Search results for: aerial imaging and detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4900

Search results for: aerial imaging and detection

3280 Biological Activity of Essential Oils from Salvia nemorosa L.

Authors: Abdol-Hassan Doulah

Abstract:

In this study, antimicrobial activity of essential oil and ethyl acetate and ether extracts of S. nemorosa were examined against some species of bacteria and fungi. The essential oil of the aerial part of S. nemorosa was examined by GC and GC-MS. In the essential oil of S. nemorosa 26 Compounds have been identified. 2-Nonanone (44.09 %), 2-Undecanone (33.79 %), E-Caryophyllene (3.74 %) and 2-Decanone (2.89 %) were the main components of the essential oil. The essential oil analysis showed greatest antimicrobial activity against Staphylococcus epidermidis (5.3 μg/ml) and S. cerevisiae (9.3 μg/ml). The ethyl acetate showed greatest antimicrobial activity against Bacillus subtilis (106.7 μg/ml), Candida albicans (5.3 μg/ml) and ether extract showed greatest antimicrobial activity against Klebseilla pneumoniae (10.7 μg/ml) and Saccharomyces cerevisiae (10.7 μg/ml). In conclusion, we suggest that the antimicrobial activity of S. nemorosa may be due to its content of germacrene and linalool.

Keywords: antibacterial activity, antifungal activity, Salvia nemorosa L., essential oils, biological activity

Procedia PDF Downloads 494
3279 Leaf Image Processing: Review

Authors: T. Vijayashree, A. Gopal

Abstract:

The aim of the work is to classify and authenticate medicinal plant materials and herbs widely used for Indian herbal medicinal preparation. The quality and authenticity of these raw materials are to be ensured for the preparation of herbal medicines. These raw materials are to be carefully screened, analyzed and documented due to mistaken of look-alike materials which do not have medicinal characteristics.

Keywords: authenticity, standardization, principal component analysis, imaging processing, signal processing

Procedia PDF Downloads 246
3278 Evaluation of Microbiological Quality and Safety of Two Types of Salads Prepared at Libyan Airline Catering Center in Tripoli

Authors: Elham A. Kwildi, Yahia S. Abugnah, Nuri S. Madi

Abstract:

This study was designed to evaluate the microbiological quality and safety of two types of salads prepared at a catering center affiliated with Libyan Airlines in Tripoli, Libya. Two hundred and twenty-one (221) samples (132 economy-class and 89 first- class) were used in this project which lasted for ten months. Biweekly, microbiological tests were performed which included total plate count (TPC) and total coliforms (TCF), in addition to enumeration and/or detection of some pathogenic bacteria mainly Escherichia coli, Staphylococcus aureus, Bacillus cereus, Salmonella sp, Listeria sp and Vibrio parahaemolyticus parahaemolyticus, By using conventional as well as compact dry methods. Results indicated that TPC of type 1 salad ranged between (<10 – 62 x 103 cfu/gm) and (<10 to 36 x103 cfu/g), while TCF were (<10 – 41 x 103 cfu/gm) and (< 10 to 66 x102 cfu/g) using both methods of detection respectively. On the other hand, TPC of type 2 salad were: (1 × 10 – 52 x 103) and (<10 – 55 x 103 cfu/gm) and in the range of (1 x10 to 45x103 cfu/g), and the (TCF) counts were between (< 10 to 55x103 cfu/g) and (< 10 to 34 x103 cfu/g) using the 1st and the 2nd methods of detection respectively. Also, the pathogens mentioned above were detected in both types of salads, but their levels varied according to the type of salad and the method of detection. The level of Staphylococcus aureus, for instance, was 17.4% using conventional method versus 14.4% using the compact dry method. Similarly, E. coli was 7.6% and 9.8%, while Salmonella sp. recorded the least percentage i.e. 3% and 3.8% with the two mentioned methods respectively. First class salads were also found to contain the same pathogens, but the level of E. coli was relatively higher in this case (14.6% and 16.9%) using conventional and compact dry methods respectively. The second rank came Staphylococcus aureus (13.5%) and (11.2%), followed by Salmonella (6.74%) and 6.70%). The least percentage was for Vibrio parahaemolyticus (4.9%) which was detected in the first class salads only. The other two pathogens Bacillus cereus and Listeria sp. were not detected in either one of the salads. Finally, it is worth mentioning that there was a significant decline in TPC and TCF counts in addition to the disappearance of pathogenic bacteria after the 6-7th month of the study which coincided with the first trial of the HACCP system at the center. The ups and downs in the counts along the early stages of the study reveal that there is a need for some important correction measures including more emphasis on training of the personnel in applying the HACCP system effectively.

Keywords: air travel, vegetable salads, foodborne outbreaks, Libya

Procedia PDF Downloads 326
3277 A Novel Nano-Chip Card Assay as Rapid Test for Diagnosis of Lymphatic Filariasis Compared to Nano-Based Enzyme Linked Immunosorbent Assay

Authors: Ibrahim Aly, Manal Ahmed, Mahmoud M. El-Shall

Abstract:

Filariasis is a parasitic disease caused by small roundworms. The filarial worms are transmitted and spread by blood-feeding black flies and mosquitoes. Lymphatic filariasis (Elephantiasis) is caused by Wuchereriabancrofti, Brugiamalayi, and Brugiatimori. Elimination of Lymphatic filariasis necessitates an increasing demand for valid, reliable, and rapid diagnostic kits. Nanodiagnostics involve the use of nanotechnology in clinical diagnosis to meet the demands for increased sensitivity, specificity, and early detection in less time. The aim of this study was to evaluate the nano-based enzymelinked immunosorbent assay (ELISA) and novel nano-chip card as a rapid test for detection of filarial antigen in serum samples of human filariasis in comparison with traditional -ELISA. Serum samples were collected from an infected human with filarial gathered across Egypt's governorates. After receiving informed consenta total of 45 blood samples of infected individuals residing in different villages in Gharbea governorate, which isa nonendemic region for bancroftianfilariasis, healthy persons living in nonendemic locations (20 persons), as well as sera from 20 other parasites, affected patients were collected. The microfilaria was checked in thick smears of 20 µl night blood samples collected during 20-22 hrs. All of these individuals underwent the following procedures: history taking, clinical examination, and laboratory investigations, which included examination of blood samples for microfilaria using thick blood film and serological tests for detection of the circulating filarial antigen using polyclonal antibody- ELISA, nano-based ELISA, and nano-chip card. In the present study, a recently reported polyoclonal antibody specific to tegumental filarial antigen was used in developing nano-chip card and nano-ELISA compared to traditional ELISA for the detection of circulating filarial antigen in sera of patients with bancroftianfilariasis. The performance of the ELISA was evaluated using 45 serum samples. The ELISA was positive with sera from microfilaremicbancroftianfilariasis patients (n = 36) with a sensitivity of 80 %. Circulating filarial antigen was detected in 39/45 patients who were positive for circulating filarial antigen using nano-ELISA with a sensitivity of 86.6 %. On the other hand, 42 out of 45 patients were positive for circulating filarial antigen using nano-chip card with a sensitivity of 93.3%.In conclusion, using a novel nano-chip assay could potentially be a promising alternative antigen detection test for bancroftianfilariasis.

Keywords: lymphatic filariasis, nanotechnology, rapid diagnosis, elisa technique

Procedia PDF Downloads 115
3276 Automatic Detection and Filtering of Negative Emotion-Bearing Contents from Social Media in Amharic Using Sentiment Analysis and Deep Learning Methods

Authors: Derejaw Lake Melie, Alemu Kumlachew Tegegne

Abstract:

The increasing prevalence of social media in Ethiopia has exacerbated societal challenges by fostering the proliferation of negative emotional posts and comments. Illicit use of social media has further exacerbated divisions among the population. Addressing these issues through manual identification and aggregation of emotions from millions of users for swift decision-making poses significant challenges, particularly given the rapid growth of Amharic language usage on social platforms. Consequently, there is a critical need to develop an intelligent system capable of automatically detecting and categorizing negative emotional content into social, religious, and political categories while also filtering out toxic online content. This paper aims to leverage sentiment analysis techniques to achieve automatic detection and filtering of negative emotional content from Amharic social media texts, employing a comparative study of deep learning algorithms. The study utilized a dataset comprising 29,962 comments collected from social media platforms using comment exporter software. Data pre-processing techniques were applied to enhance data quality, followed by the implementation of deep learning methods for training, testing, and evaluation. The results showed that CNN, GRU, LSTM, and Bi-LSTM classification models achieved accuracies of 83%, 50%, 84%, and 86%, respectively. Among these models, Bi-LSTM demonstrated the highest accuracy of 86% in the experiment.

Keywords: negative emotion, emotion detection, social media filtering sentiment analysis, deep learning.

Procedia PDF Downloads 23
3275 A Fluorescent Polymeric Boron Sensor

Authors: Soner Cubuk, Mirgul Kosif, M. Vezir Kahraman, Ece Kok Yetimoglu

Abstract:

Boron is an essential trace element for the completion of the life circle for organisms. Suitable methods for the determination of boron have been proposed, including acid - base titrimetric, inductively coupled plasma emission spectroscopy flame atomic absorption and spectrophotometric. However, the above methods have some disadvantages such as long analysis times, requirement of corrosive media such as concentrated sulphuric acid and multi-step sample preparation requirements and time-consuming procedures. In this study, a selective and reusable fluorescent sensor for boron based on glycosyloxyethyl methacrylate was prepared by photopolymerization. The response characteristics such as response time, pH, linear range, limit of detection were systematically investigated. The excitation/emission maxima of the membrane were at 378/423 nm, respectively. The approximate response time was measured as 50 sec. In addition, sensor had a very low limit of detection which was 0.3 ppb. The sensor was successfully used for the determination of boron in water samples with satisfactory results.

Keywords: boron, fluorescence, photopolymerization, polymeric sensor

Procedia PDF Downloads 283
3274 Detection of Glyphosate Using Disposable Sensors for Fast, Inexpensive and Reliable Measurements by Electrochemical Technique

Authors: Jafar S. Noori, Jan Romano-deGea, Maria Dimaki, John Mortensen, Winnie E. Svendsen

Abstract:

Pesticides have been intensively used in agriculture to control weeds, insects, fungi, and pest. One of the most commonly used pesticides is glyphosate. Glyphosate has the ability to attach to the soil colloids and degraded by the soil microorganisms. As glyphosate led to the appearance of resistant species, the pesticide was used more intensively. As a consequence of the heavy use of glyphosate, residues of this compound are increasingly observed in food and water. Recent studies reported a direct link between glyphosate and chronic effects such as teratogenic, tumorigenic and hepatorenal effects although the exposure was below the lowest regulatory limit. Today, pesticides are detected in water by complicated and costly manual procedures conducted by highly skilled personnel. It can take up to several days to get an answer regarding the pesticide content in water. An alternative to this demanding procedure is offered by electrochemical measuring techniques. Electrochemistry is an emerging technology that has the potential of identifying and quantifying several compounds in few minutes. It is currently not possible to detect glyphosate directly in water samples, and intensive research is underway to enable direct selective and quantitative detection of glyphosate in water. This study focuses on developing and modifying a sensor chip that has the ability to selectively measure glyphosate and minimize the signal interference from other compounds. The sensor is a silicon-based chip that is fabricated in a cleanroom facility with dimensions of 10×20 mm. The chip is comprised of a three-electrode configuration. The deposited electrodes consist of a 20 nm layer chromium and 200 nm gold. The working electrode is 4 mm in diameter. The working electrodes are modified by creating molecularly imprinted polymers (MIP) using electrodeposition technique that allows the chip to selectively measure glyphosate at low concentrations. The modification included using gold nanoparticles with a diameter of 10 nm functionalized with 4-aminothiophenol. This configuration allows the nanoparticles to bind to the working electrode surface and create the template for the glyphosate. The chip was modified using electrodeposition technique. An initial potential for the identification of glyphosate was estimated to be around -0.2 V. The developed sensor was used on 6 different concentrations and it was able to detect glyphosate down to 0.5 mgL⁻¹. This value is below the accepted pesticide limit of 0.7 mgL⁻¹ set by the US regulation. The current focus is to optimize the functionalizing procedure in order to achieve glyphosate detection at the EU regulatory limit of 0.1 µgL⁻¹. To the best of our knowledge, this is the first attempt to modify miniaturized sensor electrodes with functionalized nanoparticles for glyphosate detection.

