Search results for: statistical correlations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4687

Search results for: statistical correlations

3097 The Effect of Precipitation on Weed Infestation of Spring Barley under Different Tillage Conditions

Authors: J. Winkler, S. Chovancová

Abstract:

The article deals with the relation between rainfall in selected months and subsequent weed infestation of spring barley. The field experiment was performed at Mendel University agricultural enterprise in Žabčice, Czech Republic. Weed infestation was measured in spring barley vegetation in years 2004 to 2012. Barley was grown in three tillage variants: conventional tillage technology (CT), minimization tillage technology (MT), and no tillage (NT). Precipitation was recorded in one-day intervals. Monthly precipitation was calculated from the measured values in the months of October through to April. The technique of canonical correspondence analysis was applied for further statistical processing. 41 different species of weeds were found in the course of the 9-year monitoring period. The results clearly show that precipitation affects the incidence of most weed species in the selected months, but acts differently in the monitored variants of tillage technologies.

Keywords: weeds, precipitation, tillage, weed infestation forecast

Procedia PDF Downloads 499
3096 Analysis of the Significance of Multimedia Channels Using Sparse PCA and Regularized SVD

Authors: Kourosh Modarresi

Abstract:

The abundance of media channels and devices has given users a variety of options to extract, discover, and explore information in the digital world. Since, often, there is a long and complicated path that a typical user may venture before taking any (significant) action (such as purchasing goods and services), it is critical to know how each node (media channel) in the path of user has contributed to the final action. In this work, the significance of each media channel is computed using statistical analysis and machine learning techniques. More specifically, “Regularized Singular Value Decomposition”, and “Sparse Principal Component” has been used to compute the significance of each channel toward the final action. The results of this work are a considerable improvement compared to the present approaches.

Keywords: multimedia attribution, sparse principal component, regularization, singular value decomposition, feature significance, machine learning, linear systems, variable shrinkage

Procedia PDF Downloads 309
3095 Brand Extension and Customer WOM: Evidence from the Sports Industry

Authors: Jim Shih-Chiao Chin, Yu Ting Yeh, Shui Lien Chen, Yi-Fen Tsai

Abstract:

his study is taking Adidas Company as the object, explored the brand awareness directly or indirectly affects brand affect and word of mouth. First, explored the brand awareness on category fit and image fit, and examined the influence of category fit and image fit on extension attitude. This study then designates the effect of extension attitude on brand affect and word-of-mouth. The relationship of brand awareness on brand affect and word-of-mouth was also explored. The study participants are people who have purchased Adidas extension products. A total of 700 valid questionnaires were collected and statistical software AMOS 20.0 was used to examine the research hypotheses by using structural equation modeling (SEM). Finally, theoretical implications and research directions are provided for future studies.

Keywords: brand extension, brand awareness, product category fit, brand image fit, brand affect, word-of-mouth (WOM)

Procedia PDF Downloads 333
3094 Effect of Cost Control and Cost Reduction Techniques in Organizational Performance

Authors: Babatunde Akeem Lawal

Abstract:

In any organization, the primary aim is to maximize profit, but the major challenges facing them is the increase in cost of operation because of this there is increase in cost of production that could lead to inevitable cost control and cost reduction scheme which make it difficult for most organizations to operate at the cost efficient frontier. The study aims to critically examine and evaluate the application of cost control and cost reduction in organization performance and also to review budget as an effective tool of cost control and cost reduction. A descriptive survey research was adopted. A total number of 40 respondent retrieved were used for the study. The analysis of data collected was undertaken by applying appropriate statistical tools. Regression analysis was used to test the hypothesis with the use of SPSS. Based on the findings; it was evident that cost control has a positive impact on organizational performance and also the style of management has a positive impact on organizational performance.

Keywords: organization, cost reduction, cost control, performance, budget, profit

Procedia PDF Downloads 603
3093 The Impact of Artificial Intelligence on Autism Attitude and Skills

Authors: Sara Fayez Fawzy Mikhael

Abstract:

Inclusive education services for students with autism are still developing in Thailand. Although many more children with intellectual disabilities have been attending school since the Thai government enacted the Education for Persons with Disabilities Act in 2008, facilities for students with disabilities and their families are generally inadequate. This comprehensive study used the Attitudes and Preparedness for Teaching Students with Autism Scale (APTSAS) to examine the attitudes and preparedness of 110, elementary teachers in teaching students with autism in the general education setting. Descriptive statistical analyzes showed that the most important factor in the formation of a negative image of teachers with autism is student attitudes. Most teachers also stated that their pre-service training did not prepare them to meet the needs of children with special needs who cannot speak. The study is important and provides directions for improving non-formal teacher education in Thailand.

