Search results for: steel column
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2318

Search results for: steel column

728 Modelling of Factors Affecting Bond Strength of Fibre Reinforced Polymer Externally Bonded to Timber and Concrete

Authors: Abbas Vahedian, Rijun Shrestha, Keith Crews

Abstract:

In recent years, fibre reinforced polymers as applications of strengthening materials have received significant attention by civil engineers and environmentalists because of their excellent characteristics. Currently, these composites have become a mainstream technology for strengthening of infrastructures such as steel, concrete and more recently, timber and masonry structures. However, debonding is identified as the main problem which limit the full utilisation of the FRP material. In this paper, a preliminary analysis of factors affecting bond strength of FRP-to-concrete and timber bonded interface has been conducted. A novel theoretical method through regression analysis has been established to evaluate these factors. Results of proposed model are then assessed with results of pull-out tests and satisfactory comparisons are achieved between measured failure loads (R2 = 0.83, P < 0.0001) and the predicted loads (R2 = 0.78, P < 0.0001).

Keywords: debonding, fibre reinforced polymers (FRP), pull-out test, stepwise regression analysis

Procedia PDF Downloads 230
727 Behavior of Square Reinforced-Concrete Columns Strengthened with Carbon Fiber Reinforced Polymers under Eccentric Loading

Authors: Dana J. Abed, Mu'tasim S. Abdel-Jaber, Nasim K. Shatarat

Abstract:

In this paper, an experimental study on twelve square columns was conducted to investigate the influence of cross-sectional size on axial compressive capacity of carbon fiber reinforced polymers (CFRP) wrapped square reinforced concrete (RC) short columns subjected to eccentric loadings. The columns were divided into three groups with three cross sections (200×200×1200, 250×250×1500 and 300×300×1800 mm). Each group was tested under two different eccentricities: 10% and 20% of the width of samples measured from the center of the column cross section. Four columns were developed in each arrangement. Two columns in each category were left unwrapped as control samples, and two were wrapped with one layer CFRP perpendicular to the specimen surface. In general; CFRP sheets has enhanced the performance of the strengthened columns compared to the control columns. It was noticed that the percentage of compressive capacity enhancement was decreased by increasing the cross-sectional size, and increasing loading eccentricity generally leads to reduced load bearing capacity in columns. In the same group specimens, when the eccentricity increased the percentage of enhancement in load carrying capacity was increased. The study concludes that the optimum use of the CFRP sheets for axial strength enhancement is for smaller cross-section columns under higher eccentricities.

Keywords: CFRP, columns, eccentric loading, cross-sectional

Procedia PDF Downloads 157
726 Evaluation of Fatigue Crack Growth Rate in Weldments

Authors: Pavel Zlabek, Vaclav Mentl

Abstract:

The fatigue crack growth rate evaluation is a basic experimental characteristic when assessment o f the remaining lifetime is needed. Within the repair welding technology project, the crack growth rate at cyclic loading was measured in base and weld metals and in the situation when cracks were initiated in base metal and grew into the weld metal through heat-affected zone and back to the base metal. Two welding technologies were applied and specimens in as-welded state and after heat treatment were tested. Fatigue crack growth rate measurement was performed on CrMoV pressure vessel steel and the tests were performed at room temperature. The crack growth rate was measured on CCT test specimens (see figure) for both the base and weld metals and also in the case of crack subsequent transition through all the weld zones. A 500 kN MTS controlled electro-hydraulic testing machine and Model 632.13C-20 MTS extensometer were used to perform the tests.

Keywords: cracks, fatigue, steels, weldments

Procedia PDF Downloads 505
725 Design and Fabrication of an Array Microejector Driven by a Shear-Mode Piezoelectric Actuator

Authors: Chiang-Ho Cheng, Hong-Yih Cheng, An-Shik Yang, Tung-Hsun Hsu

Abstract:

This paper reports a novel actuating design that uses the shear deformation of a piezoelectric actuator to deflect a bulge-diaphragm for driving an array microdroplet ejector. In essence, we employed a circular-shaped actuator poled radial direction with remnant polarization normal to the actuating electric field for inducing the piezoelectric shear effect. The array microdroplet ejector consists of a shear type piezoelectric actuator, a vibration plate, two chamber plates, two channel plates and a nozzle plate. The vibration, chamber and nozzle plate components are fabricated using nickel electroforming technology, whereas the channel plate is fabricated by etching of stainless steel. The diaphragm displacement was measured by the laser two-dimensional scanning vibrometer. The ejected droplets of the microejector were also observed via an optic visualization system.

Keywords: actuator, nozzle, microejector, piezoelectric

Procedia PDF Downloads 412
724 Multipass Scratch Characterization of TiNbVN Thin Coatings Deposited by Magnetron Sputtering

Authors: Hikmet Cicek

Abstract:

Transition metal nitrides are widely used as protective coatings on machine parts and cutting tools to protect the surfaces from abrasion and corrosion for decades. In this study, the ternary TiNbVN thin coatings were produced with closed field unbalanced magnetron sputtering system and their structural, mechanical and fatigue-like (multi-pass scratch test) properties were investigated. Two different substrates (M2 and H13 steels) were used to explore substrates effects. X-Ray diffractometer, scanning electron microscope, and energy dispersive spectroscopy were used for the structural and chemical analysis of the coatings. Nanohardness tests were proceed for mechanical properties. The fatigue-like properties of the coatings obtained from the multi-scratch test under three different cycle passes. The results showed that TiNbVN films have excellent fatigue resistance and the coatings deposited on M2 steel substrate have higher hardness and better fatigue resistance.