Keywords: pesticides, glyphosate, rapid, detection, modified, sensor

Procedia PDF Downloads 177
3273 Laser Registration and Supervisory Control of neuroArm Robotic Surgical System

Authors: Hamidreza Hoshyarmanesh, Hosein Madieh, Sanju Lama, Yaser Maddahi, Garnette R. Sutherland, Kourosh Zareinia

Abstract:

This paper illustrates the concept of an algorithm to register specified markers on the neuroArm surgical manipulators, an image-guided MR-compatible tele-operated robot for microsurgery and stereotaxy. Two range-finding algorithms, namely time-of-flight and phase-shift, are evaluated for registration and supervisory control. The time-of-flight approach is implemented in a semi-field experiment to determine the precise position of a tiny retro-reflective moving object. The moving object simulates a surgical tool tip. The tool is a target that would be connected to the neuroArm end-effector during surgery inside the magnet bore of the MR imaging system. In order to apply flight approach, a 905-nm pulsed laser diode and an avalanche photodiode are utilized as the transmitter and receiver, respectively. For the experiment, a high frequency time to digital converter was designed using a field-programmable gate arrays. In the phase-shift approach, a continuous green laser beam with a wavelength of 530 nm was used as the transmitter. Results showed that a positioning error of 0.1 mm occurred when the scanner-target point distance was set in the range of 2.5 to 3 meters. The effectiveness of this non-contact approach exhibited that the method could be employed as an alternative for conventional mechanical registration arm. Furthermore, the approach is not limited by physical contact and extension of joint angles.

Keywords: 3D laser scanner, intraoperative MR imaging, neuroArm, real time registration, robot-assisted surgery, supervisory control

Procedia PDF Downloads 286
3272 FLEX: A Backdoor Detection and Elimination Method in Federated Scenario

Authors: Shuqi Zhang

Abstract:

Federated learning allows users to participate in collaborative model training without sending data to third-party servers, reducing the risk of user data privacy leakage, and is widely used in smart finance and smart healthcare. However, the distributed architecture design of federation learning itself and the existence of secure aggregation protocols make it inherently vulnerable to backdoor attacks. To solve this problem, the federated learning backdoor defense framework FLEX based on group aggregation, cluster analysis, and neuron pruning is proposed, and inter-compatibility with secure aggregation protocols is achieved. The good performance of FLEX is verified by building a horizontal federated learning framework on the CIFAR-10 dataset for experiments, which achieves 98% success rate of backdoor detection and reduces the success rate of backdoor tasks to 0% ~ 10%.

Keywords: federated learning, secure aggregation, backdoor attack, cluster analysis, neuron pruning

Procedia PDF Downloads 96
3271 Comparing Radiographic Detection of Simulated Syndesmosis Instability Using Standard 2D Fluoroscopy Versus 3D Cone-Beam Computed Tomography

Authors: Diane Ghanem, Arjun Gupta, Rohan Vijayan, Ali Uneri, Babar Shafiq

Abstract:

Introduction: Ankle sprains and fractures often result in syndesmosis injuries. Unstable syndesmotic injuries result from relative motion between the distal ends of the tibia and fibula, anatomic juncture which should otherwise be rigid, and warrant operative management. Clinical and radiological evaluations of intraoperative syndesmosis stability remain a challenging task as traditional 2D fluoroscopy is limited to a uniplanar translational displacement. The purpose of this pilot cadaveric study is to compare the 2D fluoroscopy and 3D cone beam computed tomography (CBCT) stress-induced syndesmosis displacements. Methods: Three fresh-frozen lower legs underwent 2D fluoroscopy and 3D CIOS CBCT to measure syndesmosis position before dissection. Syndesmotic injury was simulated by resecting the (1) anterior inferior tibiofibular ligament (AITFL), the (2) posterior inferior tibiofibular ligament (PITFL) and the inferior transverse ligament (ITL) simultaneously, followed by the (3) interosseous membrane (IOM). Manual external rotation and Cotton stress test were performed after each of the three resections and 2D and 3D images were acquired. Relevant 2D and 3D parameters included the tibiofibular overlap (TFO), tibiofibular clear space (TCS), relative rotation of the fibula, and anterior-posterior (AP) and medial-lateral (ML) translations of the fibula relative to the tibia. Parameters were measured by two independent observers. Inter-rater reliability was assessed by intraclass correlation coefficient (ICC) to determine measurement precision. Results: Significant mismatches were found in the trends between the 2D and 3D measurements when assessing for TFO, TCS and AP translation across the different resection states. Using 3D CBCT, TFO was inversely proportional to the number of resected ligaments while TCS was directly proportional to the latter across all cadavers and ‘resection + stress’ states. Using 2D fluoroscopy, this trend was not respected under the Cotton stress test. 3D AP translation did not show a reliable trend whereas 2D AP translation of the fibula was positive under the Cotton stress test and negative under the external rotation. 3D relative rotation of the fibula, assessed using the Tang et al. ratio method and Beisemann et al. angular method, suggested slight overall internal rotation with complete resection of the ligaments, with a change < 2mm - threshold which corresponds to the commonly used buffer to account for physiologic laxity as per clinical judgment of the surgeon. Excellent agreement (>0.90) was found between the two independent observers for each of the parameters in both 2D and 3D (overall ICC 0.9968, 95% CI 0.995 - 0.999). Conclusions: The 3D CIOS CBCT appears to reliably depict the trend in TFO and TCS. This might be due to the additional detection of relevant rotational malpositions of the fibula in comparison to the standard 2D fluoroscopy which is limited to a single plane translation. A better understanding of 3D imaging may help surgeons identify the precise measurements planes needed to achieve better syndesmosis repair.