Keywords: attitude, autism, teachers, thailandsports activates, movement skills, motor skills

Procedia PDF Downloads 67
3092 Lamb Fleece Quality as an Indicator of Endoparasitism

Authors: Maria Christine Rizzon Cintra, Tâmara Duarte Borges, Cristina Santos Sotomaior

Abstract:

Lamb’s fleece quality can be influenced by many factors, including welfare, stress, nutritional imbalance and presence of ectoparasites. The association of fleece quality and endoparasitism, until now, was not well solved. The present study was undertaken to evaluate if a fleece visual score could predict lamb parasitosis with the focus on gastrointestinal parasites. Fleece quality was scored based on a combination of cleanliness and wool cover, using a three-point scale (1-3). Score 1: fleece shows no sign of dirt or contamination, and had sufficient fleece for the breed and time of year with whole body coverage; Score 2: fleece was little damp or wet, with coat contaminated by small patches of mud or dung and some areas of fleece loose, but no shed or bald patches of no more than 10cm in diameter; Score 3: fleece filthy, very wet with coated in mud or dug, and loose fleece with shed areas of pulls with bald patches greater than 10cm, some areas may be trailing. All fleece quality scores (FQS) were assessed with lamb restrained to ensure close inspection and were done along lamb back and considered just one side of the body. To confirm the gastrointestinal parasites and animal’s anemia, faecal egg counts (FEC) and hematocrit were done for each animal. Lambs were also weighed. All these measurements were done every 15-days, beginning at 60-days until 150-days of life, using 48 animals crossed Texel x Ile de France. For statistics analysis, it was used Stratigraphic Program (4.1. version), and all significant differences between FQS, weight gain, age, hematocrit, and FEC were assessed using analysis of variance following by Duncan test, and the correlation was done by Pearson test at P<0.05. Results showed that animals scored as ‘3’ in FQS had a lower hematocrit and a higher FEC (p<0.05) than animals scored as ‘1’ (hematocrit: 26, 24, 23 and FEC 2107, 2962, 4626 respectively for 1, 2 and 3 FQS). There were correlations between FQS and FEC (r = 0.16), FQS and hematocrit (r = -0.33) an FQS and weight gain (r = -0.20) indicating that worst FQS animals (score 3) had greater gastrointestinal parasites’ infection, were more anemic and had lower weight gain than animals scored as ‘1’ or ‘2’ for FQS. Concerning the lamb´s age, animals that received score ‘3’ in FQS, maintained gastrointestinal parasites’ infection over the time (P<0.05). It was concluded that FQS could be an important indicator to be included in the selective treatment for control verminosis in lambs.

Keywords: fleece, gastrointestinal parasites, sheep, welfare

Procedia PDF Downloads 241
3091 A Generalized Framework for Adaptive Machine Learning Deployments in Algorithmic Trading

Authors: Robert Caulk

Abstract:

A generalized framework for adaptive machine learning deployments in algorithmic trading is introduced, tested, and released as open-source code. The presented software aims to test the hypothesis that recent data contains enough information to form a probabilistically favorable short-term price prediction. Further, the framework contains various adaptive machine learning techniques that are geared toward generating profit during strong trends and minimizing losses during trend changes. Results demonstrate that this adaptive machine learning approach is capable of capturing trends and generating profit. The presentation also discusses the importance of defining the parameter space associated with the dynamic training data-set and using the parameter space to identify and remove outliers from prediction data points. Meanwhile, the generalized architecture enables common users to exploit the powerful machinery while focusing on high-level feature engineering and model testing. The presentation also highlights common strengths and weaknesses associated with the presented technique and presents a broad range of well-tested starting points for feature set construction, target setting, and statistical methods for enforcing risk management and maintaining probabilistically favorable entry and exit points. The presentation also describes the end-to-end data processing tools associated with FreqAI, including automatic data fetching, data aggregation, feature engineering, safe and robust data pre-processing, outlier detection, custom machine learning and statistical tools, data post-processing, and adaptive training backtest emulation, and deployment of adaptive training in live environments. Finally, the generalized user interface is also discussed in the presentation. Feature engineering is simplified so that users can seed their feature sets with common indicator libraries (e.g. TA-lib, pandas-ta). The user also feeds data expansion parameters to fill out a large feature set for the model, which can contain as many as 10,000+ features. The presentation describes the various object-oriented programming techniques employed to make FreqAI agnostic to third-party libraries and external data sources. In other words, the back-end is constructed in such a way that users can leverage a broad range of common regression libraries (Catboost, LightGBM, Sklearn, etc) as well as common Neural Network libraries (TensorFlow, PyTorch) without worrying about the logistical complexities associated with data handling and API interactions. The presentation finishes by drawing conclusions about the most important parameters associated with a live deployment of the adaptive learning framework and provides the road map for future development in FreqAI.

