Search results for: removal heat storage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6267

Search results for: removal heat storage

4677 Zn-, Mg- and Ni-Al-NO₃ Layered Double Hydroxides Intercalated by Nitrate Anions for Treatment of Textile Wastewater

Authors: Fatima Zahra Mahjoubi, Abderrahim Khalidi, Mohamed Abdennouri, Omar Cherkaoui, Noureddine Barka

Abstract:

Industrial effluents are one of the major causes of environmental pollution, especially effluents discharged from various dyestuff manufactures, plastic, and paper making industries. These effluents can give rise to certain hazards and environmental problems for their highly colored suspended organic solid. Dye effluents are not only aesthetic pollutants, but coloration of water by the dyes may affect photochemical activities in aquatic systems by reducing light penetration. It has been also reported that several commonly used dyes are carcinogenic and mutagenic for aquatic organisms. Therefore, removing dyes from effluents is of significant importance. Many adsorbent materials have been prepared in the removal of dyes from wastewater, including anionic clay or layered double hydroxyde. The zinc/aluminium (Zn-AlNO₃), magnesium/aluminium (Mg-AlNO₃) and nickel/aluminium (Ni-AlNO₃) layered double hydroxides (LDHs) were successfully synthesized via coprecipitation method. Samples were characterized by XRD, FTIR, TGA/DTA, TEM and pHPZC analysis. XRD patterns showed a basal spacing increase in the order of Zn-AlNO₃ (8.85Å)> Mg-AlNO₃ (7.95Å)> Ni-AlNO₃ (7.82Å). FTIR spectrum confirmed the presence of nitrate anions in the LDHs interlayer. The TEM images indicated that the Zn-AlNO3 presents circular to shaped particles with an average particle size of approximately 30 to 40 nm. Small plates assigned to sheets with hexagonal form were observed in the case of Mg-AlNO₃. Ni-AlNO₃ display nanostructured sphere in diameter between 5 and 10 nm. The LDHs were used as adsorbents for the removal of methyl orange (MO), as a model dye and for the treatment of an effluent generated by a textile factory. Adsorption experiments for MO were carried out as function of solution pH, contact time and initial dye concentration. Maximum adsorption was occurred at acidic solution pH. Kinetic data were tested using pseudo-first-order and pseudo-second-order kinetic models. The best fit was obtained with the pseudo-second-order kinetic model. Equilibrium data were correlated to Langmuir and Freundlich isotherm models. The best conditions for color and COD removal from textile effluent sample were obtained at lower values of pH. Total color removal was obtained with Mg-AlNO₃ and Ni-AlNO₃ LDHs. Reduction of COD to limits authorized by Moroccan standards was obtained with 0.5g/l LDHs dose.

Keywords: chemical oxygen demand, color removal, layered double hydroxides, textile wastewater treatment

Procedia PDF Downloads 350
4676 Second-Order Slip Flow and Heat Transfer in a Long Isoflux Microchannel

Authors: Huei Chu Weng

Abstract:

This paper presents a study on the effect of second-order slip on forced convection through a long isoflux heated or cooled planar microchannel. The fully developed solutions of flow and thermal fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and local heat flux boundary conditions. Results reveal that when the average flow velocity increases or the wall heat flux amount decreases, the role of thermal creep becomes more insignificant, while the effect of second-order slip becomes larger. The second-order term in the Deissler slip boundary condition is found to contribute a positive velocity slip and then to lead to a lower pressure drop as well as a lower temperature rise for the heated-wall case or to a higher temperature rise for the cooled-wall case. These findings are contrary to predictions made by the Karniadakis slip model.

Keywords: microfluidics, forced convection, thermal creep, second-order boundary conditions

Procedia PDF Downloads 308
4675 Effect of High Pressure Treatment on the Microbial Contamination and on Some Chemical and Physical Properties of Minced Chicken

Authors: Siddig H. Hamad, Salah M. Al-Eid, Fahad M. Al-Jassas

Abstract:

Composite samples of minced chicken were vacuum-packaged and pressure treated at 300, 400, 450 and 500 MPa in a Stansted 'FOOD-LAB' model S-FL-850-9-W high hydrostatic pressure research apparatus (Stansted Fluid Power Ltd., Stansted, UK). Treated and untreated samples were then stored at 3°C, and microbial content as well as some chemical and physical properties monitored. The microbial load of the untreated samples reached the spoilage level of 107 cfu/g in about one week, resulting in bad smell and dark brown color. The pressure treatments reduced total bacterial counts by about 1.8 to 3.2 log10 cycles and reduced counts of Enterobacteriaceae and Salmonella to non-detectable levels. The color of meat was slightly affected, but pH, moisture content and the oxidation products of lipids were not substantially changed. The treatment killed mainly gram negative bacteria but also caused sub-lethal injury to part of the population resulting in prolonged lag phase. The population not killed by the 350 to 450 MPa treatments grew relatively slowly during storage, and its loads reached spoilage level in 4 to 6 weeks, while the load of the population treated at 500 MPa did not reach this level till the end of a storage period of 9 weeks.