Keywords: 2D fluoroscopy, 3D computed tomography, image processing, syndesmosis injury

Procedia PDF Downloads 70
3270 Adaptation of Projection Profile Algorithm for Skewed Handwritten Text Line Detection

Authors: Kayode A. Olaniyi, Tola. M. Osifeko, Adeola A. Ogunleye

Abstract:

Text line segmentation is an important step in document image processing. It represents a labeling process that assigns the same label using distance metric probability to spatially aligned units. Text line detection techniques have successfully been implemented mainly in printed documents. However, processing of the handwritten texts especially unconstrained documents has remained a key problem. This is because the unconstrained hand-written text lines are often not uniformly skewed. The spaces between text lines may not be obvious, complicated by the nature of handwriting and, overlapping ascenders and/or descenders of some characters. Hence, text lines detection and segmentation represents a leading challenge in handwritten document image processing. Text line detection methods that rely on the traditional global projection profile of the text document cannot efficiently confront with the problem of variable skew angles between different text lines. Hence, the formulation of a horizontal line as a separator is often not efficient. This paper presents a technique to segment a handwritten document into distinct lines of text. The proposed algorithm starts, by partitioning the initial text image into columns, across its width into chunks of about 5% each. At each vertical strip of 5%, the histogram of horizontal runs is projected. We have worked with the assumption that text appearing in a single strip is almost parallel to each other. The algorithm developed provides a sliding window through the first vertical strip on the left side of the page. It runs through to identify the new minimum corresponding to a valley in the projection profile. Each valley would represent the starting point of the orientation line and the ending point is the minimum point on the projection profile of the next vertical strip. The derived text-lines traverse around any obstructing handwritten vertical strips of connected component by associating it to either the line above or below. A decision of associating such connected component is made by the probability obtained from a distance metric decision. The technique outperforms the global projection profile for text line segmentation and it is robust to handle skewed documents and those with lines running into each other.

Keywords: connected-component, projection-profile, segmentation, text-line

Procedia PDF Downloads 124
3269 Low-Cost Reversible Logic Serial Multipliers with Error Detection Capability

Authors: Mojtaba Valinataj

Abstract:

Nowadays reversible logic has received many attentions as one of the new fields for reducing the power consumption. On the other hand, the processing systems have weaknesses against different external effects. In this paper, some error detecting reversible logic serial multipliers are proposed by incorporating the parity-preserving gates. This way, the new designs are presented for signed parity-preserving serial multipliers based on the Booth's algorithm by exploiting the new arrangements of existing gates. The experimental results show that the proposed 4×4 multipliers in this paper reach up to 20%, 35%, and 41% enhancements in the number of constant inputs, quantum cost, and gate count, respectively, as the reversible logic criteria, compared to previous designs. Furthermore, all the proposed designs have been generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.

Keywords: Booth’s algorithm, error detection, multiplication, parity-preserving gates, quantum computers, reversible logic

Procedia PDF Downloads 228
3268 Effects of Body Positioning on Videofluoroscopic Barium Esophagram in Healthy Cats

Authors: Hyeona Kim, Kichang Lee, Seunghee Lee, Jeongsu An, Kyungjun Min

Abstract:

Contrast videofluoroscopy is the diagnostic imaging technique for evaluating cat with dysphagia. Generally, videofluoroscopic studies have been done with the cat restrained in lateral recumbency. It is different from the neutral position such as standing or sternal recumbency which is actual swallowing posture. We hypothesized that measurement of esophageal transit and peristalsis would be affected by body position. This experimental study analyzed the imaging findings of barium esophagram in 5 cats. Each cat underwent videofluoroscopy during swallowing of liquid barium and barium-soaked kibble in standing position and lateral recumbency. Esophageal transit time and the number of esophageal peristaltic waves were compared among body positions. Transit time in the cervical esophagus (0.57s), cranial thoracic esophagus (2.5s), and caudal thoracic esophagus(1.10s) was delayed when cats were in lateral recumbency for liquid barium. For kibble, transit time was more delayed than that of liquid through the entire esophagus in lateral recumbency. Liquid and kibble frequently started to delay at thoracic inlet region, transit time in the thoracic esophagus was significantly delayed than the cervical esophagus. In standing position, 60.2% of liquid swallows stimulated primary esophageal peristalsis. In lateral recumbency, 50.5% of liquid swallows stimulated primary esophageal peristalsis. Other variables were not significantly different. Lateral body positioning increases entire esophageal transit time and thoracic esophageal transit time is most significantly delayed. Thus, lateral recumbency decreases the number of primary esophageal peristalsis.