Keywords: machine learning, market trend detection, open-source, adaptive learning, parameter space exploration

Procedia PDF Downloads 89
3090 Generation of Quasi-Measurement Data for On-Line Process Data Analysis

Authors: Hyun-Woo Cho

Abstract:

For ensuring the safety of a manufacturing process one should quickly identify an assignable cause of a fault in an on-line basis. To this end, many statistical techniques including linear and nonlinear methods have been frequently utilized. However, such methods possessed a major problem of small sample size, which is mostly attributed to the characteristics of empirical models used for reference models. This work presents a new method to overcome the insufficiency of measurement data in the monitoring and diagnosis tasks. Some quasi-measurement data are generated from existing data based on the two indices of similarity and importance. The performance of the method is demonstrated using a real data set. The results turn out that the presented methods are able to handle the insufficiency problem successfully. In addition, it is shown to be quite efficient in terms of computational speed and memory usage, and thus on-line implementation of the method is straightforward for monitoring and diagnosis purposes.

Keywords: data analysis, diagnosis, monitoring, process data, quality control

Procedia PDF Downloads 482
3089 Development of a Rating Scale for Elementary EFL Writing

Authors: Mohammed S. Assiri

Abstract:

In EFL programs, rating scales used in writing assessment are often constructed by intuition. Intuition-based scales tend to provide inaccurate and divisive ratings of learners’ writing performance. Hence, following an empirical approach, this study attempted to develop a rating scale for elementary-level writing at an EFL program in Saudi Arabia. Towards this goal, 98 students’ essays were scored and then coded using comprehensive taxonomy of writing constructs and their measures. An automatic linear modeling was run to find out which measures would best predict essay scores. A nonparametric ANOVA, the Kruskal-Wallis test, was then used to determine which measures could best differentiate among scoring levels. Findings indicated that there were certain measures that could serve as either good predictors of essay scores or differentiators among scoring levels, or both. The main conclusion was that a rating scale can be empirically developed using predictive and discriminative statistical tests.

Keywords: analytic scoring, rating scales, writing assessment, writing constructs, writing performance

Procedia PDF Downloads 463
3088 Effects of Employees’ Training Program on the Performance of Small Scale Enterprises in Oyo State

Authors: Itiola Kehinde Adeniran

Abstract:

The study examined the effect of employees’ training on the performance of small scale enterprises in Oyo State. A structured questionnaire was used to collect data from 150 respondents through purposive sampling method. Linear regression was used with the aid of statistical package for social science (SPSS) version 20 to analyze the data collected in order to examine the effect of independent variable, employees’ training on dependent variable, performance (profit) of small scale enterprises. The result revealed that employees’ training has a significant effect on the performance of small scale enterprises. It was concluded that predictor variable namely (training) is 55.5% variance of enterprises performance (profitability). Therefore, the paper recommended that all small scale enterprises in Nigeria should embrace manpower training and development in order to improve employees’ performance leading to organizational profitability.

Keywords: training, employee performance, small scale enterprise, organizational profitability

Procedia PDF Downloads 386
3087 The Effect of Electronic Platform Service Usage on Customer Satisfaction and WOM

Authors: Shui Lien Chen, Yi-Fen Tsai, Jim Shih-Chiao Chin

Abstract:

—In this study, using Chunghwa Telecom as a case. The company accounted for the highest proportion of the telecommunications company in Taiwan. First, this paper would like to understand the effect of convenience performance on perceived ease of use and perceived usefulness. Further, the perceived ease of use and perceived usefulness of Technology Acceptance Model (TAM) are adopted as the factors on the company's brand perception. Afterward, the brand perception influence on customer satisfaction, and finally whether producing a good reputation and recommendation are tested. The study participants are people who have used electronic platform service of Chunghwa Telecom. A total of 478 valid questionnaires were used and AMOS 20.0 statistical software programs were adopted to analyze.

Keywords: technology acceptance model, brand association, brand awareness, brand attachment, customer satisfaction, word-of-mouth (WOM)

Procedia PDF Downloads 276
3086 The Variable Sampling Interval Xbar Chart versus the Double Sampling Xbar Chart

Authors: Michael B. C. Khoo, J. L. Khoo, W. C. Yeong, W. L. Teoh

Abstract:

The Shewhart Xbar control chart is a useful process monitoring tool in manufacturing industries to detect the presence of assignable causes. However, it is insensitive in detecting small process shifts. To circumvent this problem, adaptive control charts are suggested. An adaptive chart enables at least one of the chart’s parameters to be adjusted to increase the chart’s sensitivity. Two common adaptive charts that exist in the literature are the double sampling (DS) Xbar and variable sampling interval (VSI) Xbar charts. This paper compares the performances of the DS and VSI Xbar charts, based on the average time to signal (ATS) criterion. The ATS profiles of the DS Xbar and VSI Xbar charts are obtained using the Mathematica and Statistical Analysis System (SAS) programs, respectively. The results show that the VSI Xbar chart is generally superior to the DS Xbar chart.