Keywords: chicken, cold storage, microbial spoilage, high hydrostatic pressure

Procedia PDF Downloads 238
4674 Removal of Textile Dye from Industrial Wastewater by Natural and Modified Diatomite

Authors: Hakim Aguedal, Abdelkader Iddou, Abdallah Aziz, Djillali Reda Merouani, Ferhat Bensaleh, Saleh Bensadek

Abstract:

The textile industry produces high amount of colored effluent each year. The management or treatment of these discharges depends on the applied techniques. Adsorption is one of wastewater treatment techniques destined to treat this kind of pollution, and the performance and efficiency predominantly depend on the nature of the adsorbent used. Therefore, scientific research is directed towards the development of new materials using different physical and chemical treatments to improve their adsorption capacities. In the same perspective, we looked at the effect of the heat treatment on the effectiveness of diatomite, which is found in abundance in Algeria. The textile dye Orange Bezaktiv (SRL-150) which is used as organic pollutants in this study is provided by the textile company SOITEXHAM in Oran city (west Algeria). The effect of different physicochemical parameters on the adsorption of SRL-150 on natural and modified diatomite is studied, and the results of the kinetics and adsorption isotherms were modeled.

Keywords: wastewater treatment, diatomite, adsorption, dye pollution, kinetic, isotherm

Procedia PDF Downloads 274
4673 Coaxial Helix Antenna for Microwave Coagulation Therapy in Liver Tissue Simulations

Authors: M. Chaichanyut, S. Tungjitkusolmun

Abstract:

This paper is concerned with microwave (MW) ablation for a liver cancer tissue by using helix antenna. The antenna structure supports the propagation of microwave energy at 2.45 GHz. A 1½ turn spiral catheter-based microwave antenna applicator has been developed. We utilize the three-dimensional finite element method (3D FEM) simulation to analyze where the tissue heat flux, lesion pattern and volume destruction during MW ablation. The configurations of helix antenna where Helix air-core antenna and Helix Dielectric-core antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The simulation protocol was power control (10 W, 300s). Our simulation result, both helix antennas have heat flux occurred around the helix antenna and that can be induced the temperature distribution similar (teardrop). The region where the temperature exceeds 50°C the microwave ablation was successful (i.e. complete destruction). The Helix air-core antenna and Helix Dielectric-core antenna, ablation zone or axial ratios (Widest/length) were respectively 0.82 and 0.85; the complete destructions were respectively 4.18 cm³ and 5.64 cm³.

Keywords: liver cancer, Helix antenna, finite element, microwave ablation

Procedia PDF Downloads 305
4672 Metachromatic Leukodystrophy: A Case Report

Authors: Mary Rose Eunice S. Gundayao, Manolo M. Fernandez

Abstract:

Metachromatic leukodystrophy (MLD) is a rare lysosomal storage disorder with an autosomal recessive inheritance pattern. Lysosomal storage disorders are often severe, follow a progressively neurodegenerative path, and may result in multi-organ failure, potentially leading to death within 5 to 6 years in cases of early-onset forms. There are limited data regarding cases of MLD in Filipino children. This is the case of a 2-year-old Filipino girl who presented with progressive neurological deterioration and was diagnosed with metachromatic leukodystrophy by molecular genetic testing. This case report aims to present this patient’s clinical history, neurological findings, diagnosis and novel genetic mutations causing MLD. A concise review of updated literature on MLD will be discussed.

Keywords: metachromatic leukodystrophy, ARSA gene, peripheral neuropathy, case report, demyelinating disease

Procedia PDF Downloads 3
4671 Synthesis and Characterization of Ferromagnetic Ni-Cu Alloys for Thermal Rectification Applications

Authors: Josue Javier Martinez Flores, Jaime Alvarez Quintana

Abstract:

A thermal rectifier consists of a device which can load a different heat flow which depends on the direction of that flow. That device is a thermal diode. It is well known that heat transfer in solids basically depends on the electrical, magnetic and crystalline nature of materials via electrons, magnons and phonons as thermal energy carriers respectively. In the present research, we have synthesized polycrystalline Ni-Cu alloys and identified the Curie temperatures; and we have observed that by way of secondary phase transitions, it is possible manipulate the heat conduction in solid state thermal diodes via transition temperature. In this sense, we have succeeded in developing solid state thermal diodes with a control gate through the Curie temperature via the activation and deactivation of magnons in Ni-Cu ferromagnetic alloys at room temperature. Results show thermal diodes with thermal rectification factors up to 1.5. Besides, the performance of the electrical rectifiers can be controlled by way of alloy Cu content; hence, lower Cu content alloys present enhanced thermal rectifications factors than higher ones.