Keywords: physical vapor deposition, fatigue, metal nitride, multipass scratch test

Procedia PDF Downloads 192
723 Driving in a Short Arm Plaster Cast Steer a Patient off Course: A Randomised, Controlled, Crossover Study

Authors: B. W. Kenny, D.Mansour, K. G. Mansour, J. Attia, B. Meads

Abstract:

There is currently insufficient evidence to make a conclusive statement about safety while immobilized in a short arm cast. There is a paucity of published literature on this topic. The purpose of this study is to specifically evaluate short arm casts and their effect on driving abilities, particularly steering and avoidance of obstacles. The ability to drive safely is extrapolated from this data. In this study, a randomised, controlled, crossover design was used to assess 30 subjects randomised into 2 groups. A Logitech force feedback steering column and simulated driving program with a standardised road course was used. Objective outcome measures were the number of times subjects drove off the track, the number of crashes, time to lap completion and subjective assessment on whether wearing a short arm plaster cast impeded their steering. Recruited subjects had no upper limb pathology. The side of the applied plaster cast was randomised. The mean lap completion time reduced with repetition, the difference being statistically significant. There was no significant difference in mean number of times subjects in casts drove off the track (3 with vs. 3.07 without casts), average number of crashes (1.27 vs 0.97). Steering ability was not reduced whilst a subject was immobilised in a short arm Plaster of Paris cast, despite subject’s own impressions that their steering was impeded. This may help guide doctors in their advice to patients regarding driving in these casts.

Keywords: upper limb, arm injury, plaster cast, splint, driving, automobile, bone fracture

Procedia PDF Downloads 225
722 Creep Effect on Composite Beam with Perfect Steel-Concrete Connection

Authors: Souici Abdelaziz, Tehami Mohamed, Rahal Nacer, Said Mohamed Bekkouche, Berthet Jean-Fabien

Abstract:

In this paper, the influence of the concrete slab creep on the initial deformability of a bent composite beam is modelled. This deformability depends on the rate of creep. This means the rise in value of the longitudinal strain ε c(x,t), the displacement D eflec(x,t) and the strain energy E(t). The variation of these three parameters can easily affect negatively the good appearance and the serviceability of the structure. Therefore, an analytical approach is designed to control the status of the deformability of the beam at the instant t. This approach is based on the Boltzmann’s superposition principle and very particularly on the irreversible law of deformation. For this, two conditions of compatibility and two other static equilibrium equations are adopted. The two first conditions are set according to the rheological equation of Dischinger. After having done a mathematical arrangement, we have reached a system of two differential equations whose integration allows to find the mathematical expression of each generalized internal force in terms of the ability of the concrete slab to creep.

Keywords: composite section, concrete, creep, deformation, differential equation, time

Procedia PDF Downloads 365
721 Pushover Analysis of a Typical Bridge Built in Central Zone of Mexico

Authors: Arturo Galvan, Jatziri Y. Moreno-Martinez, Daniel Arroyo-Montoya, Jose M. Gutierrez-Villalobos

Abstract:

Bridges are one of the most seismically vulnerable structures on highway transportation systems. The general process for assessing the seismic vulnerability of a bridge involves the evaluation of its overall capacity and demand. One of the most common procedures to obtain this capacity is by means of pushover analysis of the structure. Typically, the bridge capacity is assessed using non-linear static methods or non-linear dynamic analyses. The non-linear dynamic approaches use step by step numerical solutions for assessing the capacity with the consuming computer time inconvenience. In this study, a nonlinear static analysis (‘pushover analysis’) was performed to predict the collapse mechanism of a typical bridge built in the central zone of Mexico (Celaya, Guanajuato). The bridge superstructure consists of three simple supported spans with a total length of 76 m: 22 m of the length of extreme spans and 32 m of length of the central span. The deck width is of 14 m and the concrete slab depth is of 18 cm. The bridge is built by means of frames of five piers with hollow box-shaped sections. The dimensions of these piers are 7.05 m height and 1.20 m diameter. The numerical model was created using a commercial software considering linear and non-linear elements. In all cases, the piers were represented by frame type elements with geometrical properties obtained from the structural project and construction drawings of the bridge. The deck was modeled with a mesh of rectangular thin shell (plate bending and stretching) finite elements. The moment-curvature analysis was performed for the sections of the piers of the bridge considering in each pier the effect of confined concrete and its reinforcing steel. In this way, plastic hinges were defined on the base of the piers to carry out the pushover analysis. In addition, time history analyses were performed using 19 accelerograms of real earthquakes that have been registered in Guanajuato. In this way, the displacements produced by the bridge were determined. Finally, pushover analysis was applied through the control of displacements in the piers to obtain the overall capacity of the bridge before the failure occurs. It was concluded that the lateral deformation of the piers due to a critical earthquake occurred in this zone is almost imperceptible due to the geometry and reinforcement demanded by the current design standards and compared to its displacement capacity, they were excessive. According to the analysis, it was found that the frames built with five piers increase the rigidity in the transverse direction of the bridge. Hence it is proposed to reduce these frames of five piers to three piers, maintaining the same geometrical characteristics and the same reinforcement in each pier. Also, the mechanical properties of materials (concrete and reinforcing steel) were maintained. Once a pushover analysis was performed considering this configuration, it was concluded that the bridge would continue having a “correct” seismic behavior, at least for the 19 accelerograms considered in this study. In this way, costs in material, construction, time and labor would be reduced in this study case.