Keywords: adaptive charts, average time to signal, double sampling, charts, variable sampling interval

Procedia PDF Downloads 287
3085 Partial Least Square Regression for High-Dimentional and High-Correlated Data

Authors: Mohammed Abdullah Alshahrani

Abstract:

The research focuses on investigating the use of partial least squares (PLS) methodology for addressing challenges associated with high-dimensional correlated data. Recent technological advancements have led to experiments producing data characterized by a large number of variables compared to observations, with substantial inter-variable correlations. Such data patterns are common in chemometrics, where near-infrared (NIR) spectrometer calibrations record chemical absorbance levels across hundreds of wavelengths, and in genomics, where thousands of genomic regions' copy number alterations (CNA) are recorded from cancer patients. PLS serves as a widely used method for analyzing high-dimensional data, functioning as a regression tool in chemometrics and a classification method in genomics. It handles data complexity by creating latent variables (components) from original variables. However, applying PLS can present challenges. The study investigates key areas to address these challenges, including unifying interpretations across three main PLS algorithms and exploring unusual negative shrinkage factors encountered during model fitting. The research presents an alternative approach to addressing the interpretation challenge of predictor weights associated with PLS. Sparse estimation of predictor weights is employed using a penalty function combining a lasso penalty for sparsity and a Cauchy distribution-based penalty to account for variable dependencies. The results demonstrate sparse and grouped weight estimates, aiding interpretation and prediction tasks in genomic data analysis. High-dimensional data scenarios, where predictors outnumber observations, are common in regression analysis applications. Ordinary least squares regression (OLS), the standard method, performs inadequately with high-dimensional and highly correlated data. Copy number alterations (CNA) in key genes have been linked to disease phenotypes, highlighting the importance of accurate classification of gene expression data in bioinformatics and biology using regularized methods like PLS for regression and classification.

Keywords: partial least square regression, genetics data, negative filter factors, high dimensional data, high correlated data

Procedia PDF Downloads 49
3084 Mathematical Modeling for Diabetes Prediction: A Neuro-Fuzzy Approach

Authors: Vijay Kr. Yadav, Nilam Rathi

Abstract:

Accurate prediction of glucose level for diabetes mellitus is required to avoid affecting the functioning of major organs of human body. This study describes the fundamental assumptions and two different methodologies of the Blood glucose prediction. First is based on the back-propagation algorithm of Artificial Neural Network (ANN), and second is based on the Neuro-Fuzzy technique, called Fuzzy Inference System (FIS). Errors between proposed methods further discussed through various statistical methods such as mean square error (MSE), normalised mean absolute error (NMAE). The main objective of present study is to develop mathematical model for blood glucose prediction before 12 hours advanced using data set of three patients for 60 days. The comparative studies of the accuracy with other existing models are also made with same data set.

Keywords: back-propagation, diabetes mellitus, fuzzy inference system, neuro-fuzzy

Procedia PDF Downloads 257
3083 The Association of Anthropometric Measurements, Blood Pressure Measurements, and Lipid Profiles with Mental Health Symptoms in University Students

Authors: Ammaarah Gamieldien

Abstract:

Depression is a very common and serious mental illness that has a significant impact on both the social and economic aspects of sufferers worldwide. This study aimed to investigate the association between body mass index (BMI), blood pressure, and lipid profiles with mental health symptoms in university students. Secondary objectives included the associations between the variables (BMI, blood pressure, and lipids) with themselves, as they are key factors in cardiometabolic disease. Sixty-three (63) students participated in the study. Thirty-two (32) were assigned to the control group (minimal-mild depressive symptoms), while 31 were assigned to the depressive group (moderate to severe depressive symptoms). Montgomery-Asberg Depression Rating Scale (MADRS) and Beck Depression Inventory (BDI) were used to assess depressive scores. Anthropometric measurements such as weight (kg), height (m), waist circumference (WC), and hip circumference were measured. Body mass index (BMI) and ratios such as waist-to-hip ratio (WHR) and waist-to-height ratio (WtHR) were also calculated. Blood pressure was measured using an automated AfriMedics blood pressure machine, while lipids were measured using a CardioChek plus analyzer machine. Statistics were analyzed via the SPSS statistics program. There were no significant associations between anthropometric measurements and depressive scores (p > 0.05). There were no significant correlations between lipid profiles and depression when running a Spearman’s rho correlation (P > 0.05). However, total cholesterol and LDL-C were negatively associated with depression, and triglycerides were positively associated with depression after running a point-biserial correlation (P < 0.05). Overall, there were no significant associations between blood pressure measurements and depression (P > 0.05). However, there was a significant moderate positive correlation between systolic blood pressure and MADRS scores in males (P < 0.05). Depressive scores positively and strongly correlated to how long it takes participants to fall asleep. There were also significant associations with regard to the secondary objectives. This study indicates the importance of determining the prevalence of depression among university students in South Africa. If the prevalence and factors associated with depression are addressed, depressive symptoms in university students may be improved.