Keywords: thermal rectification, Curie temperature, ferromagnetic alloys, magnons

Procedia PDF Downloads 242
4670 Mathieu Stability of Offshore Buoyant Leg Storage and Regasification Platform

Authors: S. Chandrasekaran, P. A. Kiran

Abstract:

Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil and gas industries led to the development of novel geometric form of Buoyant Leg Storage and Regasification Platform (BLSRP). BLSRP consists of a circular deck supported by six buoyant legs placed symmetrically with respect to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of rotational response from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut moored system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental loads induce dynamic tether tension variations, which in turn affect stability of the platform. The present study investigates Mathieu stability of BLSRP under the postulated tether pullout cases by inducing additional tension in the tethers. From the numerical studies carried out, it is seen that postulated tether pullout on any one of the buoyant legs does not result in Mathieu type instability even under excessive tether tension. This is due to the presence of hinged joints, which are capable of dissipating the unbalanced loads to other legs. However, under tether pullout of consecutive buoyant legs, Mathieu-type instability is observed.

Keywords: offshore platforms, stability, postulated failure, dynamic tether tension

Procedia PDF Downloads 177
4669 Rapid Evidence Remote Acquisition in High-Availability Server and Storage System for Digital Forensic to Unravel Academic Crime

Authors: Bagus Hanindhito, Fariz Azmi Pratama, Ulfah Nadiya

Abstract:

Nowadays, digital system including, but not limited to, computer and internet have penetrated the education system widely. Critical information such as students’ academic records is stored in a server off- or on-campus. Although several countermeasures have been taken to protect the vital resources from outsider attack, the defense from insiders threat is not getting serious attention. At the end of 2017, a security incident that involved academic information system in one of the most respected universities in Indonesia affected not only the reputation of the institution and its academia but also academic integrity in Indonesia. In this paper, we will explain our efforts in investigating this security incident where we have implemented a novel rapid evidence remote acquisition method in high-availability server and storage system thus our data collection efforts do not disrupt the academic information system and can be conducted remotely minutes after incident report has been received. The acquired evidence is analyzed during digital forensic by constructing the model of the system in an isolated environment which allows multiple investigators to work together. In the end, the suspect is identified as a student (insider), and the investigation result is used by prosecutors to charge the suspect as an academic crime.

Keywords: academic information system, academic crime, digital forensic, high-availability server and storage, rapid evidence remote acquisition, security incident

Procedia PDF Downloads 145
4668 Effect of Quenching Medium on the Hardness of Dual Phase Steel Heat Treated at a High Temperature

Authors: Tebogo Mabotsa, Tamba Jamiru, David Ibrahim

Abstract:

Dual phase(DP) steel consists essentially of fine grained equiaxial ferrite and a dispersion of martensite. Martensite is the primary precipitate in DP steels, it is the main resistance to dislocation motion within the material. The objective of this paper is to present a relation between the intercritical annealing holding time and the hardness of a dual phase steel. The initial heat treatment involved heating the specimens to 1000oC and holding the sample at that temperature for 30 minutes. After the initial heat treatment, the samples were heated to 770oC and held for a varying amount of time at constant temperature. The samples were held at 30, 60, and 90 minutes respectively. After heating and holding the samples at the austenite-ferrite phase field, the samples were quenched in water, brine, and oil for each holding time. The experimental results proved that an equation for predicting the hardness of a dual phase steel as a function of the intercritical holding time is possible. The relation between intercritical annealing holding time and hardness of a dual phase steel heat treated at high temperatures is parabolic in nature. Theoretically, the model isdependent on the cooling rate because the model differs for each quenching medium; therefore, a universal hardness equation can be derived where the cooling rate is a variable factor.

Keywords: quenching medium, annealing temperature, dual phase steel, martensite

Procedia PDF Downloads 76
4667 Energy Efficient Microgrid Design with Hybrid Power Systems

Authors: Pedro Esteban

Abstract:

Today’s electrical networks, including microgrids, are evolving into smart grids. The smart grid concept brings the idea that the power comes from various sources (continuous or intermittent), in various forms (AC or DC, high, medium or low voltage, etc.), and it must be integrated into the electric power system in a smart way to guarantee a continuous and reliable supply that complies with power quality and energy efficiency standards and grid code requirements. This idea brings questions for the different players like how the required power will be generated, what kind of power will be more suitable, how to store exceeding levels for short or long-term usage, and how to combine and distribute all the different generation power sources in an efficient way. To address these issues, there has been lots of development in recent years on the field of on-grid and off-grid hybrid power systems (HPS). These systems usually combine one or more modes of electricity generation together with energy storage to ensure optimal supply reliability and high level of energy security. Hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.