Keywords: barium esophagram, body positioning, cat, videofluoroscopy

Procedia PDF Downloads 201
3267 Fake Accounts Detection in Twitter Based on Minimum Weighted Feature Set

Authors: Ahmed ElAzab, Amira M. Idrees, Mahmoud A. Mahmoud, Hesham Hefny

Abstract:

Social networking sites such as Twitter and Facebook attracts over 500 million users across the world, for those users, their social life, even their practical life, has become interrelated. Their interaction with social networking has affected their life forever. Accordingly, social networking sites have become among the main channels that are responsible for vast dissemination of different kinds of information during real time events. This popularity in Social networking has led to different problems including the possibility of exposing incorrect information to their users through fake accounts which results to the spread of malicious content during life events. This situation can result to a huge damage in the real world to the society in general including citizens, business entities, and others. In this paper, we present a classification method for detecting fake accounts on Twitter. The study determines the minimized set of the main factors that influence the detection of the fake accounts on Twitter, then the determined factors have been applied using different classification techniques, a comparison of the results for these techniques has been performed and the most accurate algorithm is selected according to the accuracy of the results. The study has been compared with different recent research in the same area, this comparison has proved the accuracy of the proposed study. We claim that this study can be continuously applied on Twitter social network to automatically detect the fake accounts, moreover, the study can be applied on different Social network sites such as Facebook with minor changes according to the nature of the social network which are discussed in this paper.

Keywords: fake accounts detection, classification algorithms, twitter accounts analysis, features based techniques

Procedia PDF Downloads 416
3266 Real-Time Radiological Monitoring of the Atmosphere Using an Autonomous Aerosol Sampler

Authors: Miroslav Hyza, Petr Rulik, Vojtech Bednar, Jan Sury

Abstract:

An early and reliable detection of an increased radioactivity level in the atmosphere is one of the key aspects of atmospheric radiological monitoring. Although the standard laboratory procedures provide detection limits as low as few µBq/m³, their major drawback is the delayed result reporting: typically a few days. This issue is the main objective of the HAMRAD project, which gave rise to a prototype of an autonomous monitoring device. It is based on the idea of sequential aerosol sampling using a carrousel sample changer combined with a gamma-ray spectrometer. In our hardware configuration, the air is drawn through a filter positioned on the carrousel so that it could be rotated into the measuring position after a preset sampling interval. Filter analysis is performed via a 50% HPGe detector inside an 8.5cm lead shielding. The spectrometer output signal is then analyzed using DSP electronics and Gamwin software with preset nuclide libraries and other analysis parameters. After the counting, the filter is placed into a storage bin with a capacity of 250 filters so that the device can run autonomously for several months depending on the preset sampling frequency. The device is connected to a central server via GPRS/GSM where the user can view monitoring data including raw spectra and technological data describing the state of the device. All operating parameters can be remotely adjusted through a simple GUI. The flow rate is continuously adjustable up to 10 m³/h. The main challenge in spectrum analysis is the natural background subtraction. As detection limits are heavily influenced by the deposited activity of radon decay products and the measurement time is fixed, there must exist an optimal sample decay time (delayed spectrum acquisition). To solve this problem, we adopted a simple procedure based on sequential spectrum acquisition and optimal partial spectral sum with respect to the detection limits for a particular radionuclide. The prototyped device proved to be able to detect atmospheric contamination at the level of mBq/m³ per an 8h sampling.

Keywords: aerosols, atmosphere, atmospheric radioactivity monitoring, autonomous sampler

Procedia PDF Downloads 150
3265 Determination of a Novel Artificial Sweetener Advantame in Food by Liquid Chromatography Tandem Mass Spectrometry

Authors: Fangyan Li, Lin Min Lee, Hui Zhu Peh, Shoet Harn Chan

Abstract:

Advantame, a derivative of aspartame, is the latest addition to a family of low caloric and high potent dipeptide sweeteners which include aspartame, neotame and alitame. The use of advantame as a high-intensity sweetener in food was first accepted by Food Standards Australia New Zealand in 2011 and subsequently by US and EU food authorities in 2014, with the results from toxicity and exposure studies showing advantame poses no safety concern to the public at regulated levels. To our knowledge, currently there is barely any detailed information on the analytical method of advantame in food matrix, except for one report published in Japanese, stating a high performance liquid chromatography (HPLC) and liquid chromatography/ mass spectrometry (LC-MS) method with a detection limit at ppm level. However, the use of acid in sample preparation and instrumental analysis in the report raised doubt over the reliability of the method, as there is indication that stability of advantame is compromised under acidic conditions. Besides, the method may not be suitable for analyzing food matrices containing advantame at low ppm or sub-ppm level. In this presentation, a simple, specific and sensitive method for the determination of advantame in food is described. The method involved extraction with water and clean-up via solid phase extraction (SPE) followed by detection using liquid chromatography tandem mass spectrometry (LC-MS/MS) in negative electrospray ionization mode. No acid was used in the entire procedure. Single laboratory validation of the method was performed in terms of linearity, precision and accuracy. A low detection limit at ppb level was achieved. Satisfactory recoveries were obtained using spiked samples at three different concentration levels. This validated method could be used in the routine inspection of the advantame level in food.

Keywords: advantame, food, LC-MS/MS, sweetener

Procedia PDF Downloads 475
3264 Proposing a Boundary Coverage Algorithm ‎for Underwater Sensor Network

Authors: Seyed Mohsen Jameii

Abstract:

Wireless underwater sensor networks are a type of sensor networks that are located in underwater environments and linked together by acoustic waves. The application of these kinds of network includes monitoring of pollutants (chemical, biological, and nuclear), oil fields detection, prediction of the likelihood of a tsunami in coastal areas, the use of wireless sensor nodes to monitor the passing submarines, and determination of appropriate locations for anchoring ships. This paper proposes a boundary coverage algorithm for intrusion detection in underwater sensor networks. In the first phase of the proposed algorithm, optimal deployment of nodes is done in the water. In the second phase, after the employment of nodes at the proper depth, clustering is executed to reduce the exchanges of messages between the sensors. In the third phase, the algorithm of "divide and conquer" is used to save energy and increase network efficiency. The simulation results demonstrate the efficiency of the proposed algorithm.

Keywords: boundary coverage, clustering, divide and ‎conquer, underwater sensor nodes

Procedia PDF Downloads 341
3263 A Deep Learning Approach to Detect Complete Safety Equipment for Construction Workers Based on YOLOv7

Authors: Shariful Islam, Sharun Akter Khushbu, S. M. Shaqib, Shahriar Sultan Ramit

Abstract:

In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwear. The suggested method precisely locates these safety items by using the YOLO v7 (You Only Look Once) object detection algorithm. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a [email protected] score of 87.7%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research contributes to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry.