Keywords: depression, blood pressure, body mass index, lipid profiles, mental health symptoms

Procedia PDF Downloads 65
3082 Mean Monthly Rainfall Prediction at Benina Station Using Artificial Neural Networks

Authors: Hasan G. Elmazoghi, Aisha I. Alzayani, Lubna S. Bentaher

Abstract:

Rainfall is a highly non-linear phenomena, which requires application of powerful supervised data mining techniques for its accurate prediction. In this study the Artificial Neural Network (ANN) technique is used to predict the mean monthly historical rainfall data collected from BENINA station in Benghazi for 31 years, the period of “1977-2006” and the results are compared against the observed values. The specific objective to achieve this goal was to determine the best combination of weather variables to be used as inputs for the ANN model. Several statistical parameters were calculated and an uncertainty analysis for the results is also presented. The best ANN model is then applied to the data of one year (2007) as a case study in order to evaluate the performance of the model. Simulation results reveal that application of ANN technique is promising and can provide reliable estimates of rainfall.

Keywords: neural networks, rainfall, prediction, climatic variables

Procedia PDF Downloads 488
3081 Modeling of System Availability and Bayesian Analysis of Bivariate Distribution

Authors: Muhammad Farooq, Ahtasham Gul

Abstract:

To meet the desired standard, it is important to monitor and analyze different engineering processes to get desired output. The bivariate distributions got a lot of attention in recent years to describe the randomness of natural as well as artificial mechanisms. In this article, a bivariate model is constructed using two independent models developed by the nesting approach to study the effect of each component on reliability for better understanding. Further, the Bayes analysis of system availability is studied by considering prior parametric variations in the failure time and repair time distributions. Basic statistical characteristics of marginal distribution, like mean median and quantile function, are discussed. We use inverse Gamma prior to study its frequentist properties by conducting Monte Carlo Markov Chain (MCMC) sampling scheme.

Keywords: reliability, system availability Weibull, inverse Lomax, Monte Carlo Markov Chain, Bayesian

Procedia PDF Downloads 72
3080 Microwave Assisted Foam-Mat Drying of Guava Pulp

Authors: Ovais S. Qadri, Abhaya K. Srivastava

Abstract:

Present experiments were carried to study the drying kinetics and quality of microwave foam-mat dried guava powder. Guava pulp was microwave foam mat dried using 8% egg albumin as foaming agent and then dried at microwave power 480W, 560W, 640W, 720W and 800W, foam thickness 3mm, 5mm and 7mm and inlet air temperature of 40˚C and 50˚C. Weight loss was used to estimate change in drying rate with respect to time. Powdered samples were analysed for various physicochemical quality parameters viz. acidity, pH, TSS, colour change and ascorbic acid content. Statistical analysis using three-way ANOVA revealed that sample of 5mm foam thickness dried at 800W and 50˚C was the best with 0.3584% total acid, 3.98 pH, 14min drying time, 8˚Brix TSS, 3.263 colour change and 154.762mg/100g ascorbic acid content.

Keywords: foam mat drying, foam mat guava, guava powder, microwave drying

Procedia PDF Downloads 333
3079 Planning for Sustainable Tourism in Chabahar Coastal Zone Using Swot Analysis

Authors: R. Karami, A. Gharaei

Abstract:

The aim of this study was to investigate ecotourism status in Chabahar coastal zone using swot analysis and strategic planning. Firstly, the current status of region was studied by literature review, field survey and statistical analysis. Then strengths and weaknesses (internal factors) were identified as well as opportunities and threats (external factors) using Delphi Method. Based on the obtained results, the total score of 2.46 in IFE matrix and 2.33 in the EFE matrix represents poor condition related to the internal and external factors respectively. This condition means both external and internal factors have not been utilized properly and the zone needs defensive plan; thus appropriate planning and organizational management practices are required to deal with these factors. Furthermore strategic goals, objectives and action plans in short, medium and long term schedule were formulated in attention to swot analysis.

Keywords: tourism, SWOT analysis, strategic planning, Chabahar

Procedia PDF Downloads 513
3078 Computer Aide Discrimination of Benign and Malignant Thyroid Nodules by Ultrasound Imaging

Authors: Akbar Gharbali, Ali Abbasian Ardekani, Afshin Mohammadi

Abstract:

Introduction: Thyroid nodules have an incidence of 33-68% in the general population. More than 5-15% of these nodules are malignant. Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Between the medical imaging methods, Ultrasound is the chosen imaging technique for assessment of thyroid nodules. The confirming of the diagnosis usually demands repeated fine-needle aspiration biopsy (FNAB). So, current management has morbidity and non-zero mortality. Objective: To explore diagnostic potential of automatic texture analysis (TA) methods in differentiation benign and malignant thyroid nodules by ultrasound imaging in order to help for reliable diagnosis and monitoring of the thyroid nodules in their early stages with no need biopsy. Material and Methods: The thyroid US image database consists of 70 patients (26 benign and 44 malignant) which were reported by Radiologist and proven by the biopsy. Two slices per patient were loaded in Mazda Software version 4.6 for automatic texture analysis. Regions of interests (ROIs) were defined within the abnormal part of the thyroid nodules ultrasound images. Gray levels within an ROI normalized according to three normalization schemes: N1: default or original gray levels, N2: +/- 3 Sigma or dynamic intensity limited to µ+/- 3σ, and N3: present intensity limited to 1% - 99%. Up to 270 multiscale texture features parameters per ROIs per each normalization schemes were computed from well-known statistical methods employed in Mazda software. From the statistical point of view, all calculated texture features parameters are not useful for texture analysis. So, the features based on maximum Fisher coefficient and the minimum probability of classification error and average correlation coefficients (POE+ACC) eliminated to 10 best and most effective features per normalization schemes. We analyze this feature under two standardization states (standard (S) and non-standard (NS)) with Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA). The 1NN classifier was performed to distinguish between benign and malignant tumors. The confusion matrix and Receiver operating characteristic (ROC) curve analysis were used for the formulation of more reliable criteria of the performance of employed texture analysis methods. Results: The results demonstrated the influence of the normalization schemes and reduction methods on the effectiveness of the obtained features as a descriptor on discrimination power and classification results. The selected subset features under 1%-99% normalization, POE+ACC reduction and NDA texture analysis yielded a high discrimination performance with the area under the ROC curve (Az) of 0.9722, in distinguishing Benign from Malignant Thyroid Nodules which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Conclusions: Our results indicate computer-aided diagnosis is a reliable method, and can provide useful information to help radiologists in the detection and classification of benign and malignant thyroid nodules.

Keywords: ultrasound imaging, thyroid nodules, computer aided diagnosis, texture analysis, PCA, LDA, NDA

Procedia PDF Downloads 280
3077 An Assessment of Wind Energy in Sanar Village in North of Iran Using Weibull Function

Authors: Ehsanolah Assareh, Mojtaba Biglari, Mojtaba Nedaei

Abstract:

Sanar village in north of Iran is a remote region with difficult access to electricity, grid and water supply. Thus the aim of this research is to evaluate the potential of wind as a power source either for electricity generation or for water pumping. In this study the statistical analysis has been performed by Weibull distribution function. The results show that the Weibull distribution has fitted the wind data very well. Also it has been demonstrated that wind speed at 40 m height is ranged from 1.75 m/s in Dec to 3.28 m/s in Aug with average value of 2.69 m/s. In this research, different wind speed characteristics such as turbulence intensity, wind direction, monthly air temperature, humidity wind power density and other related parameters have been investigated. Finally it was concluded that the wind energy in the Sanar village may be explored by employing modern wind turbines that require very lower start-up speeds.

Keywords: wind energy, wind turbine, weibull, Sanar village, Iran

Procedia PDF Downloads 525
3076 Measurements of Physical Properties of Directionally Solidified Al-Si-Cu Ternary Alloy

Authors: Aynur Aker, Hasan Kaya

Abstract:

Al-12.6wt.%Si-2wt.%Cu ternary alloy of near eutectic composition was directionally solidified upward at a constant temperature gradient in a wide range of growth rates (V=8.25-165.41 µm/s). The microstructures (λ), microhardness (HV), tensile stress (σ) and electrical resistivity (ρ) were measured from directionally solidified samples. The dependence of microstructures, microhardness and electrical resistivity on growth rate (V) was also determined by statistical analysis. According to these results, it has been found that for increasing values of V, the values of HV, σ and ρ increase. Variations of electrical resistivity for casting Al-Si-Cu alloy were also measured at the temperature in range 300-500 K. The enthalpy (ΔH) and the specific heat (Cp) for the Al-Si-Cu alloy were determined by differential scanning calorimeter (DSC) from heating trace during the transformation from solid to liquid. The results obtained in this work were compared with the similar experimental results in the literature.

Keywords: Al-Si-Cu alloy, microstructures, micro-hardness, tensile stress electrical resistivity, enthalpy

Procedia PDF Downloads 279
3075 Climate Change as Wicked Problems towards Sustainable Development

Authors: Amin Padash, Mehran Khodaparast, Saadat Khodaparast

Abstract:

Climate change is a significant and lasting change in the statistical distribution of weather patterns over periods ranging from decades to millions of years. Climate change is caused by factors such as biotic processes, variations in solar radiation received by Earth, plate tectonics, and volcanic eruptions. Certain human activities have also been identified as significant causes of recent climate change, often referred to as “Global Warming”. The ultimate goal of this paper is to determine how climate change affects the style of life and all of our activities. The paper focuses on what the effects of humans are on climate change and how communities can achieve sustainable development and use resources in a way that is good for the ecosystem and public. We opine Climate Change is a vital issue that can be called “Wicked Problem”. This paper attempts to address this wicked problem by COMPRAM Methodology as one of the possible solutions.

Keywords: climate change, COMPRAM, human influences, sustainable development, wicked problems

Procedia PDF Downloads 455
3074 Study of Tool Shape during Electrical Discharge Machining of AISI 52100 Steel

Authors: Arminder Singh Walia, Vineet Srivastava, Vivek Jain

Abstract:

In Electrical Discharge Machining (EDM) operations, the workpiece confers to the shape of the tool. Further, the cost of the tool contributes the maximum effect on total operation cost. Therefore, the shape and profile of the tool become highly significant. Thus, in this work, an attempt has been made to study the effect of process parameters on the shape of the tool. Copper has been used as the tool material for the machining of AISI 52100 die steel. The shape of the tool has been evaluated by determining the difference in out of roundness of tool before and after machining. Statistical model has been developed and significant process parameters have been identified which affect the shape of the tool. Optimum process parameters have been identified which minimizes the shape distortion.