Keywords: microgrids, hybrid power systems, energy storage, power quality improvement

Procedia PDF Downloads 134
4666 New York’s Heat Pump Mandate: Doubling Annual Heating Costs to Achieve a 13% Reduction in New York’s CO₂ Gas Emissions

Authors: William Burdick

Abstract:

Manmade climate change is an existential threat that must be mitigated at the earliest opportunity. The role of government in climate change mitigation is enacting and enforcing law and policy to affect substantial reductions in greenhouse gasses, in the short and long term, without substantial increases in the cost of energy. To be optimally effective those laws and policies must be established and enforced based on peer reviewed evidence and scientific facts and result in substantial outcomes in years, not decades. Over the next fifty years, New York’s 2019 Climate Change and Community Protection Act and 2021 All Electric Building Act that mandate replacing natural gas heating systems with heat pumps will, immediately double annual heating costs and by 2075, yield less than 16.2% reduction in CO₂ emissions from heating systems in new housing units, less than a 13% reduction in total CO₂ emissions, and affect a $40B in cumulative additional heating cost, compared to natural gas fueled heating systems.

Keywords: climate change, mandate, heat pump, natural gas

Procedia PDF Downloads 60
4665 On-Farm Biopurification Systems: Fungal Bioaugmentation of Biomixtures For Carbofuran Removal

Authors: Carlos E. Rodríguez-Rodríguez, Karla Ruiz-Hidalgo, Kattia Madrigal-Zúñiga, Juan Salvador Chin-Pampillo, Mario Masís-Mora, Elizabeth Carazo-Rojas

Abstract:

One of the main causes of contamination linked to agricultural activities is the spillage and disposal of pesticides, especially during the loading, mixing or cleaning of agricultural spraying equipment. One improvement in the handling of pesticides is the use of biopurification systems (BPS), simple and cheap degradation devices where the pesticides are biologically degraded at accelerated rates. The biologically active core of BPS is the biomixture, which is constituted by soil pre-exposed to the target pesticide, a lignocellulosic substrate to promote the activity of ligninolitic fungi and a humic component (peat or compost), mixed at a volumetric proportion of 50:25:25. Considering the known ability of lignocellulosic fungi to degrade a wide range of organic pollutants, and the high amount of lignocellulosic waste used in biomixture preparation, the bioaugmentation of biomixtures with these fungi represents an interesting approach for improving biomixtures. The present work aimed at evaluating the effect of the bioaugmentation of rice husk based biomixtures with the fungus Trametes versicolor in the removal of the insectice/nematicide carbofuran (CFN) and to optimize the composition of the biomixture to obtain the best performance in terms of CFN removal and mineralization, reduction in formation of transformation products and decrease in residual toxicity of the matrix. The evaluation of several lignocellulosic residues (rice husk, wood chips, coconut fiber, sugarcane bagasse or newspaper print) revealed the best colonization by T. versicolor in rice husk. Pre-colonized rice husk was then used in the bioaugmentation of biomixtures also containing soil pre-exposed to CFN and either peat (GTS biomixture) or compost (GCS biomixture). After spiking with 10 mg/kg CBF, the efficiency of the biomixture was evaluated through a multi-component approach that included: monitoring of CBF removal and production of CBF transformation products, mineralization of radioisotopically labeled carbofuran (14C-CBF) and changes in the toxicity of the matrix after the treatment (Daphnia magna acute immobilization test). Estimated half-lives of CBF in the biomixtures were 3.4 d and 8.1 d in GTS and GCS, respectively. The transformation products 3-hydroxycarbofuran and 3-ketocarbofuran were detected at the moment of CFN application, however their concentration continuously disappeared. Mineralization of 14C-CFN was also faster in GTS than GCS. The toxicological evaluation showed a complete toxicity removal in the biomixtures after 48 d of treatment. The composition of the GCS biomixture was optimized using a central composite design and response surface methodology. The design variables were the volumetric content of fungally pre-colonized rice husk and the volumetric ratio compost/soil. According to the response models, maximization of CFN removal and mineralization rate, and minimization in the accumulation of transformation products were obtained with an optimized biomixture of composition 30:43:27 (pre-colonized rice husk:compost:soil), which differs from the 50:25:25 composition commonly employed in BPS. Results suggest that fungal bioaugmentation may enhance the performance of biomixtures in CFN removal. Optimization reveals the importance of assessing new biomixture formulations in order to maximize their performance.