Keywords: deep learning, safety equipment detection, YOLOv7, computer vision, workplace safety

Procedia PDF Downloads 68
3262 99mTc Scintimammography in an Equivocal Breast Lesion

Authors: Malak Shawky Matter Elyas

Abstract:

Introduction: Early detection of breast cancer is the main tool to decrease morbidity and mortality rates. Many diagnostic tools are used, such as mammograms, ultrasound and magnetic resonance imaging, but none of them is conclusive, especially in very small sizes, less than 1 cm. So, there is a need for more accurate tools. Patients and methods: This study involved 13 patients with different breast lesions. 6 Patients had breast cancer, and one of them had metastatic axillary lymph nodes without clinically nor mammographically detected breast mass proved by biopsy and histopathology. Of the other 7 Patients, 4 of them had benign breast lesions proved by biopsy and histopathology, and 3 Patients showed Equivocal breast lesions on a mammogram. A volume of 370-444Mbq of (99m) Tc/ bombesin was injected. Dynamic 1-min images by Gamma Camera were taken for 20 minutes immediately after injection in the anterior view. Thereafter, two static images in anterior and prone lateral views by Gamma Camera were taken for 5 minutes. Finally, single-photon emission computed tomography images were taken for each patient. The definitive diagnosis was based on biopsy and histopathology. Results: 6 Patients with breast cancer proved by biopsy and histopathology showed Positive findings on Sestamibi (Scintimammography). 1 out of 4 Patients with benign breast lesions proved by biopsy and histopathology showed Positive findings on Sestamibi (Scintimammography) while the other 3 Patients showed Negative findings on Sestamibi. 3 Patients out of 3 Patients with equivocal breast findings on mammogram showed Positive Findings on Sestamibi (Scintimammography) and proved by biopsy and histopathology. Conclusions: While we agree that Scintimammography will not replace mammograms as a mass screening tool, we believe that many patients will benefit from Scintimammography, especially women with dense breast tissues and in the presence of breast implants that are difficult to diagnose by mammogram, wherein its sensitivity is low and in women with metastatic axillary lymph nodes without clinically nor mammographically findings. We can use Scintimammography in sentinel lymph node mapping as a more accurate tool, especially since it is non-invasive.

Keywords: breast., radiodiagnosis, lifestyle, surgery

Procedia PDF Downloads 31
3261 Colorimetric Measurement of Dipeptidyl Peptidase IV (DPP IV) Activity via Peptide Capped Gold Nanoparticles

Authors: H. Aldewachi, M. Hines, M. McCulloch, N. Woodroofe, P. Gardiner

Abstract:

DPP-IV is an enzyme whose expression is affected in a variety of diseases, therefore, has been identified as possible diagnostic or prognostic marker for various tumours, immunological, inflammatory, neuroendocrine, and viral diseases. Recently, DPP-IV enzyme has been identified as a novel target for type II diabetes treatment where the enzyme is involved. There is, therefore, a need to develop sensitive and specific methods that can be easily deployed for the screening of the enzyme either as a tool for drug screening or disease marker in biological samples. A variety of assays have been introduced for the determination of DPP-IV enzyme activity using chromogenic and fluorogenic substrates, nevertheless these assays either lack the required sensitivity especially in inhibited enzyme samples or displays low water solubility implying difficulty for use in vivo samples in addition to labour and time-consuming sample preparation. In this study, novel strategies based on exploiting the high extinction coefficient of gold nanoparticles (GNPs) are investigated in order to develop fast, specific and reliable enzymatic assay by investigating synthetic peptide sequences containing a DPP IV cleavage site and coupling them to GNPs. The DPP IV could be detected by colorimetric response of peptide capped GNPs (P-GNPS) that could be monitored by a UV-visible spectrophotometer or even naked eyes, and the detection limit could reach 0.01 unit/ml. The P-GNPs, when subjected to DPP IV, showed excellent selectivity compared to other proteins (thrombin and human serum albumin) , which led to prominent colour change. This provided a simple and effective colorimetric sensor for on-site and real-time detection of DPP IV.

Keywords: gold nanoparticles, synthetic peptides, colorimetric detection, DPP-IV enzyme

Procedia PDF Downloads 303
3260 Use of In-line Data Analytics and Empirical Model for Early Fault Detection

Authors: Hyun-Woo Cho

Abstract:

Automatic process monitoring schemes are designed to give early warnings for unusual process events or abnormalities as soon as possible. For this end, various techniques have been developed and utilized in various industrial processes. It includes multivariate statistical methods, representation skills in reduced spaces, kernel-based nonlinear techniques, etc. This work presents a nonlinear empirical monitoring scheme for batch type production processes with incomplete process measurement data. While normal operation data are easy to get, unusual fault data occurs infrequently and thus are difficult to collect. In this work, noise filtering steps are added in order to enhance monitoring performance by eliminating irrelevant information of the data. The performance of the monitoring scheme was demonstrated using batch process data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.