Keywords: discharge current, flushing pressure, pulse-on time, pulse-off time, out of roundness, electrical discharge machining

Procedia PDF Downloads 287
3073 A Knowledge-As-A-Service Support Framework for Ambient Learning in Kenya

Authors: Lucy W. Mburu, Richard Karanja, Simon N. Mwendia

Abstract:

Over recent years, learners have experienced a constant need to access on demand knowledge that is fully aligned with the paradigm of cloud computing. As motivated by the global sustainable development goal to ensure inclusive and equitable learning opportunities, this research has developed a framework hinged on the knowledge-as-a-service architecture that utilizes knowledge from ambient learning systems. Through statistical analysis and decision tree modeling, the study discovers influential variables for ambient learning among university students. The main aim is to generate a platform for disseminating and exploiting the available knowledge to aid the learning process and, thus, to improve educational support on the ambient learning system. The research further explores how collaborative effort can be used to form a knowledge network that allows access to heterogeneous sources of knowledge, which benefits knowledge consumers, such as the developers of ambient learning systems.

Keywords: actionable knowledge, ambient learning, cloud computing, decision trees, knowledge as a service

Procedia PDF Downloads 160
3072 Quantum Coherence Sets the Quantum Speed Limit for Mixed States

Authors: Debasis Mondal, Chandan Datta, S. K. Sazim

Abstract:

Quantum coherence is a key resource like entanglement and discord in quantum information theory. Wigner- Yanase skew information, which was shown to be the quantum part of the uncertainty, has recently been projected as an observable measure of quantum coherence. On the other hand, the quantum speed limit has been established as an important notion for developing the ultra-speed quantum computer and communication channel. Here, we show that both of these quantities are related. Thus, cast coherence as a resource to control the speed of quantum communication. In this work, we address three basic and fundamental questions. There have been rigorous attempts to achieve more and tighter evolution time bounds and to generalize them for mixed states. However, we are yet to know (i) what is the ultimate limit of quantum speed? (ii) Can we measure this speed of quantum evolution in the interferometry by measuring a physically realizable quantity? Most of the bounds in the literature are either not measurable in the interference experiments or not tight enough. As a result, cannot be effectively used in the experiments on quantum metrology, quantum thermodynamics, and quantum communication and especially in Unruh effect detection et cetera, where a small fluctuation in a parameter is needed to be detected. Therefore, a search for the tightest yet experimentally realisable bound is a need of the hour. It will be much more interesting if one can relate various properties of the states or operations, such as coherence, asymmetry, dimension, quantum correlations et cetera and QSL. Although, these understandings may help us to control and manipulate the speed of communication, apart from the particular cases like the Josephson junction and multipartite scenario, there has been a little advancement in this direction. Therefore, the third question we ask: (iii) Can we relate such quantities with QSL? In this paper, we address these fundamental questions and show that quantum coherence or asymmetry plays an important role in setting the QSL. An important question in the study of quantum speed limit may be how it behaves under classical mixing and partial elimination of states. This is because this may help us to choose properly a state or evolution operator to control the speed limit. In this paper, we try to address this question and show that the product of the time bound of the evolution and the quantum part of the uncertainty in energy or quantum coherence or asymmetry of the state with respect to the evolution operator decreases under classical mixing and partial elimination of states.

Keywords: completely positive trace preserving maps, quantum coherence, quantum speed limit, Wigner-Yanase Skew information

Procedia PDF Downloads 353
3071 CCK/Gastrin Immunoreactivity in Gastrointestinal Tract of Vimba vimba

Authors: Nurgül Şenol, Melda Azman

Abstract:

In this study, gastrointestinal immunohistochemistry in the Vimba vimba and the localization of CCK/gastrin were determined. Although there are a number of studies which relate to the gastrointestinal histochemistry and the localization of the peptides, a literature research in this field revealed that no histochemical or immunohistochemical study covering also the species had been found in our country. In this research, species will be provided from Vimba vimba located in Eğirdir lake. Stomach samples and intestinal samples of these fish will be exposed to routine histological tissue process, embedded in paraffin blocks, and 5-6 μ -thick sections will be taken. Using the PAP (Peroxidase anti-peroxidase) method, localization of the peptides CCK/gastrin was to be found. The densities of peptides of this species were compared, and then the findings obtained were to be evaluated through the statistical analysis methods (SPSS). Endocrine cells reactive to gastrin/CCK antiserum were demonstrated in the stomach and intestinal mucosa. There is a significant difference between gastrin and CCK when compared to regions.