Keywords: bioaugmentation, biopurification systems, degradation, fungi, pesticides, toxicity

Procedia PDF Downloads 308
4664 Removal of Aromatic Fractions of Natural Organic Matter from Synthetic Water Using Aluminium Based Electrocoagulation

Authors: Tanwi Priya, Brijesh Kumar Mishra

Abstract:

Occurrence of aromatic fractions of Natural Organic Matter (NOM) led to formation of carcinogenic disinfection by products such as trihalomethanes in chlorinated water. In the present study, the efficiency of aluminium based electrocoagulation on the removal of prominent aromatic groups such as phenol, hydrophobic auxochromes, and carboxyl groups from NOM enriched synthetic water has been evaluated using various spectral indices. The effect of electrocoagulation on turbidity has also been discussed. The variation in coagulation performance as a function of pH has been studied. Our result suggests that electrocoagulation can be considered as appropriate remediation approach to reduce trihalomethanes formation in water. It has effectively reduced hydrophobic fractions from NOM enriched low turbid water. The charge neutralization and enmeshment of dispersed colloidal particles inside metallic hydroxides is the possible mechanistic approach in electrocoagulation.

Keywords: aromatic fractions, electrocoagulation, natural organic matter, spectral indices

Procedia PDF Downloads 271
4663 Alumina Generated by Electrocoagulation as Adsorbent for the Elimination of the Iron from Drilling Water

Authors: Aimad Oulebsir, Toufik Chaabane, Venkataraman Sivasankar, André Darchen, Titus A. M. Msagati

Abstract:

Currently, the presence of pharmaceutical substances in the environment is an emerging pollution leading to the disruption of ecosystems. Indeed, water loaded with pharmaceutical residues is an issue that has raised the attention of researchers. The aim of this study was to monitor the effectiveness of the alumina electro-generated by the adsorption process the iron of well water for the production of drugs. The Fe2+ was removed from wastewater by adsorption in a batch cell. Performance results of iron removal by alumina electro-generated revealed that the efficiency of the carrier in the method of electro-generated adsorption. The overall Fe2+ of the synthetically solutions and simulated effluent removal efficiencies reached 75% and 65%, respectively. The application of models and isothermal adsorption kinetics complement the results obtained experimentally. Desorption of iron was investigated using a solution of 0.1M NaOH. Regeneration of the tests shows that the adsorbent maintains its capacity after five adsorption/desorption cycles.

Keywords: electrocoagulation, aluminum electrode, electrogenerated alumina, iron, adsorption/desorption

Procedia PDF Downloads 295
4662 Industrial Wastewater Treatment Improvements Using Activated Carbon

Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Moustafa H. Omran

Abstract:

The discharge limits of industrial waste water effluents are subjected to regulations which are getting more restricted with time. A former research occurred in Port Said city studied the efficiency of treating industrial wastewater using the first stage (A-stage) of the multiple-stage plant (AB-system).From the results of this former research, the effluent treated wastewater has high rates of total dissolved solids (TDS) and chemical oxygen demand (COD). The purpose of this paper is to improve the treatment process in removing TDS and COD. Thus, a pilot plant was constructed at wastewater pump station in the industrial area in the south of Port Said. Experimental work was divided into several groups adding activated carbon with different dosages to waste water, and for each group waste water was filtered after being mixed with activated carbon. pH and TSS as variables were also studied. At the end of this paper, a comparison was made between the efficiency of using activated carbon and the efficiency of using limestone in the same circumstances.

Keywords: adsorption, COD removal, filtration, TDS removal

Procedia PDF Downloads 492
4661 Investigating the Effects of Hydrogen on Wet Cement for Underground Hydrogen Storage Applications in Oil and Gas Wells

Authors: Hamoud Al-Hadrami, Hossein Emadi, Athar Hussain

Abstract:

Green hydrogen is quickly emerging as a new source of renewable energy for the world. Hydrogen production using water electrolysis is deemed as an environmentally friendly and safe source of energy for transportation and other industries. However, storing a high volume of hydrogen seems to be a significant challenge. Abandoned hydrocarbon reservoirs are considered as viable hydrogen storage options because of the availability of the required infrastructure such as wells and surface facilities. However, long-term wellbore integrity in these wells could be a serious challenge. Hydrogen reduces the compressive strength of a set cement if it gets in contact with the cement slurry. Also, mixing hydrogen with cement slurry slightly increases its density and rheological properties, which need to be considered to have a successful primary cementing operation.