Keywords: collapse mechanism, moment-curvature analysis, overall capacity, push-over analysis

Procedia PDF Downloads 141
720 The Effect of Development of Two-Phase Flow Regimes on the Stability of Gas Lift Systems

Authors: Khalid. M. O. Elmabrok, M. L. Burby, G. G. Nasr

Abstract:

Flow instability during gas lift operation is caused by three major phenomena – the density wave oscillation, the casing heading pressure and the flow perturbation within the two-phase flow region. This paper focuses on the causes and the effect of flow instability during gas lift operation and suggests ways to control it in order to maximise productivity during gas lift operations. A laboratory-scale two-phase flow system to study the effects of flow perturbation was designed and built. The apparatus is comprised of a 2 m long by 66 mm ID transparent PVC pipe with air injection point situated at 0.1 m above the base of the pipe. This is the point where stabilised bubbles were visibly clear after injection. Air is injected into the water filled transparent pipe at different flow rates and pressures. The behavior of the different sizes of the bubbles generated within the two-phase region was captured using a digital camera and the images were analysed using the advanced image processing package. It was observed that the average maximum bubbles sizes increased with the increase in the length of the vertical pipe column from 29.72 to 47 mm. The increase in air injection pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm to 44.17 mm and then decreasing when the pressure reaches 4 bars. It was observed that at higher bubble velocity of 6.7 m/s, larger diameter bubbles coalesce and burst due to high agitation and collision with each other. This collapse of the bubbles causes pressure drop and reverse flow within two phase flow and is the main cause of the flow instability phenomena.

Keywords: gas lift instability, bubbles forming, bubbles collapsing, image processing

Procedia PDF Downloads 406
719 Two Antiplasmodial Compounds from Lauraceae: Actinodaphne macrophylla and Nectandra angustifolia

Authors: Tiah Rachmatiah, Subaryanti

Abstract:

Plants of Lauraceae family are known to contain many chemical compounds which have potential bioactivity such as alkaloids, flavonoids, lactones, terpenes, etc. Actinodaphne macrophylla and Nectandra angustifolia are two species from Lauraceae. A previous study on the crude alkaloidal extract from the bark of Act. macrophylla and n-hexane extract from the bark of N. angustifolia showed antiplasmodial activity against Plasmodium falciparum. The study was continued to find antiplasmodial active compounds from the two extracts. The materials were obtained from Bogor Botanical Garden, West Java, Indonesia. Crude alkaloidal extract of Act. macrophylla was prepared by maceration in dichloromethane after moistened with NH4OH 25% and n-hexane extract of N. angustifolia was prepared by maceration in n-hexane. A major compound was isolated by column chromatography using silica gel and a mixture of CH2Cl2 and methanol as a gradient solvent system for the alkaloidal extract and mixture of n-hexane and ethyl acetate for n-hexane extract. Fine white needle crystals were obtained from the alkaloidal extract and rod crystals from n-hexane extract. Molecular structure of the compounds was determined by analysis of spectra of NMR, IR, MS and compared by references. In vitro bioactivity test of the compound was performed against Plasmodium falciparum. The results showed that the bark of Act. macrophylla contained an aporphine alkaloid, actinodaphnine, that had activity against P. falciparum with IC50 value of 0.095 µg/mL and the bark of N. angustifolia contained a lignan compound, sesamine, with IC50 of 0.122 µg/mL.

Keywords: actinodaphne macrophylla, alkaloid, antiplasmodial, lauraceae, lignan, nectandra angustifolia

Procedia PDF Downloads 408
718 Prediction of Mechanical Strength of Multiscale Hybrid Reinforced Cementitious Composite

Authors: Salam Alrekabi, A. B. Cundy, Mohammed Haloob Al-Majidi

Abstract:

Novel multiscale hybrid reinforced cementitious composites based on carbon nanotubes (MHRCC-CNT), and carbon nanofibers (MHRCC-CNF) are new types of cement-based material fabricated with micro steel fibers and nanofilaments, featuring superior strain hardening, ductility, and energy absorption. This study focused on established models to predict the compressive strength, and direct and splitting tensile strengths of the produced cementitious composites. The analysis was carried out based on the experimental data presented by the previous author’s study, regression analysis, and the established models that available in the literature. The obtained models showed small differences in the predictions and target values with experimental verification indicated that the estimation of the mechanical properties could be achieved with good accuracy.

Keywords: multiscale hybrid reinforced cementitious composites, carbon nanotubes, carbon nanofibers, mechanical strength prediction

Procedia PDF Downloads 149
717 Fracture Crack Monitoring Using Digital Image Correlation Technique

Authors: B. G. Patel, A. K. Desai, S. G. Shah

Abstract:

The main of objective of this paper is to develop new measurement technique without touching the object. DIC is advance measurement technique use to measure displacement of particle with very high accuracy. This powerful innovative technique which is used to correlate two image segments to determine the similarity between them. For this study, nine geometrically similar beam specimens of different sizes with (steel fibers and glass fibers) and without fibers were tested under three-point bending in a closed loop servo-controlled machine with crack mouth opening displacement control with a rate of opening of 0.0005 mm/sec. Digital images were captured before loading (unreformed state) and at different instances of loading and were analyzed using correlation techniques to compute the surface displacements, crack opening and sliding displacements, load-point displacement, crack length and crack tip location. It was seen that the CMOD and vertical load-point displacement computed using DIC analysis matches well with those measured experimentally.

