Search results for: three dimensional modeling
4261 Comparison between Experimental Modeling and HYDRUS-2D for Nitrate Transport through a Saturated Soil Column
Authors: Mohamed Eltarabily, Abdelazim Negm, Chihiro Yoshimura
Abstract:
Recently, the pollution of groundwater from the use of nitrogenous fertilizer is at the increase. Also, due to the increase in area under cultivation and regular use of fertilizer in irrigated agriculture, groundwater pollution from agricultural activities is becoming a major concern. Because of the high mobility of Nitrate (NO3-) in soil which is governed by electrostatic processes, particularly anion exclusion, nitrate can be intercepted by shallow subsurface drainage pipe systems and then discharged offsite into streams, rivers, and lakes causing many hazards. In order to solve these environmental problems associated with nitrate, a better understanding of how NO3- moves through the soil profile under flow conditions is required. In the present paper, the results of a comparative study between experimental and numerical modeling of Nitrate transport through a saturated soil column are presented and analyzed. In order to achieve that, three water fluxes densities; 0.008, 0.007, and 0.006 m sec-1 and N concentration rates 10 mol cm-3 were used. The same concentrations were used in the simulation using HYDRUS-2D. The physical and chemical properties of the collected soil samples were calculated. Besides, the soil texture was determined which was silty sand. Results showed that HYDRUS-2D can successfully predict the relative behavior of N transport in the present experiment. Nitrate concentrations will reach deeper depth with the increase in the water flux. Overall, it was overestimated in the final concentration of (NO3-) in the soil by numerical simulation than by experimental column test. The column experiment is a useful tool for assessing the nitrate concentrations in the soil profile.Keywords: groundwater, nitrate leaching, HYDRUS-2D, soil column
Procedia PDF Downloads 2334260 Wavelet Method for Numerical Solution of Fourth Order Wave Equation
Authors: A. H. Choudhury
Abstract:
In this paper, a highly accurate numerical method for the solution of one-dimensional fourth-order wave equation is derived. This hyperbolic problem is solved by using semidiscrete approximations. The space direction is discretized by wavelet-Galerkin method, and the time variable is discretized by using Newmark schemes.Keywords: hyperbolic problem, semidiscrete approximations, stability, Wavelet-Galerkin Method
Procedia PDF Downloads 3144259 Investigations on Pyrolysis Model for Radiatively Dominant Diesel Pool Fire Using Fire Dynamic Simulator
Authors: Siva K. Bathina, Sudheer Siddapureddy
Abstract:
Pool fires are formed when the flammable liquid accidentally spills on the ground or water and ignites. Pool fire is a kind of buoyancy-driven and diffusion flame. There have been many pool fire accidents caused during processing, handling and storing of liquid fuels in chemical and oil industries. Such kind of accidents causes enormous damage to property as well as the loss of lives. Pool fires are complex in nature due to the strong interaction among the combustion, heat and mass transfers and pyrolysis at the fuel surface. Moreover, the experimental study of such large complex fires involves fire safety issues and difficulties in performing experiments. In the present work, large eddy simulations are performed to study such complex fire scenarios using fire dynamic simulator. A 1 m diesel pool fire is considered for the studied cases, and diesel is chosen as it is most commonly involved fuel in fire accidents. Fire simulations are performed by specifying two different boundary conditions: one the fuel is in liquid state and pyrolysis model is invoked, and the other by assuming the fuel is initially in a vapor state and thereby prescribing the mass loss rate. A domain of size 11.2 m × 11.2 m × 7.28 m with uniform structured grid is chosen for the numerical simulations. Grid sensitivity analysis is performed, and a non-dimensional grid size of 12 corresponding to 8 cm grid size is considered. Flame properties like mass burning rate, irradiance, and time-averaged axial flame temperature profile are predicted. The predicted steady-state mass burning rate is 40 g/s and is within the uncertainty limits of the previously reported experimental data (39.4 g/s). Though the profile of the irradiance at a distance from the fire along the height is somewhat in line with the experimental data and the location of the maximum value of irradiance is shifted to a higher location. This may be due to the lack of sophisticated models for the species transportation along with combustion and radiation in the continuous zone. Furthermore, the axial temperatures are not predicted well (for any of the boundary conditions) in any of the zones. The present study shows that the existing models are not sufficient enough for modeling blended fuels like diesel. The predictions are strongly dependent on the experimental values of the soot yield. Future experiments are necessary for generalizing the soot yield for different fires.Keywords: burning rate, fire accidents, fire dynamic simulator, pyrolysis
Procedia PDF Downloads 1954258 Augmented Reality: New Relations with the Architectural Heritage Education
Authors: Carla Maria Furuno Rimkus
Abstract:
The technologies related to virtual reality and augmented reality in combination with mobile technologies, are being more consolidated and used each day. The increasing technological availability along with the decrease of their acquisition and maintenance costs, have favored the expansion of its use in the field of historic heritage. In this context it is focused, in this article, on the potential of mobile applications in the dissemination of the architectural heritage, using the technology of Augmented Reality. From this perspective approach, it is discussed about the process of producing an application for mobile devices on the Android platform, which combines the technologies of geometric modeling with augmented reality (AR) and access to interactive multimedia contents with cultural, social and historic information of the historic building that we take as the object of study: a block with a set of buildings built in the XVIII century, known as "Quarteirão dos Trapiches", which was modeled in 3D, coated with the original texture of its facades and displayed on AR. From this perspective approach, this paper discusses about methodological aspects of the development of this application regarding to the process and the project development tools, and presents our considerations on methodological aspects of developing an application for the Android system, focused on the dissemination of the architectural heritage, in order to encourage the tourist potential of the city in a sustainable way and to contribute to develop the digital documentation of the heritage of the city, meeting a demand of tourists visiting the city and the professionals who work in the preservation and restoration of it, consisting of architects, historians, archaeologists, museum specialists, among others.Keywords: augmented reality, architectural heritage, geometric modeling, mobile applications
Procedia PDF Downloads 4764257 Characterization of the in 0.53 Ga 0.47 as n+nn+ Photodetectors
Authors: Fatima Zohra Mahi, Luca Varani
Abstract:
We present an analytical model for the calculation of the sensitivity, the spectral current noise and the detectivity for an optically illuminated In0.53Ga0.47As n+nn+ diode. The photocurrent due to the excess carrier is obtained by solving the continuity equation. Moreover, the current noise level is evaluated at room temperature and under a constant voltage applied between the diode terminals. The analytical calculation of the current noise in the n+nn+ structure is developed. The responsivity and the detectivity are discussed as functions of the doping concentrations and the emitter layer thickness in one-dimensional homogeneous n+nn+ structure.Keywords: detectivity, photodetectors, continuity equation, current noise
Procedia PDF Downloads 6424256 Heterogeneity of Soil Moisture and Its Impacts on the Mountainous Watershed Hydrology in Northwest China
Authors: Chansheng He, Zhongfu Wang, Xiao Bai, Jie Tian, Xin Jin
Abstract:
Heterogeneity of soil hydraulic properties directly affects hydrological processes at different scales. Understanding heterogeneity of soil hydraulic properties such as soil moisture is therefore essential for modeling watershed ecohydrological processes, particularly in hard to access, topographically complex mountainous watersheds. This study maps spatial variations of soil moisture by in situ observation network that consists of sampling points, zones, and tributaries, and monitors corresponding hydrological variables of air and soil temperatures, evapotranspiration, infiltration, and runoff in the Upper Reach of the Heihe River Watershed, a second largest inland river (terminal lake) with a drainage area of over 128,000 km² in Northwest China. Subsequently, the study uses a hydrological model, SWAT (Soil and Water Assessment Tool) to simulate the effects of heterogeneity of soil moisture on watershed hydrological processes. The spatial clustering method, Full-Order-CLK was employed to derive five soil heterogeneous zones (Configuration 97, 80, 65, 40, and 20) for soil input to SWAT. Results show the simulations by the SWAT model with the spatially clustered soil hydraulic information from the field sampling data had much better representation of the soil heterogeneity and more accurate performance than the model using the average soil property values for each soil type derived from the coarse soil datasets. Thus, incorporating detailed field sampling soil heterogeneity data greatly improves performance in hydrologic modeling.Keywords: heterogeneity, soil moisture, SWAT, up-scaling
Procedia PDF Downloads 3454255 3-Dimensional Contamination Conceptual Site Model: A Case Study Illustrating the Multiple Applications of Developing and Maintaining a 3D Contamination Model during an Active Remediation Project on a Former Urban Gasworks Site
Authors: Duncan Fraser
Abstract:
A 3-Dimensional (3D) conceptual site model was developed using the Leapfrog Works® platform utilising a comprehensive historical dataset for a large former Gasworks site in Fitzroy, Melbourne. The gasworks had been constructed across two fractured geological units with varying hydraulic conductivities. A Newer Volcanic (basaltic) outcrop covered approximately half of the site and was overlying a fractured Melbourne formation (Siltstone) bedrock outcropping over the remaining portion. During the investigative phase of works, a dense non-aqueous phase liquid (DNAPL) plume (coal tar) was identified within both geological units in the subsurface originating from multiple sources, including gasholders, tar wells, condensers, and leaking pipework. The first stage of model development was undertaken to determine the horizontal and vertical extents of the coal tar in the subsurface and assess the potential causality between potential sources, plume location, and site geology. Concentrations of key contaminants of interest (COIs) were also interpolated within Leapfrog to refine the distribution of contaminated soils. The model was subsequently used to develop a robust soil remediation strategy and achieve endorsement from an Environmental Auditor. A change in project scope, following the removal and validation of the three former gasholders, necessitated the additional excavation of a significant volume of residual contaminated rock to allow for the future construction of two-story underground basements. To assess financial liabilities associated with the offsite disposal or thermal treatment of material, the 3D model was updated with three years of additional analytical data from the active remediation phase of works. Chemical concentrations and the residual tar plume within the rock fractures were modelled to pre-classify the in-situ material and enhance separation strategies to prevent the unnecessary treatment of material and reduce costs.Keywords: 3D model, contaminated land, Leapfrog, remediation
Procedia PDF Downloads 1304254 Estimation of Bio-Kinetic Coefficients for Treatment of Brewery Wastewater
Authors: Abimbola M. Enitan, J. Adeyemo
Abstract:
Anaerobic modeling is a useful tool to describe and simulate the condition and behaviour of anaerobic treatment units for better effluent quality and biogas generation. The present investigation deals with the anaerobic treatment of brewery wastewater with varying organic loads. The chemical oxygen demand (COD) and total suspended solids (TSS) of the influent and effluent of the bioreactor were determined at various retention times to generate data for kinetic coefficients. The bio-kinetic coefficients in the modified Stover–Kincannon kinetic and methane generation models were determined to study the performance of anaerobic digestion process. At steady-state, the determination of the kinetic coefficient (K), the endogenous decay coefficient (Kd), the maximum growth rate of microorganisms (µmax), the growth yield coefficient (Y), ultimate methane yield (Bo), maximum utilization rate constant Umax and the saturation constant (KB) in the model were calculated to be 0.046 g/g COD, 0.083 (dˉ¹), 0.117 (d-¹), 0.357 g/g, 0.516 (L CH4/gCODadded), 18.51 (g/L/day) and 13.64 (g/L/day) respectively. The outcome of this study will help in simulation of anaerobic model to predict usable methane and good effluent quality during the treatment of industrial wastewater. Thus, this will protect the environment, conserve natural resources, saves time and reduce cost incur by the industries for the discharge of untreated or partially treated wastewater. It will also contribute to a sustainable long-term clean development mechanism for the optimization of the methane produced from anaerobic degradation of waste in a close system.Keywords: brewery wastewater, methane generation model, environment, anaerobic modeling
Procedia PDF Downloads 2684253 Computer Based Identification of Possible Molecular Targets for Induction of Drug Resistance Reversion in Multidrug Resistant Mycobacterium Tuberculosis
Authors: Oleg Reva, Ilya Korotetskiy, Marina Lankina, Murat Kulmanov, Aleksandr Ilin
Abstract:
Molecular docking approaches are widely used for design of new antibiotics and modeling of antibacterial activities of numerous ligands which bind specifically to active centers of indispensable enzymes and/or key signaling proteins of pathogens. Widespread drug resistance among pathogenic microorganisms calls for development of new antibiotics specifically targeting important metabolic and information pathways. A generally recognized problem is that almost all molecular targets have been identified already and it is getting more and more difficult to design innovative antibacterial compounds to combat the drug resistance. A promising way to overcome the drug resistance problem is an induction of reversion of drug resistance by supplementary medicines to improve the efficacy of the conventional antibiotics. In contrast to well established computer-based drug design, modeling of drug resistance reversion still is in its infancy. In this work, we proposed an approach to identification of compensatory genetic variants reducing the fitness cost associated with the acquisition of drug resistance by pathogenic bacteria. The approach was based on an analysis of the population genetic of Mycobacterium tuberculosis and on results of experimental modeling of the drug resistance reversion induced by a new anti-tuberculosis drug FS-1. The latter drug is an iodine-containing nanomolecular complex that passed clinical trials and was admitted as a new medicine against MDR-TB in Kazakhstan. Isolates of M. tuberculosis obtained on different stages of the clinical trials and also from laboratory animals infected with MDR-TB strain were characterized by antibiotic resistance, and their genomes were sequenced by the paired-end Illumina HiSeq 2000 technology. A steady increase in sensitivity to conventional anti-tuberculosis antibiotics in series of isolated treated with FS-1 was registered despite the fact that the canonical drug resistance mutations identified in the genomes of these isolates remained intact. It was hypothesized that the drug resistance phenotype in M. tuberculosis requires an adjustment of activities of many genes to compensate the fitness cost of the drug resistance mutations. FS-1 cased an aggravation of the fitness cost and removal of the drug-resistant variants of M. tuberculosis from the population. This process caused a significant increase in genetic heterogeneity of the Mtb population that was not observed in the positive and negative controls (infected laboratory animals left untreated and treated solely with the antibiotics). A large-scale search for linkage disequilibrium associations between the drug resistance mutations and genetic variants in other genomic loci allowed identification of target proteins, which could be influenced by supplementary drugs to increase the fitness cost of the drug resistance and deprive the drug-resistant bacterial variants of their competitiveness in the population. The approach will be used to improve the efficacy of FS-1 and also for computer-based design of new drugs to combat drug-resistant infections.Keywords: complete genome sequencing, computational modeling, drug resistance reversion, Mycobacterium tuberculosis
Procedia PDF Downloads 2614252 Heat Treatment of Additively Manufactured Hybrid Rocket Fuel Grains
Authors: Jim J. Catina, Jackee M. Gwynn, Jin S. Kang
Abstract:
Additive manufacturing (AM) for hybrid rocket engines is becoming increasingly attractive due to its ability to create complex grain configurations with improved regression rates when compared to cast grains. However, the presence of microvoids in parts produced through the additive manufacturing method of Fused Deposition Modeling (FDM) results in a lower fuel density and is believed to cause a decrease in regression rate compared to ideal performance. In this experiment, FDM was used to create hybrid rocket fuel grains with a star configuration composed of acrylonitrile butadiene styrene (ABS). Testing was completed to determine the effect of heat treatment as a post-processing method to improve the combustion performance of hybrid rocket fuel grains manufactured by FDM. For control, three ABS star configuration grains were printed using FDM and hot fired using gaseous oxygen (GOX) as the oxidizer. Parameters such as thrust and mass flow rate were measured. Three identical grains were then heat treated to varying degrees and hot fired under the same conditions as the control grains. This paper will quantitatively describe the amount of improvement in engine performance as a result of heat treatment of the AM hybrid fuel grain. Engine performance is measured in this paper by specific impulse, which is determined from the thrust measurements collected in testing.Keywords: acrylonitrile butadiene styrene, additive manufacturing, fused deposition modeling, heat treatment