Keywords: CCK, gastrin, immunoreactivity, vimba vimba

Procedia PDF Downloads 312
3070 The Role of Social Infrastructure on Entrepreneurship Performance

Authors: Obasan Kehinde

Abstract:

Social Infrastructure such as transport, telecommunications, energy, water, health, housing, and educational facilities have become part and parcel of human existence and have since been seen as prerequisite for the development of any economy. It is difficult to imagine a modern world without these facilities. Using a survey research design, data was gathered through a multi-stage sampling and a random sampling method from a total of 117 respondents, the study investigates the role of social infrastructure on the performance of entrepreneurs drawn from 10 Local Government Areas across two carefully selected states in the South-West, Nigeria. The data was analyzed using a descriptive statistical analysis and a t-test. The result shows that the impact of social infrastructure on entrepreneur performance is significant at 0.00 level of significant. Thus, this study recommends that entrepreneurs should take note of the social infrastructures available in the environment for the purpose of citing business in order to reduce the cost of production and other business costs.

Keywords: social infrastructure, entrepreneur performance, entrepreneurship, business

Procedia PDF Downloads 398
3069 Management and Agreement Protocol in Computer Security

Authors: Abdulameer K. Hussain

Abstract:

When dealing with a cryptographic system we note that there are many activities performed by parties of this cryptographic system and the most prominent of these activities is the process of agreement between the parties involved in the cryptographic system on how to deal and perform the cryptographic system tasks to be more secure, more confident and reliable. The most common agreement among parties is a key agreement and other types of agreements. Despite the fact that there is an attempt from some quarters to find other effective agreement methods but these methods are limited to the traditional agreements. This paper presents different parameters to perform more effectively the task of the agreement, including the key alternative, the agreement on the encryption method used and the agreement to prevent the denial of the services. To manage and achieve these goals, this method proposes the existence of an control and monitoring entity to manage these agreements by collecting different statistical information of the opinions of the authorized parties in the cryptographic system. These statistics help this entity to take the proper decision about the agreement factors. This entity is called Agreement Manager (AM).

Keywords: agreement parameters, key agreement, key exchange, security management

Procedia PDF Downloads 421
3068 Applying Simulation-Based Digital Teaching Plans and Designs in Operating Medical Equipment

Authors: Kuo-Kai Lin, Po-Lun Chang

Abstract:

Background: The Emergency Care Research Institute released a list for the top 10 medical technology hazards in 2017, with the following hazard topping the list: ‘infusion errors can be deadly if simple safety steps are overlooked.’ In addition, hospitals use various assessment items to evaluate the safety of their medical equipment, confirming the importance of medical equipment safety. In recent years, the topic of patient safety has garnered increasing attention. Accordingly, various agencies have established patient safety-related committees to coordinate, collect, and analyze information regarding abnormal events associated with medical practice. Activities to promote and improve employee training have been introduced to diminish the recurrence of medical malpractice. Objective: To allow nursing personnel to acquire the skills needed to operate common medical equipment and update and review such skills whenever necessary to elevate medical care quality and reduce patient injuries caused by medical equipment operation errors. Method: In this study, a quasi-experimental design was adopted and nurses from a regional teaching hospital were selected as the study sample. Online videos instructing the operation method of common medical equipment were made and quick response codes were designed for the nursing personnel to quickly access the videos when necessary. Senior nursing supervisors and equipment experts were invited to formulate a ‘Scale-based Questionnaire for Assessing Nursing Personnel’s Operational Knowledge of Common Medical Equipment’ to evaluate the nursing personnel’s literacy regarding the operation of the medical equipment. From March to October 2017, an employee training on medical equipment operation and a practice course (simulation course) were implemented, after which the effectiveness of the training and practice course were assessed. Results: Prior to and after the training and practice course, the 66 participating nurses scored 58 and 87 on ‘operational knowledge of common medical equipment,’ respectively (showing a significant statistical difference; t = -9.407, p < .001); 53.5 and 86.3 on ‘operational knowledge of 12-lead electrocardiography’ (z = -2.087, p < .01), respectively; 40 and 79.5 on ‘operational knowledge of cardiac defibrillators’ (z = -3.849, p < .001), respectively; 90 and 98 on ‘operational knowledge of Abbott pumps’ (z = -1.841, p = 0.066), respectively; and 8.7 and 13.7 on ‘perceived competence’ (showing a significant statistical difference; t = -2.77, p < .05). In the participating hospital, medical equipment operation errors were observed in both 2016 and 2017. However, since the implementation of the intervention, medical equipment operation errors have not yet been observed up to October 2017, which can be regarded as the secondary outcome of this study. Conclusion: In this study, innovative teaching strategies were adopted to effectively enhance the professional literacy and skills of nursing personnel in operating medical equipment. The training and practice course also elevated the nursing personnel’s related literacy and perceived competence of operating medical equipment. The nursing personnel was thus able to accurately operate the medical equipment and avoid operational errors that might jeopardize patient safety.

Keywords: medical equipment, digital teaching plan, simulation-based teaching plan, operational knowledge, patient safety

Procedia PDF Downloads 138