Keywords: Digital Image Correlation, fibres, self compacting concrete, size effect

Procedia PDF Downloads 370
716 Electrical and Thermal Characteristics of a Photovoltaic Solar Wall with Passive and Active Ventilation through a Room

Authors: Himanshu Dehra

Abstract:

An experimental study was conducted for ascertaining electrical and thermal characteristics of a pair of photovoltaic (PV) modules integrated with solar wall of an outdoor room. A pre-fabricated outdoor room was setup for conducting outdoor experiments on a PV solar wall with passive and active ventilation through the outdoor room. The selective operating conditions for glass coated PV modules were utilized for establishing their electrical and thermal characteristics. The PV solar wall was made up of glass coated PV modules, a ventilated air column, and an insulating layer of polystyrene filled plywood board. The measurements collected were currents, voltages, electric power, air velocities, temperatures, solar intensities, and thermal time constant. The results have demonstrated that: i) a PV solar wall installed on a wooden frame was of more heat generating capacity in comparison to a window glass or a standalone PV module; ii) generation of electric power was affected with operation of vertical PV solar wall; iii) electrical and thermal characteristics were not significantly affected by heat and thermal storage losses; and iv) combined heat and electricity generation were function of volume of thermal and electrical resistances developed across PV solar wall. Finally, a comparison of temperature plots of passive and active ventilation envisaged that fan pressure was necessary to avoid overheating of the PV solar wall. The active ventilation was necessary to avoid over-heating of the PV solar wall and to maintain adequate ventilation of room under mild climate conditions.

Keywords: photovoltaic solar wall, solar energy, passive ventilation, active ventilation

Procedia PDF Downloads 378
715 Adsorption and Transformation of Lead in Coimbatore Urban Soils

Authors: K. Sivasubramanin, S. Mahimairaja, S. Pavithrapriya

Abstract:

Heavy metal pollution originating from industrial wastes is becoming a serious problem in many urban environments. These heavy metals, if not properly managed, could enter into the food chain and cause a serious health hazards in animals and humans. Industrial wastes, sewage sludge, and automobile emissions also contribute to heavy metal like Pb pollution in the urban environment. However, information is scarce on the heavy metal pollution in Coimbatore urban environment. Therefore, the current study was carried out to examine the extent of lead pollution in Coimbatore urban environment the maximum Pb concentration in Coimbatore urban environment was found in ukkadam, whose concentration in soils 352 mg kg-1. In many places, the Pb concentration was found exceeded the permissible limit of 100 mg kg-1. In laboratory, closed incubation experiment showed that the concentration of different species of Pb viz., water soluble Pb(H2O-Pb), exchangeable Pb(KNO3-Pb), organic-Pb(NaOH-Pb), and organic plus metal (Fe & Al) oxides bound-Pb(Na2 EDTA-Pb) was found significantly increased during the 15 days incubation, mainly due to biotransformation processes. Both the moisture content of soil and ambient temperature exerted a profound influence on the transformation of Pb. The results of a batch experiment has shown that the sorption data was adequately described by the Freundlich equation as indicated by the high correlation coefficients (R2= 0.64) than the Langmuir equation (R2 = 0.33). A maximum of 86 mg of Pb was found adsorbed per kilogram of soil. Consistently, a soil column experiment result had shown that only a small amount of Pb( < 1.0 µg g-1 soil) alone was found leached from the soil. This might be due to greater potential of the soil towards Pb adsorption.

Keywords: lead pollution, adsorption, transformation, heavy metal pollution

Procedia PDF Downloads 312
714 Fracture Strength of Carbon Nanotube Reinforced Plasma Sprayed Aluminum Oxide Coating

Authors: Anup Kumar Keshri, Arvind Agarwal

Abstract:

Carbon nanotube (CNT) reinforced aluminum oxide (Al2O3) composite coating was synthesized on the steel substrate using plasma spraying technique. Three different compositions of coating such as Al2O3, Al2O¬3-4 wt. % CNT and Al2O3-8 wt. % CNT were synthesized and the fracture strength was determined using the four point bend test. Uniform dispersion of CNTs over Al2O3 powder particle was successfully achieved. With increasing CNT content, porosity in the coating showed decreasing trend and hence contributed towards enhanced mechanical properties such as hardness (~12% increased) and elastic modulus (~34 % increased). Fracture strength of the coating was found to be increasing with the CNT additions. By reinforcement of 8 wt. % of CNT, fracture strength increased by ~2.5 times. The improvement in fracture strength of Al2O3-CNT coating was attributed to three competitive phenomena viz. (i) lower porosity (ii) higher hardness and elastic modulus (iii) CNT bridging between splats.

