in arid regions that suffer from scarcities of surface water. The most common irrigation pumping systems (IPS) consume conventional energies through the use of electric motors and generators or connecting to the electricity grid. Due to the shortage and transportation difficulties of fossil fuels, and unreliable access to the electricity grid, especially in the rural areas, and the adverse environmental impacts of fossil fuel usage, such as greenhouse gas (GHG) emissions, the need for renewable energy sources such as photovoltaic systems (PVS) as an alternative way of powering irrigation pumping systems is urgent. Integration of the photovoltaic systems with irrigation pumping systems as the Photovoltaic Powered-Irrigation Pumping System (PVP-IPS) can avoid fossil fuel dependency and the subsequent greenhouse gas emissions, as well as ultimately lower energy costs and improve efficiency, which made PVP-IPS systems as an environmentally and economically efficient solution for agriculture irrigation in every region. The greatest problem faced by integration of PVP with IPS systems is matching the intermittence of the energy supply with the dynamic water demand. The best solution to overcome the intermittence is to incorporate a storage system into the PVP-IPS to provide water-on-demand as a highly reliable stand-alone irrigation pumping system. The water storage tank (WST) is the most common storage device for PVP-IPS systems. In the integrated PVP-IPS with a water storage tank (PVP-IPS-WST), a water storage tank stores the water pumped by the IPS in excess of the water demand and then delivers it when demands are high. The Freshwater pinch analysis (FWaPA) as an alternative to mathematical modeling was used by other researchers for retrofitting the off-grid battery less photovoltaic-powered reverse osmosis system. However, the Freshwater pinch analysis has not been used to integrate the photovoltaic systems with irrigation pumping system with water storage tanks. In this study, FWaPA graphical and numerical tools were used for retrofitting an existing PVP-IPS system located in Salahadin, Republic of Iraq. The plant includes a 5 kW submersible water pump and 7.5 kW solar PV system. The Freshwater Composite Curve as the graphical tool and Freashwater Storage Cascade Table as the numerical tool were constructed to determine the minimum required outsourced water during operation, optimal amount of delivered electricity to the water pump, and optimal size of the water storage tank for one-year operation data. The results of implementing the FWaPA on the case study show that the PVP-IPS system with a WST as the reliable system can reduce outsourced water by 95.41% compare to the PVP-IPS system without storage tank.Keywords: irrigation, photovoltaic, pinch analysis, pumping, solar energy
Procedia PDF Downloads 138181 The Need for Automation in the Domestic Food Processing Sector and its Impact
Authors: Shantam Gupta
Abstract:
The objective of this study is to address the critical need for automation in the domestic food processing sector and study its impact. Food is the one of the most basic physiological needs essential for the survival of a living being. Some of them have the capacity to prepare their own food (like most plants) and henceforth are designated as primary food producers; those who depend on these primary food producers for food form the primary consumers’ class (herbivores). Some of the organisms relying on the primary food are the secondary food consumers (carnivores). There is a third class of consumers called tertiary food consumers/apex food consumers that feed on both the primary and secondary food consumers. Humans form an essential part of the apex predators and are generally at the top of the food chain. But still further disintegration of the food habits of the modern human i.e. Homo sapiens, reveals that humans depend on other individuals for preparing their own food. The old notion of eating raw/brute food is long gone and food processing has become very trenchant in lives of modern human. This has led to an increase in dependence on other individuals for ‘processing’ the food before it can be actually consumed by the modern human. This has led to a further shift of humans in the classification of food chain of consumers. The effects of the shifts shall be systematically investigated in this paper. The processing of food has a direct impact on the economy of the individual (consumer). Also most individuals depend on other processing individuals for the preparation of food. This dependency leads to establishment of a vital link of dependency in the food web which when altered can adversely affect the food web and can have dire consequences on the health of the individual. This study investigates the challenges arising out due to this dependency and the impact of food processing on the economy of the individual. A comparison of Industrial food processing and processing at domestic platforms (households and restaurants) has been made to provide an idea about the present scenario of automation in the food processing sector. A lot of time and energy is also consumed while processing food at home for consumption. The high frequency of consumption of meals (greater than 2 times a day) makes it even more laborious. Through the medium of this study a pressing need for development of an automatic cooking machine is proposed with a mission to reduce the inter-dependency & human effort of individuals required for the preparation of food (by automation of the food preparation process) and make them more self-reliant The impact of development of this product has also further been profoundly discussed. Assumption used: The individuals those who process food also consume the food that they produce. (They are also termed as ‘independent’ or ‘self-reliant’ modern human beings.)Keywords: automation, food processing, impact on economy, processing individual
Procedia PDF Downloads 470180 Spanish Language Violence Corpus: An Analysis of Offensive Language in Twitter
Authors: Beatriz Botella-Gil, Patricio Martínez-Barco, Lea Canales
Abstract:
The Internet and ICT are an integral element of and omnipresent in our daily lives. Technologies have changed the way we see the world and relate to it. The number of companies in the ICT sector is increasing every year, and there has also been an increase in the work that occurs online, from sending e-mails to the way companies promote themselves. In social life, ICT’s have gained momentum. Social networks are useful for keeping in contact with family or friends that live far away. This change in how we manage our relationships using electronic devices and social media has been experienced differently depending on the age of the person. According to currently available data, people are increasingly connected to social media and other forms of online communication. Therefore, it is no surprise that violent content has also made its way to digital media. One of the important reasons for this is the anonymity provided by social media, which causes a sense of impunity in the victim. Moreover, it is not uncommon to find derogatory comments, attacking a person’s physical appearance, hobbies, or beliefs. This is why it is necessary to develop artificial intelligence tools that allow us to keep track of violent comments that relate to violent events so that this type of violent online behavior can be deterred. The objective of our research is to create a guide for detecting and recording violent messages. Our annotation guide begins with a study on the problem of violent messages. First, we consider the characteristics that a message should contain for it to be categorized as violent. Second, the possibility of establishing different levels of aggressiveness. To download the corpus, we chose the social network Twitter for its ease of obtaining free messages. We chose two recent, highly visible violent cases that occurred in Spain. Both of them experienced a high degree of social media coverage and user comments. Our corpus has a total of 633 messages, manually tagged, according to the characteristics we considered important, such as, for example, the verbs used, the presence of exclamations or insults, and the presence of negations. We consider it necessary to create wordlists that are present in violent messages as indicators of violence, such as lists of negative verbs, insults, negative phrases. As a final step, we will use automatic learning systems to check the data obtained and the effectiveness of our guide.Keywords: human language technologies, language modelling, offensive language detection, violent online content
Procedia PDF Downloads 133179 Understanding the Coping Experience of Mothers with Childhood Trauma Histories: A Qualitative Study
Authors: Chan Yan Nok
Abstract:
The present study is a qualitative study based on the coping experiences of six Hong Kong Chinese mothers who had childhood trauma from their first-person perspective. Expanding the perspective beyond the dominant discourse of “inter-generation transmission of trauma”, this study explores the experiences and meanings of child trauma embedded in their narratives through the process of thematic analysis and narrative analysis. The interviewees painted a nuanced picture of their process of coping and trauma resolution. First, acknowledgement; second, feel safe and start to tell the story of trauma; third, feel the feelings and expression of emotions; fourth, clarifying and coping with the impacts of trauma; fifth, integration and transformation; and sixth, using their new understanding of experience to have a better life. It was seen that there was no “end” within the process of trauma resolution. Instead, this is an ongoing process with positive healing trajectory. Analysis of the stories of the mothers revealed recurrent themes around continuous self-reflective awareness in the process of trauma coping. Rather than being necessarily negative and detrimental, childhood trauma could highlight the meanings of being a mother and reveal opportunities for continuous personal growth and self-enhancement. Utilizing the sense of inadequacy as a core driver in the trauma recovery process while developing a heightened awareness of the unfinished business embedded in their “automatic pattern” of behaviors, emotions, and thoughts can help these mothers become more flexible to formulate new methods in facing future predicaments. Future social work and parent education practices should help mothers deal with unresolved trauma, make sense of their impacts of childhood trauma and discover the growth embedded in the past traumatic experience. They should be facilitated in “acknowledging the reality of the trauma”, including understanding their complicated emotions arising from the traumatic experiences and voicing their struggles. In addition, helping these mothers to be aware of short-term and long-term trauma impacts (i.e., secondary responses to the trauma) and explore their effective coping strategies in “overcoming secondary responses to the trauma” are crucial for their future positive adjustment and transformation. Through affirming their coping abilities and lessons learnt from past experiences, mothers can reduce feelings of shame and powerlessness and enhance their parental capacity.Keywords: childhood trauma, coping, mothers, self-awareness, self-reflection, trauma resolution
Procedia PDF Downloads 167178 Generative Pre-Trained Transformers (GPT-3) and Their Impact on Higher Education
Authors: Sheelagh Heugh, Michael Upton, Kriya Kalidas, Stephen Breen
Abstract:
This article aims to create awareness of the opportunities and issues the artificial intelligence (AI) tool GPT-3 (Generative Pre-trained Transformer-3) brings to higher education. Technological disruptors have featured in higher education (HE) since Konrad Klaus developed the first functional programmable automatic digital computer. The flurry of technological advances, such as personal computers, smartphones, the world wide web, search engines, and artificial intelligence (AI), have regularly caused disruption and discourse across the educational landscape around harnessing the change for the good. Accepting AI influences are inevitable; we took mixed methods through participatory action research and evaluation approach. Joining HE communities, reviewing the literature, and conducting our own research around Chat GPT-3, we reviewed our institutional approach to changing our current practices and developing policy linked to assessments and the use of Chat GPT-3. We review the impact of GPT-3, a high-powered natural language processing (NLP) system first seen in 2020 on HE. Historically HE has flexed and adapted with each technological advancement, and the latest debates for educationalists are focusing on the issues around this version of AI which creates natural human language text from prompts and other forms that can generate code and images. This paper explores how Chat GPT-3 affects the current educational landscape: we debate current views around plagiarism, research misconduct, and the credibility of assessment and determine the tool's value in developing skills for the workplace and enhancing critical analysis skills. These questions led us to review our institutional policy and explore the effects on our current assessments and the development of new assessments. Conclusions: After exploring the pros and cons of Chat GTP-3, it is evident that this form of AI cannot be un-invented. Technology needs to be harnessed for positive outcomes in higher education. We have observed that materials developed through AI and potential effects on our development of future assessments and teaching methods. Materials developed through Chat GPT-3 can still aid student learning but lead to redeveloping our institutional policy around plagiarism and academic integrity.Keywords: artificial intelligence, Chat GPT-3, intellectual property, plagiarism, research misconduct
Procedia PDF Downloads 89