Procedia PDF Downloads 1154251 3D Estimation of Synaptic Vesicle Distributions in Serial Section Transmission Electron Microscopy
Authors: Mahdieh Khanmohammadi, Sune Darkner, Nicoletta Nava, Jens Randel Nyengaard, Jon Sporring
Abstract:
We study the effect of stress on nervous system and we use two experimental groups of rats: sham rats and rats subjected to acute foot-shock stress. We investigate the synaptic vesicles density as a function of distance to the active zone in serial section transmission electron microscope images in 2 and 3 dimensions. By estimating the density in 2D and 3D we compare two groups of rats.Keywords: stress, 3-dimensional synaptic vesicle density, image registration, bioinformatics
Procedia PDF Downloads 2774250 2D Numerical Modeling of Ultrasonic Measurements in Concrete: Wave Propagation in a Multiple-Scattering Medium
Authors: T. Yu, L. Audibert, J. F. Chaix, D. Komatitsch, V. Garnier, J. M. Henault
Abstract:
Linear Ultrasonic Techniques play a major role in Non-Destructive Evaluation (NDE) for civil engineering structures in concrete since they can meet operational requirements. Interpretation of ultrasonic measurements could be improved by a better understanding of ultrasonic wave propagation in a multiple scattering medium. This work aims to develop a 2D numerical model of ultrasonic wave propagation in a heterogeneous medium, like concrete, integrating the multiple scattering phenomena in SPECFEM software. The coherent field of multiple scattering is obtained by averaging numerical wave fields, and it is used to determine the effective phase velocity and attenuation corresponding to an equivalent homogeneous medium. First, this model is applied to one scattering element (a cylinder) in a homogenous medium in a linear-elastic system, and its validation is completed thanks to the comparison with analytical solution. Then, some cases of multiple scattering by a set of randomly located cylinders or polygons are simulated to perform parametric studies on the influence of frequency and scatterer size, concentration, and shape. Also, the effective properties are compared with the predictions of Waterman-Truell model to verify its validity. Finally, the mortar viscoelastic behavior is introduced in the simulation in order to considerer the dispersion and the attenuation due to porosity included in the cement paste. In the future, different steps will be developed: The comparisons with experimental results, the interpretation of NDE measurements, and the optimization of NDE parameters before an auscultation.Keywords: attenuation, multiple-scattering medium, numerical modeling, phase velocity, ultrasonic measurements
Procedia PDF Downloads 2734249 Modeling and Estimating Reserve of the Ali Javad Porphyry Copper-Gold Deposit, East Azerbaijan, Iran
Authors: Behzad Hajalilou, Nasim Hajalilou, Saeid Ansari
Abstract:
The study area is located in East Azerbaijan province, north of Ahar city, and 1/100000 geological map of Varzgan. This region is located in the middle of Iran zone. Ali Javad Porphyry copper-gold ore deposit has been created in a magmatic complex containing intrusive masses, combining Granodiorite and quartz Monzonite that penetrates into the Eocene volcanic aggregate. The most important mineralization includes primary oxides minerals (magnetite), sulfide (pyrite, chalcopyrite, Molybdenite, Bornite, Chalcocite, Covollite), secondary oxide or hydroxide minerals (hematite, goethite, limonite), and carbonate (malachite and Azurite). The mineralization forms into the vein-veinlets and scattered system. The alterations observed in the region include intermediate Argillic, advanced Argillic, Phyllic, silica, Propylitic, chlorite and Potassic. The 3D model of mineralization of the Alijavad is provided by Data DATAMINE software and based on the study of 700 polished sections of 32 drilled boreholes in the region. This model is completely compatible with the model provided by Lowell and Gilbert for the mineralization of porphyry copper deposits of quartz Monzonite type. The estimated cumulative residual value of copper for Ali Javad deposit is 81.5 million tons with 0.75 percent of copper, and for gold is 8.37 million tons with 1.8 ppm.Keywords: porphyry copper, mineralization, Ali Javad, modeling, reserve estimation
Procedia PDF Downloads 2184248 Variable Renewable Energy Droughts in the Power Sector – A Model-based Analysis and Implications in the European Context
Authors: Martin Kittel, Alexander Roth
Abstract:
The continuous integration of variable renewable energy sources (VRE) in the power sector is required for decarbonizing the European economy. Power sectors become increasingly exposed to weather variability, as the availability of VRE, i.e., mainly wind and solar photovoltaic, is not persistent. Extreme events, e.g., long-lasting periods of scarce VRE availability (‘VRE droughts’), challenge the reliability of supply. Properly accounting for the severity of VRE droughts is crucial for designing a resilient renewable European power sector. Energy system modeling is used to identify such a design. Our analysis reveals the sensitivity of the optimal design of the European power sector towards VRE droughts. We analyze how VRE droughts impact optimal power sector investments, especially in generation and flexibility capacity. We draw upon work that systematically identifies VRE drought patterns in Europe in terms of frequency, duration, and seasonality, as well as the cross-regional and cross-technological correlation of most extreme drought periods. Based on their analysis, the authors provide a selection of relevant historical weather years representing different grades of VRE drought severity. These weather years will serve as input for the capacity expansion model for the European power sector used in this analysis (DIETER). We additionally conduct robustness checks varying policy-relevant assumptions on capacity