Keywords: aluminum oxide, carbon nanotube, fracture strength, plasma spraying

Procedia PDF Downloads 377
713 Simulation and Assessment of Carbon Dioxide Separation by Piperazine Blended Solutions Using E-NRTL and Peng-Robinson Models: Study of Regeneration Heat Duty

Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao

Abstract:

A high-pressure carbon dioxide (CO₂) absorption from a specific off-gas in a conventional column has been evaluated for the environmental concerns by the Aspen HYSYS simulator using a wide range of single absorbents and piperazine (PZ) blended solutions to estimate the outlet CO₂ concentration, CO₂ loading, reboiler power supply, and regeneration heat duty to choose the most efficient solution in terms of CO₂ removal and required heat duty. The property package, which is compatible with all applied solutions for the simulation in this study, estimates the properties based on the electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for vapor phase and liquid hydrocarbon phase properties. The results of the simulation indicate that piperazine, in addition to the mixture of piperazine and monoethanolamine (MEA), demands the highest regeneration heat duty compared with other studied single and blended amine solutions, respectively. The blended amine solutions with the lowest PZ concentrations (5wt% and 10wt%) were considered and compared to reduce the cost of the process, among which the blended solution of 10wt%PZ+35wt%MDEA (methyldiethanolamine) was found as the most appropriate solution in terms of CO₂ content in the outlet gas, rich-CO₂ loading, and regeneration heat duty.

Keywords: absorption, amine solutions, aspen HYSYS, CO₂ loading, piperazine, regeneration heat duty

Procedia PDF Downloads 166
712 Determination of MDA by HPLC in Blood of Levofloxacin Treated Rats

Authors: D. S. Mohale, A. P. Dewani, A. S.tripathi, A. V. Chandewar

Abstract:

Present work demonstrates the applicability of high-performance liquid chromatography (HPLC) with UV-Vis detection for the quantification of malondialdehyde as malondialdehyde-thiobarbituric acid complex (MDA-TBA) in-vivo in rats. The HPLC method for MDA-TBA was achieved by isocratic mode on a reverse-phase C18 column (250mm×4.6mm) at a flow rate of 1.0mLmin−1 followed by detection at 532 nm. The chromatographic conditions were optimized by varying the concentration and pH of water followed by changes in percentage of organic phase optimal mobile phase consisted of mixture of water (0.2% triethylamine pH adjusted to 2.3 by ortho-phosphoric acid) and acetonitrile in ratio (80:20v/v). The retention time of MDA-TBA complex was 3.7 min. The developed method was sensitive as limit of detection and quantification (LOD and LOQ) for MDA-TBA complex were (standard deviation and slope of calibration curve) 110 ng/ml and 363 ng/ml respectively. Calibration studies were done by spiking MDA into rat plasma at concentrations ranging from 500 to 1000 ng/ml. The precision of developed method measured in terms of relative standard deviations for intra-day and inter-day studies was 1.6–5.0% and 1.9–3.6% respectively. The HPLC method was applied for monitoring MDA levels in rats subjected to chronic treatment of levofloxacin (LEV) (5mg/kg/day) for 21 days. Results were compared by findings in control group rats. Mean peak areas of both study groups was subjected for statistical treatment to unpaired student t-test to find p-values. The p value was <0.001 indicating significant results and suggesting increased MDA levels in rats subjected to chronic treatment of LEV of 21 days.

Keywords: malondialdehyde-thiobarbituric acid complex, levofloxacin, HPLC, oxidative stress

Procedia PDF Downloads 321
711 [Keynote Talk]: Machining Parameters Optimization with Genetic Algorithm

Authors: Dejan Tanikić, Miodrag Manić, Jelena Đoković, Saša Kalinović

Abstract:

This paper deals with the determination of the optimum machining parameters, according to the measured and modelled data of the cutting temperature and surface roughness, during the turning of the AISI 4140 steel. The high cutting temperatures are unwanted occurences in the metal cutting process. They impact negatively on the quality of the machined part. The machining experiments were performed using different cutting regimes (cutting speed, feed rate and depth of cut), with different values of the workpiece hardness, which causes different values of the measured cutting temperature as well as the measured surface roughness. The temperature and surface roughness data were modelled after that using Response Surface Methodology (RSM). The obtained RSM models are used in the process of optimization of the cutting regimes using the Genetic Algorithms (GA) tool, which enables the metal cutting process in the optimum conditions.

Keywords: genetic algorithms, machining parameters, response surface methodology, turning process

Procedia PDF Downloads 171
710 Isolation, Characterization and Quantitation of Anticancer Constituent from Chloroform Extract of N. arbortristis L. Leaves

Authors: Parul Grover, K. A. Suri, Raj Kumar, Gulshan Bansal

Abstract:

Background: Nyctanthes arbortristis Linn is traditionally used as anticancer herb in Indian system of medicine, but its introduction into modern system of medicine is still awaited due to lack of systematic scientific studies. Objective: The objective of the present study was to isolate and characterize anticancer phytoconstituents from N. arbortristis L. leaves based on bioactivity guided fractionation. Method: Different extracts of the leaves of the plant were prepared by Soxhlet extractor. Each extract was evaluated for anticancer activity against HL-60 cell lines. Chloroform and HA extract showed potent anticancer activity and hence were selected for fractionation. Fraction C1 from chloroform extract was found to be most potent amongst all when tested against three cell lines (HL-60, A-549, and HCT-116) and thus was selected for further fractionation and a pure compound CP-01 was isolated. RP-HPLC method has been developed for quantification of isolated compound by using Kinetex C-18 column with gradient elution at 0.7 mL/min using mobile phase containing potassium dihydrogen phosphate (0.01 M, pH 3.0) with acetonitrile. The wavelength of maximum absorption (λₘₐₓ) selected was 210 nm. Results: The structure of potent anticancer CP-01 was determined on the basis spectroscopic methods like IR, 1H-NMR, ¹³C-NMR and Mass Spectrometry and it was characterized as 1,1,2-tris(2’,4’-di-tert-butylbenzene)-4,4-dimethyl-pent-1-ene. The content of CP-01 was found to be 0.88 %w/w of chloroform extract and 0.08 %w/w of N.arbortristis leaves. Conclusion: The study supports the traditional use of N. arbortristis as anticancer herb & the identified compound CP-01 can serve as an excellent lead to develop potent and safe anticancer drugs.

Keywords: anticancer, HL-60 cell lines, Nyctanthes arbor-tristis, RP-HPLC

Procedia PDF Downloads 130
709 The Influence of Strengthening on the Fundamental Frequency and Stiffness of a Confined Masonry Wall with an Opening for а Door

Authors: Emin Z. Mahmud

Abstract:

This paper presents the observations from a series of shaking-table tests done on a 1:1 scaled confined masonry wall model, with opening for a door – specimens CMDuS (confined masonry wall with opening for a door before strengthening) and CMDS (confined masonry wall with opening for a door after strengthening). Frequency and stiffness changes before and after GFRP (Glass Fiber Reinforced Plastic) wall strengthening are analyzed. Definition of dynamic properties of the models was the first step of the experimental testing, which enabled acquiring important information about the achieved stiffness (natural frequencies) of the model. The natural frequency was defined in the Y direction of the model by applying resonant frequency search tests. It is important to mention that both specimens CMDuS and CMDS are subjected to the same effects. The tests are realized in the laboratory of the Institute of Earthquake Engineering and Engineering Seismology (IZIIS), Skopje. The specimens were examined separately on the shaking table, with uniaxial, in-plane excitation. After testing, samples were strengthened with GFRP and re-tested. The initial frequency of the undamaged model CMDuS is 13.55 Hz, while at the end of the testing, the frequency decreased to 6.38 Hz. This emphasizes the reduction of the initial stiffness of the model due to damage, especially in the masonry and tie-beam to tie-column connection. After strengthening of the damaged wall, the natural frequency increases to 10.89 Hz. This highlights the beneficial effect of the strengthening. After completion of dynamic testing at CMDS, the natural frequency is reduced to 6.66 Hz.

Keywords: behaviour of masonry structures, Eurocode, frequency, masonry, shaking table test, strengthening

Procedia PDF Downloads 109
708 Evaluation of Strategies to Mitigate the Carbon Emissions from MSW: A Case Study

Authors: N. Anusree, P. Sughosh, G. L. Sivakumar Babu

Abstract:

Municipalities throughout the world are marred with serious issues related to the Municipal Solid Waste (MSW) collection, treatment, and safe disposal. While the Waste Management sector contributes around 3-9 % of the overall anthropogenic methane emission, measures towards mitigating these emissions are rarely given attention in developing countries. In the case of Bangalore, India, around 5680 tons of MSW is generated in a day, and its collection and treatment efficiency are around 90-95 % and 26.4 %, respectively. About 33.4 % of the waste collected is directly landfilled without any treatment, further aggravating the situation. The potential of reducing the emissions emanating from the MSW of Bangalore city without any severe consequences on the current MSW management practices is evaluated in this study. Three emission scenarios consisting of the baseline condition (current practices – Case-1), the application of biocovers for methane oxidation in the dumpsites (case-2), and the diversion of Organic Fraction of MSW (OFMSW) along with the application of biocovers (case-3) are evaluated and compared with each other. The emissions are calculated based on the aerobic and anaerobic stochiometric relations for the three scenarios. Laboratory scale column studies are carried out to determine the methane oxidation potential of three different biocover material (digested MBT (mechanically biologically treated) waste, Fresh MBT waste, and charcoal amended with fresh MBT waste). The results shown that around 40 % and 83 % reduction in carbon emissions can be achieved in case 3 and 2 in comparison to the baseline condition. The study clearly shows that with minor changes in the waste management practices, substantial reductions in the carbon emissions can be attained in Bangalore City.

Keywords: MSW, biocover, composting, carbon emission

Procedia PDF Downloads 114
707 Shear Strengthening of Reinforced Concrete Deep Beam Using Fiber Reinforced Polymer Strips

Authors: Ruqaya H. Aljabery

Abstract:

Reinforced Concrete (RC) deep beams are one of the main critical structural elements in terms of safety since significant loads are carried in a short span. The shear capacity of these sections cannot be predicted accurately by the current design codes like ACI and EC2; thus, they must be investigated. In this research, non-linear behavior of RC deep beams strengthened in shear with Fiber Reinforced Polymer (FRP) strips, and the efficiency of FRP in terms of enhancing the shear capacity in RC deep beams are examined using Finite Element Analysis (FEA), which is conducted using the software ABAQUS. The effect of several parameters on the shear capacity of the RC deep beam are studied in this paper as well including the effect of the cross-sectional area of the FRP strip and the shear reinforcement area to the spacing ratio (As/S), and it was found that FRP enhances the shear capacity significantly and can be a substitution of steel stirrups resulting in a more economical design.