Keywords: hydrogen, well bore integrity, clean energy, cementing

Procedia PDF Downloads 206
4660 Numerical Analysis of Fire Performance of Timber Structures

Authors: Van Diem Thi, Mourad Khelifa, Mohammed El Ganaoui, Yann Rogaume

Abstract:

An efficient numerical method has been developed to incorporate the effects of heat transfer in timber panels on partition walls exposed to real building fires. The procedure has been added to the software package Abaqus/Standard as a user-defined subroutine (UMATHT) and has been verified using both time-and spatially dependent heat fluxes in two- and three-dimensional problems. The aim is to contribute to the development of simulation tools needed to assist structural engineers and fire testing laboratories in technical assessment exercises. The presented method can also be used under the developmental stages of building components to optimize performance in real fire conditions. The accuracy of the used thermal properties and the finite element models was validated by comparing the predicted results with three different available fire tests in literature. It was found that the model calibrated to results from standard fire conditions provided reasonable predictions of temperatures within assemblies exposed to real building fire.

Keywords: Timber panels, heat transfer, thermal properties, standard fire tests

Procedia PDF Downloads 336
4659 Pool Fire Tests of Dual Purpose Casks for Spent Nuclear Fuel

Authors: K. S. Bang, S. H. Yu, J. C. Lee, K. S. Seo, S. H. Lee

Abstract:

Dual purpose casks are used for storage and transport of spent nuclear fuel assemblies. Therefore, they satisfy the requirements prescribed in the Korea NSSC Act 2013-27, the IAEA Safety Standard Series No. SSR-6, and US 10 CFR Part 71. These regulatory guidelines classify the dual purpose cask as a Type B package, and state that a Type B package must be able to withstand a temperature of 800°C for a period of 30 min. Therefore, a fire test was conducted using a one-sixth slice of a real cask to estimate the thermal integrity of the dual purpose cask at a temperature of 800°C. The neutron shield reached a maximum temperature of 183°C, which indicates that dual purpose cask was properly insulated from the heat of the flames. The temperature rise of the basket during the fire test was 29°C. Therefore, the integrity of a spent nuclear fuel is estimated to be maintained. The temperature was lower when a cooling pin was installed. The neutron shielding was therefore protected adequately by cooling pin. As a result, the thermal integrity of the dual purpose cask was maintained and the cask is judged to be sufficiently safe for temperatures under 800°C.

Keywords: dual purpose cask, spent nuclear fuel, pool fire test, integrity

Procedia PDF Downloads 459
4658 Degradation of Polycyclic Aromatic Hydrocarbons-Contaminated Soil by Proxy-Acid Method

Authors: Reza Samsami

Abstract:

The aim of the study was to degradation of polycyclic aromatic hydrocarbons (PAHs) by proxy-acid method. The amounts of PAHs were determined in a silty-clay soil sample of an aged oil refinery field in Abadan, Iran. Proxy-acid treatment method was investigated. The results have shown that the proxy-acid system is an effective method for degradation of PAHs. The results also demonstrated that the number of fused aromatic rings have not significant effects on PAH removal by proxy-acid method. The results also demonstrated that the number of fused aromatic rings have not significant effects on PAH removal by proxy-acid method.

Keywords: proxy-acid treatment, silty-clay soil, PAHs, degradation

Procedia PDF Downloads 261
4657 Removal of VOCs from Gas Streams with Double Perovskite-Type Catalyst

Authors: Kuan Lun Pan, Moo Been Chang

Abstract:

Volatile organic compounds (VOCs) are one of major air contaminants, and they can react with nitrogen oxides (NOx) in atmosphere to form ozone (O3) and peroxyacetyl nitrate (PAN) with solar irradiation, leading to environmental hazards. In addition, some VOCs are toxic at low concentration levels and cause adverse effects on human health. How to effectively reduce VOCs emission has become an important issue. Thermal catalysis is regarded as an effective way for VOCs removal because it provides oxidation route to successfully convert VOCs into carbon dioxide (CO2) and water (H2O(g)). Single perovskite-type catalysts are promising for VOC removal, and they are of good potential to replace noble metals due to good activity and high thermal stability. Single perovskites can be generally described as ABO3 or A2BO4, where A-site is often a rare earth element or an alkaline. Typically, the B-site is transition metal cation (Fe, Cu, Ni, Co, or Mn). Catalytic properties of perovskites mainly rely on nature, oxidation states and arrangement of B-site cation. Interestingly, single perovskites could be further synthesized to form double perovskite-type catalysts which can simply be represented by A2B’B”O6. Likewise, A-site stands for an alkaline metal or rare earth element, and the B′ and B′′ are transition metals. Double perovskites possess unique surface properties. In structure, three-dimensional of B-site with ordered arrangement of B’O6 and B”O6 is presented alternately, and they corner-share octahedral along three directions of the crystal lattice, while cations of A-site position between the void of octahedral. It has attracted considerable attention due to specific arrangement of alternating B-site structure. Therefore, double perovskites may have more variations than single perovskites, and this greater variation may promote catalytic performance. It is expected that activity of double perovskites is higher than that of single perovskites toward VOC removal. In this study, double perovskite-type catalyst (La2CoMnO6) is prepared and evaluated for VOC removal. Also, single perovskites including LaCoO3 and LaMnO3 are tested for the comparison purpose. Toluene (C7H8) is one of the important VOCs which are commonly applied in chemical processes. In addition to its wide application, C7H8 has high toxicity at a low concentration. Therefore, C7H8 is selected as the target compound in this study. Experimental results indicate that double perovskite (La2CoMnO6) has better activity if compared with single perovskites. Especially, C7H8 can be completely oxidized to CO2 at 300oC as La2CoMnO6 is applied. Characterization of catalysts indicates that double perovskite has unique surface properties and is of higher amounts of lattice oxygen, leading to higher activity. For durability test, La2CoMnO6 maintains high C7H8 removal efficiency of 100% at 300oC and 30,000 h-1, and it also shows good resistance to CO2 (5%) and H2O(g) (5%) of gas streams tested. For various VOCs including isopropyl alcohol (C3H8O), ethanal (C2H4O), and ethylene (C2H4) tested, as high as 100% efficiency could be achieved with double perovskite-type catalyst operated at 300℃, indicating that double perovskites are promising catalysts for VOCs removal, and possible mechanisms will be elucidated in this paper.

Keywords: volatile organic compounds, Toluene (C7H8), double perovskite-type catalyst, catalysis

Procedia PDF Downloads 161
4656 Behavior of Steel Moment Frames Subjected to Impact Load

Authors: Hyungoo Kang, Minsung Kim, Jinkoo Kim

Abstract:

This study investigates the performance of a 2D and 3D steel moment frame subjected to vehicle collision at a first story column using LS-DYNA. The finite element models of vehicles provided by the National Crash Analysis Center (NCAC) are used for numerical analysis. Nonlinear dynamic time history analysis of the 2D and 3D model structures are carried out based on the arbitrary column removal scenario, and the vertical displacement of the damaged structures are compared with that obtained from collision analysis. The analysis results show that the model structure remains stable when the speed of the vehicle is 40km/h. However, at the speed of 80 and 120km/h both the 2D and 3D structures collapse by progressive collapse. The vertical displacement of the damaged joint obtained from collision analysis is significantly larger than the displacement computed based on the arbitrary column removal scenario.

Keywords: vehicle collision, progressive collapse, FEM, LS-DYNA

Procedia PDF Downloads 332
4655 Development of a PJWF Cleaning Method for Wet Electrostatic Precipitators

Authors: Hsueh-Hsing Lu, Thi-Cuc Le, Tung-Sheng Tsai, Chuen-Jinn Tsai

Abstract:

This study designed and tested a novel wet electrostatic precipitators (WEP) system featuring a Pulse-Air-Jet-Assisted Water Flow (PJWF) to shorten water cleaning time, reduce water usage, and maintain high particle removal efficiency. The PJWF injected cleaning water tangentially at the cylinder wall, rapidly enhancing the momentum of the water flow for efficient dust cake removal. Each PJWF cycle uses approximately 4.8 liters of cleaning water in 18 seconds. Comprehensive laboratory tests were conducted using a single-tube WEP prototype within a flow rate range of 3.0 to 6.0 cubic meters per minute(CMM), operating voltages between -35 to -55 kV, and high-frequency power supply. The prototype, consisting of 72 sets of double-spike rigid discharge electrodes, demonstrated that with the PJWF, -35 kV, and 3.0 CMM, the PM2.5 collection efficiency remained as high as the initial value of 88.02±0.92% after loading with Al2O3 particles at 35.75± 2.54 mg/Nm3 for 20-hr continuous operation. In contrast, without the PJWF, the PM2.5 collection efficiency drastically dropped from 87.4% to 53.5%. Theoretical modeling closely matched experimental results, confirming the robustness of the system's design and its scalability for larger industrial applications. Future research will focus on optimizing the PJWF system, exploring its performance with various particulate matter, and ensuring long-term operational stability and reliability under diverse environmental conditions. Recently, this WEP was combined with a preceding CT (cooling tower) and a HWS (honeycomb wet scrubber) and pilot-tested (40 CMM) to remove SO2 and PM2.5 emissions in a sintering plant of an integrated steel making plant. Pilot-test results showed that the removal efficiencies for SO2 and PM2.5 emissions are as high as 99.7 and 99.3 %, respectively, with ultralow emitted concentrations of 0.3 ppm and 0.07 mg/m3, respectively, while the white smoke is also eliminated at the same time. These new technologies are being used in the industry and the application in different fields is expected to be expanded to reduce air pollutant emissions substantially for a better ambient air quality.