Keywords: batch process, monitoring, measurement, kernel method

Procedia PDF Downloads 323
3259 Numerical Simulations of Acoustic Imaging in Hydrodynamic Tunnel with Model Adaptation and Boundary Layer Noise Reduction

Authors: Sylvain Amailland, Jean-Hugh Thomas, Charles Pézerat, Romuald Boucheron, Jean-Claude Pascal

Abstract:

The noise requirements for naval and research vessels have seen an increasing demand for quieter ships in order to fulfil current regulations and to reduce the effects on marine life. Hence, new methods dedicated to the characterization of propeller noise, which is the main source of noise in the far-field, are needed. The study of cavitating propellers in closed-section is interesting for analyzing hydrodynamic performance but could involve significant difficulties for hydroacoustic study, especially due to reverberation and boundary layer noise in the tunnel. The aim of this paper is to present a numerical methodology for the identification of hydroacoustic sources on marine propellers using hydrophone arrays in a large hydrodynamic tunnel. The main difficulties are linked to the reverberation of the tunnel and the boundary layer noise that strongly reduce the signal-to-noise ratio. In this paper it is proposed to estimate the reflection coefficients using an inverse method and some reference transfer functions measured in the tunnel. This approach allows to reduce the uncertainties of the propagation model used in the inverse problem. In order to reduce the boundary layer noise, a cleaning algorithm taking advantage of the low rank and sparse structure of the cross-spectrum matrices of the acoustic and the boundary layer noise is presented. This approach allows to recover the acoustic signal even well under the boundary layer noise. The improvement brought by this method is visible on acoustic maps resulting from beamforming and DAMAS algorithms.

Keywords: acoustic imaging, boundary layer noise denoising, inverse problems, model adaptation

Procedia PDF Downloads 335
3258 New Efficient Method for Coding Color Images

Authors: Walaa M.Abd-Elhafiez, Wajeb Gharibi

Abstract:

In this paper a novel color image compression technique for efficient storage and delivery of data is proposed. The proposed compression technique started by RGB to YCbCr color transformation process. Secondly, the canny edge detection method is used to classify the blocks into edge and non-edge blocks. Each color component Y, Cb, and Cr compressed by discrete cosine transform (DCT) process, quantizing and coding step by step using adaptive arithmetic coding. Our technique is concerned with the compression ratio, bits per pixel and peak signal to noise ratio, and produce better results than JPEG and more recent published schemes (like, CBDCT-CABS and MHC). The provided experimental results illustrate the proposed technique which is efficient and feasible in terms of compression ratio, bits per pixel and peak signal to noise ratio.

Keywords: image compression, color image, q-coder, quantization, edge-detection

Procedia PDF Downloads 329
3257 Adaptive Multipath Mitigation Acquisition Approach for Global Positioning System Software Receivers

Authors: Animut Meseret Simachew

Abstract:

Parallel Code Phase Search Acquisition (PCSA) Algorithm has been considered as a promising method in GPS software receivers for detection and estimation of the accurate correlation peak between the received Global Positioning System (GPS) signal and locally generated replicas. GPS signal acquisition in highly dense multipath environments is the main research challenge. In this work, we proposed a robust variable step-size (RVSS) PCSA algorithm based on fast frequency transform (FFT) filtering technique to mitigate short time delay multipath signals. Simulation results reveal the effectiveness of the proposed algorithm over the conventional PCSA algorithm. The proposed RVSS-PCSA algorithm equalizes the received carrier wiped-off signal with locally generated C/A code.

Keywords: adaptive PCSA, detection and estimation, GPS signal acquisition, GPS software receiver

Procedia PDF Downloads 117
3256 Automated End of Sprint Detection for Force-Velocity-Power Analysis with GPS/GNSS Systems

Authors: Patrick Cormier, Cesar Meylan, Matt Jensen, Dana Agar-Newman, Chloe Werle, Ming-Chang Tsai, Marc Klimstra

Abstract:

Sprint-derived horizontal force-velocity-power (FVP) profiles can be developed with adequate validity and reliability with satellite (GPS/GNSS) systems. However, FVP metrics are sensitive to small nuances in data processing procedures such that minor differences in defining the onset and end of the sprint could result in different FVP metric outcomes. Furthermore, in team-sports, there is a requirement for rapid analysis and feedback of results from multiple athletes, therefore developing standardized and automated methods to improve the speed, efficiency and reliability of this process are warranted. Thus, the purpose of this study was to compare different methods of sprint end detection on the development of FVP profiles from 10Hz GPS/GNSS data through goodness-of-fit and intertrial reliability statistics. Seventeen national team female soccer players participated in the FVP protocol which consisted of 2x40m maximal sprints performed towards the end of a soccer specific warm-up in a training session (1020 hPa, wind = 0, temperature = 30°C) on an open grass field. Each player wore a 10Hz Catapult system unit (Vector S7, Catapult Innovations) inserted in a vest in a pouch between the scapulae. All data were analyzed following common procedures. Variables computed and assessed were the model parameters, estimated maximal sprint speed (MSS) and the acceleration constant τ, in addition to horizontal relative force (F₀), velocity at zero (V₀), and relative mechanical power (Pmax). The onset of the sprints was standardized with an acceleration threshold of 0.1 m/s². The sprint end detection methods were: 1. Time when peak velocity (MSS) was achieved (zero acceleration), 2. Time after peak velocity drops by -0.4 m/s, 3. Time after peak velocity drops by -0.6 m/s, and 4. When the integrated distance from the GPS/GNSS signal achieves 40-m. Goodness-of-fit of each sprint end detection method was determined using the residual sum of squares (RSS) to demonstrate the error of the FVP modeling with the sprint data from the GPS/GNSS system. Inter-trial reliability (from 2 trials) was assessed utilizing intraclass correlation coefficients (ICC). For goodness-of-fit results, the end detection technique that used the time when peak velocity was achieved (zero acceleration) had the lowest RSS values, followed by -0.4 and -0.6 velocity decay, and 40-m end had the highest RSS values. For intertrial reliability, the end of sprint detection techniques that were defined as the time at (method 1) or shortly after (method 2 and 3) when MSS was achieved had very large to near perfect ICC and the time at the 40 m integrated distance (method 4) had large to very large ICCs. Peak velocity was reached at 29.52 ± 4.02-m. Therefore, sport scientists should implement end of sprint detection either when peak velocity is determined or shortly after to improve goodness of fit to achieve reliable between trial FVP profile metrics. Although, more robust processing and modeling procedures should be developed in future research to improve sprint model fitting. This protocol was seamlessly integrated into the usual training which shows promise for sprint monitoring in the field with this technology.