Keywords: Abaqus, concrete, deep beam, finite element analysis, FRP, shear strengthening, strut-and-tie

Procedia PDF Downloads 130
706 Techno-Economic Analysis of the Production of Aniline

Authors: Dharshini M., Hema N. S.

Abstract:

The project for the production of aniline is done by providing 295.46 tons per day of nitrobenzene as feed. The material and energy balance calculations for the different equipment like distillation column, heat exchangers, reactor and mixer are carried out with simulation via DWSIM. The conversion of nitrobenzene to aniline by hydrogenation process is considered to be 96% and the total production of the plant was found to be 215 TPD. The cost estimation of the process is carried out to estimate the feasibility of the plant. The net profit and percentage return of investment is estimated to be ₹27 crores and 24.6%. The payback period was estimated to be 4.05 years and the unit production cost is ₹113/kg. A techno-economic analysis was performed for the production of aniline; the result includes economic analysis and sensitivity analysis of critical factors. From economic analysis, larger the plant scale increases the total capital investment and annual operating cost, even though the unit production cost decreases. Uncertainty analysis was performed to predict the influence of economic factors on profitability and the scenario analysis is one way to quantify uncertainty. In scenario analysis the best-case scenario and the worst-case scenario are compared with the base case scenario. The best-case scenario was found at a feed rate of 120 kmol/hr with a unit production cost of ₹112.05/kg and the worst-case scenario was found at a feed rate of 60 kmol/hr with a unit production cost of ₹115.9/kg. The base case is closely related to the best case by 99.2% in terms of unit production cost. since the unit production cost is less and the profitability is more with less payback time, it is feasible to construct a plant at this capacity.

Keywords: aniline, nitrobenzene, economic analysis, unit production cost

Procedia PDF Downloads 89
705 Impact of Trade Cooperation of BRICS Countries on Economic Growth

Authors: Svetlana Gusarova

Abstract:

The essential role in the recent development of world economy has led to the developing countries, notably to BRICS countries (Brazil, Russia, India, China, South Africa). Over the next 50 years the BRICS countries are expected to be the engines of global trade and economic growth. Trade cooperation of BRICS countries can enhance their economic development. BRICS countries were among Top 10 world exporters of office and telecom equipment, of textiles, of clothing, of iron and steel, of chemicals, of agricultural products, of automotive products, of fuel and mining products. China was one of the main trading partners of all BRICS countries, maintaining close relationship with all BRICS countries in the development of trade. Author analyzed trade complementarity of BRICS countries and revealed the high level of complementarity of their trade flows in connection with availability of specialization in different types of goods. The correlation and regression analysis of communication of Intra-BRICS merchandise turnover and their GDP (PPP) revealed very strong impact on the development of their economies.

Keywords: BRICS countries, trade cooperation, complementarity, regression analysis

Procedia PDF Downloads 270
704 A Novel Stress Instability Workability Criteria for Internal Ductile Failure in Steel Cold Heading Process

Authors: Amar Sabih, James Nemes

Abstract:

The occurrence of internal ductile failure within the Adiabatic Shear Band (ASB) in cold-headed products presents a significant barrier in the fast-expanding cold-heading (CH) industry. The presence of internal ductile failure in cold-headed products may lead to catastrophic fracture under tensile loads despite the ductile nature of the material causing expensive industrial recalls. Therefore, this paper presents a workability criterion that uses stress instability as an indicator to accurately reveal the locus of initiation of internal ductile failures. The concept of the instability criterion is to use the stress ratio at failure as a weighting function to indicate the initiation of ductile failure inside the ASBs. This paper presents a comprehensive experimental, metallurgical, and finite element simulation study to calculate the material constants used in this criterion.

Keywords: adiabatic shear band, workability criterion, ductile failure, stress instability

Procedia PDF Downloads 73
703 Synthesis of Nanosized Amorphous Alumina Particles and Their Use in Electroless Ni-P Coatings

Authors: Preeti Makkar, R. C. Agarwala, Vijaya Agarwala

Abstract:

The present study focuses on the preparation of Al2O3 nanoparticles by top down approach i.e. mechanical milling using high energy planetary ball mill at 250 rpm for 40h. The milled Al2O3 nanoparticles are then used as the second phase to develop electroless (EL) Ni-P- Al2O3 nanocomposite coatings on mild steel substrate. An alkaline bath was used with a suspension of Al2O3 particles (4 g/L) for the synthesis of Ni-P-Al2O3 nanocomposite coating. The surface morphology, size range and phase analysis of as-prepared Al2O3 particles and the coatings were characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The coatings were heat treated at 400°C for 1h in argon atmosphere and the hardness of the nanocomposite coatings was investigated with respect to Ni-P before and after heat treatment. The results showed that as milled Al2O3 nanoparticles exhibit irregular shaped and size ranges around 40-45 nm. The Al2O3 particles are uniformly distributed in Ni-P matrix. The microhardness of the coatings is found to be significantly improved after heat treatment (1126 VHN).