expansion limits, interconnections, and level of sector coupling. Preliminary results illustrate how an imprudent selection of weather years may cause underestimating the severity of VRE droughts, flawing modeling insights concerning the need for flexibility. Sub-optimal European power sector designs vulnerable to extreme weather can result. Using relevant weather years that appropriately represent extreme weather events, our analysis identifies a resilient design of the European power sector. Although the scope of this work is limited to the European power sector, we are confident that our insights apply to other regions of the world with similar weather patterns. Many energy system studies still rely on one or a limited number of sometimes arbitrarily chosen weather years. We argue that the deliberate selection of relevant weather years is imperative for robust modeling results.Keywords: energy systems, numerical optimization, variable renewable energy sources, energy drought, flexibility
Procedia PDF Downloads 714247 Propeller Performance Modeling through a Computational Fluid Dynamics Analysis Method
Authors: Maxime Alex Junior Kuitche, Ruxandra Mihaela Botez, Jean-Chirstophe Maunand
Abstract:
The evolution of aircraft is closely linked to the study and improvement of propulsion systems. Determining the propulsion performance is a real challenge in aircraft modeling and design. In addition to theoretical methodologies, experimental procedures are used to obtain a good estimation of the propulsion performances. For piston-propeller propulsion, the propeller needs several experimental tests which could be extremely demanding in terms of time and money. This paper presents a new procedure to estimate the performance of a propeller from a numerical approach using computational fluid dynamic analysis. The propeller was initially scanned, and then, its 3D model was represented using CATIA. A structured meshing and Shear Stress Transition k-ω turbulence model were applied to describe accurately the flow pattern around the propeller. Thus, the Partial Differential Equations were solved using ANSYS FLUENT software. The method was applied on the UAS-S45’s propeller designed and manufactured by Hydra Technologies in Mexico. An extensive investigation was performed for several flight conditions in terms of altitudes and airspeeds with the aim to determine thrust coefficients, power coefficients and efficiency of the propeller. The Computational Fluid Dynamics results were compared with experimental data acquired from wind tunnel tests performed at the LARCASE Price-Paidoussis wind tunnel. The results of this comparison have demonstrated that our approach was highly accurate.Keywords: CFD analysis, propeller performance, unmanned aerial system propeller, UAS-S45
Procedia PDF Downloads 3524246 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling
Authors: Florin Leon, Silvia Curteanu
Abstract:
Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.Keywords: batch bulk methyl methacrylate polymerization, adaptive sampling, machine learning, large margin nearest neighbor regression
Procedia PDF Downloads 3024245 Problems of Boolean Reasoning Based Biclustering Parallelization
Authors: Marcin Michalak
Abstract:
Biclustering is the way of two-dimensional data analysis. For several years it became possible to express such issue in terms of Boolean reasoning, for processing continuous, discrete and binary data. The mathematical backgrounds of such approach — proved ability of induction of exact and inclusion–maximal biclusters fulfilling assumed criteria — are strong advantages of the method. Unfortunately, the core of the method has quite high computational complexity. In the paper the basics of Boolean reasoning approach for biclustering are presented. In such context the problems of computation parallelization are risen.Keywords: Boolean reasoning, biclustering, parallelization, prime implicant
Procedia PDF Downloads 1224244 A Mathematical Agent-Based Model to Examine Two Patterns of Language Change
Authors: Gareth Baxter
Abstract:
We use a mathematical model of language change to examine two recently observed patterns of language change: one in which most speakers change gradually, following the mean of the community change, and one in which most individuals use predominantly one variant or another, and change rapidly if they change at all. The model is based on Croft’s Utterance Selection account of language change, which views language change as an evolutionary process, in which different variants (different ‘ways of saying the same thing’) compete for usage in a population of speakers. Language change occurs when a new variant replaces an older one as the convention within a given population. The present model extends a previous simpler model to include effects related to speaker aging and interspeaker variation in behaviour. The two patterns of individual change (one more centralized and the other more polarized) were recently observed in historical language changes, and it was further observed that slower changes were more associated with the centralized pattern, while quicker changes were more polarized. Our model suggests that the two patterns of change can be explained by different balances between the preference of speakers to use one variant over another and the degree of accommodation to (propensity to adapt towards) other speakers. The correlation with the rate of change appears naturally in our model, and results from the fact that both differential weighting of variants and the degree of accommodation affect the time for change to occur, while also determining the patterns of change. This work represents part of an ongoing effort to examine phenomena in language change through the use of mathematical models. This offers another way to evaluate qualitative explanations that cannot be practically tested (or cannot be tested at all) in a real-world, large-scale speech community.Keywords: agent based modeling, cultural evolution, language change, social behavior modeling, social influence
Procedia PDF Downloads 2334243 Bee Colony Optimization Applied to the Bin Packing Problem
Authors: Kenza Aida Amara, Bachir Djebbar
Abstract:
We treat the two-dimensional bin packing problem which involves packing a given set of rectangles into a minimum number of larger identical rectangles called bins. This combinatorial problem is NP-hard. We propose a pretreatment for the oriented version of the problem that allows the valorization of the lost areas in the bins and the reduction of the size problem. A heuristic method based on the strategy first-fit adapted to this problem is presented. We present an approach of resolution by bee colony optimization. Computational results express a comparison of the number of bins used with and without pretreatment.Keywords: bee colony optimization, bin packing, heuristic algorithm, pretreatment
Procedia PDF Downloads 6324242 The Effect of Mathematical Modeling of Damping on the Seismic Energy Demands
Authors: Selamawit Dires, Solomon Tesfamariam, Thomas Tannert
Abstract:
Modern earthquake engineering and design encompass performance-based design philosophy. The main objective in performance-based design is to achieve a system performing precisely to meet the design objectives so to reduce unintended seismic risks and associated losses. Energy-based earthquake-resistant design is one of the design methodologies that can be implemented in performance-based earthquake engineering. In energy-based design, the seismic demand is usually described as the ratio of the hysteretic to input energy. Once the hysteretic energy is known as a percentage of the input energy, it is distributed among energy-dissipating components of a structure. The hysteretic to input energy ratio is highly dependent on the inherent damping of a structural system. In numerical analysis, damping can be modeled as stiffness-proportional, mass-proportional, or a linear combination of stiffness and mass. In this study, the effect of mathematical modeling of damping on the estimation of seismic energy demands is investigated by considering elastic-perfectly-plastic single-degree-of-freedom systems representing short to long period structures. Furthermore, the seismicity of Vancouver, Canada, is used in the nonlinear time history analysis. According to the preliminary results, the input energy demand is not sensitive to the type of damping models deployed. Hence, consistent results are achieved regardless of the damping models utilized in the numerical analyses. On the other hand, the hysteretic to input energy ratios vary significantly for the different damping models.Keywords: damping, energy-based seismic design, hysteretic energy, input energy
Procedia PDF Downloads 1664241 Simplified Modelling of Visco-Elastic Fluids for Use in Recoil Damping Systems
Authors: Prasad Pokkunuri
Abstract:
Visco-elastic materials combine the stress response properties of both solids and fluids and have found use in a variety of damping applications – both vibrational and acoustic. Defense and automotive applications, in particular, are subject to high impact and shock loading – for example: aircraft landing gear, firearms, and shock absorbers. Field responsive fluids – a class of smart materials – are the preferred choice of energy absorbents because of their controllability. These fluids’ stress response can be controlled by the application of a magnetic or electric field, in a closed loop. Their rheological properties – elasticity, plasticity, and viscosity – can be varied all the way from that of a liquid such as water to a hard solid. This work presents a simplified model to study the impulse response behavior of such fluids for use in recoil damping systems. The well-known Burger’s equation, in conjunction with various visco-elastic constitutive models, is used to represent fluid behavior. The Kelvin-Voigt, Upper Convected Maxwell (UCM), and Oldroyd-B constitutive models are implemented in this study. Using these models in a one-dimensional framework eliminates additional complexities due to geometry, pressure, body forces, and other source terms. Using a finite difference formulation to numerically solve the governing equation(s), the response to an initial impulse is studied. The disturbance is confined within the problem domain with no-inflow, no-outflow boundary conditions, and its decay characteristics studied. Visco-elastic fluids typically involve a time-dependent stress relaxation which gives rise to interesting behavior when subjected to an impulsive load. For particular values of viscous damping and elastic modulus, the fluid settles into a stable oscillatory state, absorbing and releasing energy without much decay. The simplified formulation enables a comprehensive study of different modes of system response, by varying relevant parameters. Using the insights gained from this study, extension to a more detailed multi-dimensional model is considered.Keywords: Burgers Equation, Impulse Response, Recoil Damping Systems, Visco-elastic Fluids
Procedia PDF Downloads 2904240 Exact Formulas of the End-To-End Green’s Functions in Non-hermitian Systems
Authors: Haoshu Li, Shaolong Wan
Abstract:
The recent focus has been on directional signal amplification of a signal input at one end of a one-dimensional chain and measured at the other end. The amplification rate is given by the end-to-end Green’s functions of the system. In this work, we derive the exact formulas for the end-to-end Green's functions of non-Hermitian single-band systems. While in the bulk region, it is found that the Green's functions are displaced from the prior established integral formula by O(e⁻ᵇᴸ). The results confirm the correspondence between the signal amplification and the non-Hermitian skin effect.Keywords: non-Hermitian, Green's function, non-Hermitian skin effect, signal amplification
Procedia PDF Downloads 1394239 Assessment of Microclimate in Abu Dhabi Neighborhoods: On the Utilization of Native Landscape in Enhancing Thermal Comfort
Authors: Maryam Al Mheiri, Khaled Al Awadi
Abstract:
Urban population is continuously increasing worldwide and the speed at which cities urbanize creates major challenges, particularly in terms of creating sustainable urban environments. Rapid urbanization often leads to negative environmental impacts and changes in the urban microclimates. Moreover, when rapid urbanization is paired with limited landscape elements, the effects on human health due to the increased pollution, and thermal comfort due to Urban Heat Island effects are increased. Urban Heat Island (UHI) describes the increase of urban temperatures in urban areas in comparison to its rural surroundings, and, as we discuss in this paper, it impacts on pedestrian comfort, reducing the number of walking trips and public space use. It is thus very necessary to investigate the quality of outdoor built environments in order to improve the quality of life incites. The main objective of this paper is to address the morphology of Emirati neighborhoods, setting a quantitative baseline by which to assess and compare spatial characteristics and microclimate performance of existing typologies in Abu Dhabi. This morphological mapping and analysis will help to understand the built landscape of Emirati neighborhoods in this city, whose form has changed and evolved across different periods. This will eventually help to model the use of different design strategies, such as landscaping, to mitigate UHI effects and enhance outdoor urban comfort. Further, the impact of different native plants types and native species in reducing UHI effects and enhancing outdoor urban comfort, allowing for the assessment of the impact of increasing landscaped areas in these neighborhoods. This study uses ENVI-met, an analytical, three-dimensional, high-resolution microclimate modeling software. This micro-scale urban climate model will be used to evaluate existing conditions and generate scenarios in different residential areas, with different vegetation surfaces and landscaping, and examine their impact on surface temperatures during summer and autumn. In parallel to these simulations, field measurement will be included to calibrate the Envi-met model. This research therefore takes an experimental approach, using simulation software, and a case study strategy for the evaluation of a sample of residential neighborhoods. A comparison of the results of these scenarios constitute a first step towards making recommendations about what constitutes sustainable landscapes for Abu Dhabi neighborhoods.Keywords: landscape, microclimate, native plants, sustainable neighborhoods, thermal comfort, urban heat island
Procedia PDF Downloads 3094238 Estimation of Scour Using a Coupled Computational Fluid Dynamics and Discrete Element Model
Authors: Zeinab Yazdanfar, Dilan Robert, Daniel Lester, S. Setunge
Abstract:
Scour has been identified as the most common threat to bridge stability worldwide. Traditionally, scour around bridge piers is calculated using the empirical approaches that have considerable limitations and are difficult to generalize. The multi-physic nature of scouring which involves turbulent flow, soil mechanics and solid-fluid interactions cannot be captured by simple empirical equations developed based on limited laboratory data. These limitations can be overcome by direct numerical modeling of coupled hydro-mechanical scour process that provides a robust prediction of bridge scour and valuable insights into the scour process. Several numerical models have been proposed in the literature for bridge scour estimation including Eulerian flow models and coupled Euler-Lagrange models incorporating an empirical sediment transport description. However, the contact forces between particles and the flow-particle interaction haven’t been taken into consideration. Incorporating collisional and frictional forces between soil particles as well as the effect of flow-driven forces on particles will facilitate accurate modeling of the complex nature of scour. In this study, a coupled Computational Fluid Dynamics and Discrete Element Model (CFD-DEM) has been developed to simulate the scour process that directly models the hydro-mechanical interactions between the sediment particles and the flowing water. This approach obviates the need for an empirical description as the fundamental fluid-particle, and particle-particle interactions are fully resolved. The sediment bed is simulated as a dense pack of particles and the frictional and collisional forces between particles are calculated, whilst the turbulent fluid flow is modeled using a Reynolds Averaged Navier Stocks (RANS) approach. The CFD-DEM model is validated against experimental data in order to assess the reliability of the CFD-DEM model. The modeling results reveal the criticality of particle impact on the assessment of scour depth which, to the authors’ best knowledge, hasn’t been considered in previous studies. The results of this study open new perspectives to the scour depth and time assessment which is the key to manage the failure risk of bridge infrastructures.Keywords: bridge scour, discrete element method, CFD-DEM model, multi-phase model
Procedia PDF Downloads 1304237 Processing Design of Miniature Casting Incorporating Stereolithography Technologies
Authors: Pei-Hsing Huang, Wei-Ju Huang
Abstract:
Investment casting is commonly used in the production of metallic components with complex shapes, due to its high dimensional precision, good surface finish, and low cost. However, the process is cumbersome, and the period between trial casting and final production can be very long, thereby limiting business opportunities and competitiveness. In this study, we replaced conventional wax injection with stereolithography (SLA) 3D printing to speed up the trial process and reduce costs. We also used silicone molds to further reduce costs to avoid the high costs imposed by photosensitive resin.Keywords: investment casting, stereolithography, wax molding, 3D printing
Procedia PDF Downloads 4024236 Tourism Area Development Optimation Based on Solar-Generated Renewable Energy Technology at Karimunjawa, Central Java Province, Indonesia
Authors: Yanuar Tri Wahyu Saputra, Ramadhani Pamapta Putra
Abstract:
Karimunjawa is one among Indonesian islands which is lacking of electricity supply. Despite condition above, Karimunjawa is an important tourism object in Indonesia's Central Java Province. Solar Power Plant is a potential technology to be applied in Karimunjawa, in order to fulfill the island's electrical supply need and to increase daily life and tourism quality among tourists and local population. This optimation modeling of Karimunjawa uses HOMER software program. The data we uses include wind speed data in Karimunjawa from BMKG (Indonesian Agency for Meteorology, Climatology and Geophysics), annual weather data in Karimunjawa from NASA, electricity requirements assumption data based on number of houses and business infrastructures in Karimunjawa. This modeling aims to choose which three system categories offer the highest financial profit with the lowest total Net Present Cost (NPC). The first category uses only PV with 8000 kW of electrical power and NPC value of $6.830.701. The second category uses hybrid system which involves both 1000 kW PV and 100 kW generator which results in total NPC of $6.865.590. The last category uses only generator with 750 kW of electrical power that results in total NPC of $ 16.368.197, the highest total NPC among the three categories. Based on the analysis above, we can conclude that the most optimal way to fulfill the electricity needs in Karimunjawa is to use 8000 kW PV with lower maintenance cost.Keywords: Karimunjawa, renewable energy, solar power plant, HOMER
Procedia PDF Downloads 4654235 Cell-Cell Interactions in Diseased Conditions Revealed by Three Dimensional and Intravital Two Photon Microscope: From Visualization to Quantification
Authors: Satoshi Nishimura
Abstract:
Although much information has been garnered from the genomes of humans and mice, it remains difficult to extend that information to explain physiological and pathological phenomena. This is because the processes underlying life are by nature stochastic and fluctuate with time. Thus, we developed novel "in vivo molecular imaging" method based on single and two-photon microscopy. We visualized and analyzed many life phenomena, including common adult diseases. We integrated the knowledge obtained, and established new models that will serve as the basis for new minimally invasive therapeutic approaches.Keywords: two photon microscope, intravital visualization, thrombus, artery
Procedia PDF Downloads 3714234 Streamwise Vorticity in the Wake of a Sliding Bubble
Authors: R. O’Reilly Meehan, D. B. Murray
Abstract:
In many practical situations, bubbles are dispersed in a liquid phase. Understanding these complex bubbly flows is therefore a key issue for applications such as shell and tube heat exchangers, mineral flotation and oxidation in water treatment. Although a large body of work exists for bubbles rising in an unbounded medium, that of bubbles rising in constricted geometries has received less attention. The particular case of a bubble sliding underneath an inclined surface is common to two-phase flow systems. The current study intends to expand this knowledge by performing experiments to quantify the streamwise flow structures associated with a single sliding air bubble under an inclined surface in quiescent water. This is achieved by means of two-dimensional, two-component particle image velocimetry (PIV), performed with a continuous wave laser and high-speed camera. PIV vorticity fields obtained in a plane perpendicular to the sliding surface show that there is significant bulk fluid motion away from the surface. The associated momentum of the bubble means that this wake motion persists for a significant time before viscous dissipation. The magnitude and direction of the flow structures in the streamwise measurement plane are found to depend on the point on its path through which the bubble enters the plane. This entry point, represented by a phase angle, affects the nature and strength of the vortical structures. This study reconstructs the vorticity field in the wake of the bubble, converting the field at different instances in time to slices of a large-scale wake structure. This is, in essence, Taylor’s ”frozen turbulence” hypothesis. Applying this to the vorticity fields provides a pseudo three-dimensional representation from 2-D data, allowing for a more intuitive understanding of the bubble wake. This study provides insights into the complex dynamics of a situation common to many engineering applications, particularly shell and tube heat exchangers in the nucleate boiling regime.Keywords: bubbly flow, particle image velocimetry, two-phase flow, wake structures
Procedia PDF Downloads 3744233 Influence of Alkali Aggregate Reaction Induced Expansion Level on Confinement Efficiency of Carbon Fiber Reinforcement Polymer Wrapping Applied to Damaged Concrete Columns
Authors: Thamer Kubat, Riadh Al-Mahaidi, Ahmad Shayan
Abstract:
The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fibre-reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.Keywords: carbon fiber reinforced polymer (CFRP), finite element (FE), ATENA, confinement efficiency
Procedia PDF Downloads 754232 Comparative Performance Analysis for Selected Behavioral Learning Systems versus Ant Colony System Performance: Neural Network Approach
Authors: Hassan M. H. Mustafa
Abstract:
This piece of research addresses an interesting comparative analytical study. Which considers two concepts of diverse algorithmic computational intelligence approaches related tightly with Neural and Non-Neural Systems. The first algorithmic intelligent approach concerned with observed obtained practical results after three neural animal systems’ activities. Namely, they are Pavlov’s, and Thorndike’s experimental work. Besides a mouse’s trial during its movement inside figure of eight (8) maze, to reach an optimal solution for reconstruction problem. Conversely, second algorithmic intelligent approach originated from observed activities’ results for Non-Neural Ant Colony System (ACS). These results obtained after reaching an optimal solution while solving Traveling Sales-man Problem (TSP). Interestingly, the effect of increasing number of agents (either neurons or ants) on learning performance shown to be similar for both introduced systems. Finally, performance of both intelligent learning paradigms shown to be in agreement with learning convergence process searching for least mean square error LMS algorithm. While its application for training some Artificial Neural Network (ANN) models. Accordingly, adopted ANN modeling is a relevant and realistic tool to investigate observations and analyze performance for both selected computational intelligence (biological behavioral learning) systems.Keywords: artificial neural network modeling, animal learning, ant colony system, traveling salesman problem, computational biology
Procedia PDF Downloads 469