Keywords: automated, biomechanics, team-sports, sprint

Procedia PDF Downloads 119
3255 Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features

Authors: Birmohan Singh, V.K.Jain

Abstract:

Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Masses and microcalcifications, architectural distortions are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support Vector Machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and accuracy of 96% for the detection of abnormalities with mammogram images collected from Digital Database for Screening Mammography (DDSM) database.

Keywords: architecture distortion, mammograms, GLCM texture features, GLRLM texture features, support vector machine classifier

Procedia PDF Downloads 491
3254 Video Shot Detection and Key Frame Extraction Using Faber-Shauder DWT and SVD

Authors: Assma Azeroual, Karim Afdel, Mohamed El Hajji, Hassan Douzi

Abstract:

Key frame extraction methods select the most representative frames of a video, which can be used in different areas of video processing such as video retrieval, video summary, and video indexing. In this paper we present a novel approach for extracting key frames from video sequences. The frame is characterized uniquely by his contours which are represented by the dominant blocks. These dominant blocks are located on the contours and its near textures. When the video frames have a noticeable changement, its dominant blocks changed, then we can extracte a key frame. The dominant blocks of every frame is computed, and then feature vectors are extracted from the dominant blocks image of each frame and arranged in a feature matrix. Singular Value Decomposition is used to calculate sliding windows ranks of those matrices. Finally the computed ranks are traced and then we are able to extract key frames of a video. Experimental results show that the proposed approach is robust against a large range of digital effects used during shot transition.

Keywords: FSDWT, key frame extraction, shot detection, singular value decomposition

Procedia PDF Downloads 398
3253 Vehicle Speed Estimation Using Image Processing

Authors: Prodipta Bhowmik, Poulami Saha, Preety Mehra, Yogesh Soni, Triloki Nath Jha

Abstract:

In India, the smart city concept is growing day by day. So, for smart city development, a better traffic management and monitoring system is a very important requirement. Nowadays, road accidents increase due to more vehicles on the road. Reckless driving is mainly responsible for a huge number of accidents. So, an efficient traffic management system is required for all kinds of roads to control the traffic speed. The speed limit varies from road to road basis. Previously, there was a radar system but due to high cost and less precision, the radar system is unable to become favorable in a traffic management system. Traffic management system faces different types of problems every day and it has become a researchable topic on how to solve this problem. This paper proposed a computer vision and machine learning-based automated system for multiple vehicle detection, tracking, and speed estimation of vehicles using image processing. Detection of vehicles and estimating their speed from a real-time video is tough work to do. The objective of this paper is to detect vehicles and estimate their speed as accurately as possible. So for this, a real-time video is first captured, then the frames are extracted from that video, then from that frames, the vehicles are detected, and thereafter, the tracking of vehicles starts, and finally, the speed of the moving vehicles is estimated. The goal of this method is to develop a cost-friendly system that can able to detect multiple types of vehicles at the same time.

Keywords: OpenCV, Haar Cascade classifier, DLIB, YOLOV3, centroid tracker, vehicle detection, vehicle tracking, vehicle speed estimation, computer vision

Procedia PDF Downloads 84
3252 Computed Tomography Differential Diagnose of Intraventicular Masses in the Emergency Departemen

Authors: Angelis P. Barlampas

Abstract:

Purpose: A 29 years old woman presented in the emergency department with psychiatric symptoms. The psychiatrist ordered a computed tomography scan as part of a general examination. Material and methods: The CT showed bilateral enlarged choroid plexus structures mimicking papillomata and situated in the trigones of the lateral ventricles. The left choroid plexus was heavily calcified, but the right one has no any obvious calcifications. Results: It is well kown that any brain mass can present with behavioral changes and even psychiatric symptomatology. Papillomata of the ventricular system have been described to cause psychotic episodes. According to literature, choroid plexus papillomas are seldom neuroepithelial intraventricular tumors, which are benign and categorized as WHO grade 1 tumors. They are more common in the pediatric population, but they can occur in the adults, too1. In addition, the distinction between choroid plexus papilloma and carcinoma is very difficult and impossible by imagine alone. It can only be implied with more advanced imaging, such as arterial spin labeling and MRI. The final diagnosis is, of course, after surgical excision. The usual location in adults is the fourth ventricle, but in children, it is the lateral ventricles. Their imaging appearance is that of a solid vascular tumor, which enhances intensely after the intravenous administration of contrast material. One out of fourth tumors presents speckled calcifications1. In our case, there are symmetrically sized masses at the trigones, and there are no calcifications in one of them, whereas the other one is grossly calcified. Also, there is no obvious hydrocephalus or any other evidence of increased intracranial pressure. General conclusions: When there is a new psychiatric patient, someone must undergo any possible examination, and of course, a brain CT study should be done to exclude any rare organic causes that may be responsible for the disease.

Keywords: phycosis, intraventricular masses, CT, brain calcifications

Procedia PDF Downloads 57
3251 Bit Error Rate (BER) Performance of Coherent Homodyne BPSK-OCDMA Network for Multimedia Applications

Authors: Morsy Ahmed Morsy Ismail

Abstract:

In this paper, the structure of a coherent homodyne receiver for the Binary Phase Shift Keying (BPSK) Optical Code Division Multiple Access (OCDMA) network is introduced based on the Multi-Length Weighted Modified Prime Code (ML-WMPC) for multimedia applications. The Bit Error Rate (BER) of this homodyne detection is evaluated as a function of the number of active users and the signal to noise ratio for different code lengths according to the multimedia application such as audio, voice, and video. Besides, the Mach-Zehnder interferometer is used as an external phase modulator in homodyne detection. Furthermore, the Multiple Access Interference (MAI) and the receiver noise in a shot-noise limited regime are taken into consideration in the BER calculations.

Keywords: OCDMA networks, bit error rate, multiple access interference, binary phase-shift keying, multimedia

Procedia PDF Downloads 175