Keywords: Electroless (EL), Ni-P-Al2O3, nanocomposite, mechanical milling, microhardness

Procedia PDF Downloads 266
702 Phytochemical Screening and Identification of Anti-Biological Activity Properties of Pelargonium graveolens

Authors: Anupalli Roja Rani, Saraswathi Jaggali

Abstract:

Rose-scented geranium (Pelargonium graveolens L’Hér.) is an erect, much-branched shrub. It is indigenous to various parts of southern Africa, and it is often called Geranium. Pelargonium species are widely used by traditional healers in the areas of Southern Africa by Sotho, Xhosa, Khoi-San and Zulus for its curative and palliative effects in the treatment of diarrhea, dysentery, fever, respiratory tract infections, liver complaints, wounds, gastroenteritis, haemorrhage, kidney and bladder disorders. We have used Plant materials for extracting active compounds from analytical grades of solvents methanol, ethyl acetate, chloroform and water by a soxhlet apparatus. The phytochemical screening reveals that extracts of Pelargonium graveolens contains alkaloids, glycosides, steroids, tannins, saponins and phenols in ethyl acetate solvent. The antioxidant activity was determined using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) bleaching method and the total phenolic content in the extracts was determined by the Folin–Ciocalteu method. Due to the presence of different phytochemical compounds in Pelargonium the anti-microbial activity against different micro-organisms like E.coli, Streptococcus, Klebsiella and Bacillus. Fractionation of plant extract was performed by column chromatography and was confirmed with HPLC analysis, NMR and FTIR spectroscopy for the compound identification in different organic solvent extracts.

Keywords: Pelargonium graveolens L’Hér, DPPH, micro-organisms, HPLC analysis, NMR, FTIR spectroscopy

Procedia PDF Downloads 474
701 Chemical and Biological Examination of De-Oiled Indian Propolis

Authors: Harshada Vaidya-Kannur, Dattatraya Naik

Abstract:

Propolis, one of the beehive products also referred as bee-glue is sticky dark coloured complex mixture of compounds. The volatile oil can be isolated from the propolis by hydrodistillation. The mark that is left behind after the removal of volatile oil is referred as the de-oiled propolis. Antioxidant as well as anti-inflammatory properties of total ethanolic extract of de-oiled propolis (TEEDP) was investigated. Another lot of deoiled propolis was successively exacted with hexane, ethyl acetate and ethanol. Activities of these fractions were also determined. Antioxidant activity was determined by studying ABTS, DPPH and NO radical scavenging. Determination of anti-inflammatory activity was carried out by topical TPA induced mouse ear oedema model. It is noteworthy that ethyl acetate fraction of deoiled propolis (EAFDP) exhibited 49.45 % TEAC activity at the concentration 0.2 mg/ml which is equivalent to the activity of trolox at the concentration 0.2 mg/ml. Its DPPH scavenging activity (72.56%) was closely comparable to that of trolox (75%). However its NO scavenging activity was comparatively low. From IC50 values it could be concluded that the efficiency of scavenging ABTS radicals by the de-oiled propolis was more pronounced as compared to scavenging of other radicals. Studies by TPA induced mouse ear inflammation model indicated that the de-oiled propolis of Indian origin had significant topical anti-inflammatory activity. The EAFDP was found to be the most active fraction for this activity also. The purification of EAFP yielded six pure crystalline compounds. These compounds were identified by their physical data and spectral data.

Keywords: anti-inflammatory activity, anti-oxidant activity, column chromatography, de-oiled propolis

Procedia PDF Downloads 273
700 Numerical Simulation of the Bond Behavior Between Concrete and Steel Reinforcing Bars in Specialty Concrete

Authors: Camille A. Issa, Omar Masri

Abstract:

In the study, the commercial finite element software Abaqus was used to develop a three-dimensional nonlinear finite element model capable of simulating the pull-out test of reinforcing bars from underwater concrete. The results of thirty-two pull-out tests that have different parameters were implemented in the software to study the effect of the concrete cover, the bar size, the use of stirrups, and the compressive strength of concrete. The interaction properties used in the model provided accurate results in comparison with the experimental bond-slip results, thus the model has successfully simulated the pull-out test. The results of the finite element model are used to better understand and visualize the distribution of stresses in each component of the model, and to study the effect of the various parameters used in this study including the role of the stirrups in preventing the stress from reaching to the sides of the specimens.

Keywords: pull-out test, bond strength, underwater concrete, nonlinear finite element analysis, abaqus

Procedia PDF Downloads 424
699 Welding Process Selection for Storage Tank by Integrated Data Envelopment Analysis and Fuzzy Credibility Constrained Programming Approach

Authors: Rahmad Wisnu Wardana, Eakachai Warinsiriruk, Sutep Joy-A-Ka

Abstract:

Selecting the most suitable welding process usually depends on experiences or common application in similar companies. However, this approach generally ignores many criteria that can be affecting the suitable welding process selection. Therefore, knowledge automation through knowledge-based systems will significantly improve the decision-making process. The aims of this research propose integrated data envelopment analysis (DEA) and fuzzy credibility constrained programming approach for identifying the best welding process for stainless steel storage tank in the food and beverage industry. The proposed approach uses fuzzy concept and credibility measure to deal with uncertain data from experts' judgment. Furthermore, 12 parameters are used to determine the most appropriate welding processes among six competitive welding processes.

Keywords: welding process selection, data envelopment analysis, fuzzy credibility constrained programming, storage tank

Procedia PDF Downloads 151