Keywords: wet electrostatic precipitator, pulse-air-jet-assisted water flow, particle removal efficiency, air pollution control

Procedia PDF Downloads 11
4654 Magnetohydrodynamics (MHD) Boundary Layer Flow Past A Stretching Plate with Heat Transfer and Viscous Dissipation

Authors: Jiya Mohammed, Tsadu Shuaib, Yusuf Abdulhakeem

Abstract:

The research work focuses on the cases of MHD boundary layer flow past a stretching plate with heat transfer and viscous dissipation. The non-linear of momentum and energy equation are transform into ordinary differential equation by using similarity transformation, the resulting equation are solved using Adomian Decomposition Method (ADM). An attempt has been made to show the potentials and wide range application of the Adomian decomposition method in the comparison with the previous one in solving heat transfer problems. The Pade approximates value (η= 11[11, 11]) is use on the difficulty at infinity. The results are compared by numerical technique method. A vivid conclusion can be drawn from the results that ADM provides highly precise numerical solution for non-linear differential equations. The result where accurate especially for η ≤ 4, a general equating terms of Eckert number (Ec), Prandtl number (Pr) and magnetic parameter ( ) is derived which was used to investigate velocity and temperature profiles in boundary layer.

Keywords: MHD, Adomian decomposition, boundary layer, viscous dissipation

Procedia PDF Downloads 545
4653 Improvement plan for Integrity of Intensive Care Unit Patients Withdrawn from Life-Sustaining Medical Care

Authors: Shang-Sin Shiu, Shu-I Chin, Hsiu-Ju Chen, Ru-Yu Lien

Abstract:

The Hospice and Palliative Care Act has undergone three revisions, making it less challenging for terminal patients to withdraw life support systems. However, the adequacy of care before withdraw is a crucial factor in end-of-life medical treatment. The author observed that intensive care unit (ICU) nursing staff often rely on simple flowcharts or word of mouth, leading to inadequate preparation and failure to meet patient needs before withdraw. This results in confusion or hesitation among those executing the process. Therefore, there is a motivation to improve the withdraw of patient care processes, establish standardized procedures, ensure the accuracy of removal execution, enhance end-of-life care self-efficacy for nursing staff, and improve the overall quality of care. The investigation identified key issues: the lack of applicable guidelines for ICU care for withdraw from life-sustaining, insufficient education and training on withdraw and end-of-life care, scattered locations of withdraw-related tools, and inadequate self-efficacy in withdraw from life-sustaining care. Solutions proposed include revising withdraw care processes and guidelines, integrating tools and locations, conducting educational courses, and forming support groups. After the project implementation, the accuracy of removal cognition improved from 78% to 96.5%, self-efficacy in end-of-life care after removal increased from 54.7% to 93.1%, and the correctness of care behavior progressed from 27.7% to 97.8%. It is recommended to regularly conduct courses on removing life support system care and grief consolation to enhance the quality of end-of-life care.

Keywords: the intensive care unit (ICU) patients, nursing staff, withdraw life support systems, self-efficacy

Procedia PDF Downloads 48
4652 Developing Granular Sludge and Maintaining High Nitrite Accumulation for Anammox to Treat Municipal Wastewater High-efficiently in a Flexible Two-stage Process

Authors: Zhihao Peng, Qiong Zhang, Xiyao Li, Yongzhen Peng

Abstract:

Nowadays, conventional nitrogen removal process (nitrification and denitrification) was adopted in most wastewater treatment plants, but many problems have occurred, such as: high aeration energy consumption, extra carbon sources dosage and high sludge treatment costs. The emergence of anammox has bring about the great revolution to the nitrogen removal technology, and only the ammonia and nitrite were required to remove nitrogen autotrophically, no demand for aeration and sludge treatment. However, there existed many challenges in anammox applications: difficulty of biomass retention, insufficiency of nitrite substrate, damage from complex organic etc. Much effort was put into the research in overcoming the above challenges, and the payment was rewarded. It was also imperative to establish an innovative process that can settle the above problems synchronously, after all any obstacle above mentioned can cause the collapse of anammox system. Therefore, in this study, a two-stage process was established that the sequencing batch reactor (SBR) and upflow anaerobic sludge blanket (UASB) were used in the pre-stage and post-stage, respectively. The domestic wastewater entered into the SBR first and went through anaerobic/aerobic/anoxic (An/O/A) mode, and the draining at the aerobic end of SBR was mixed with domestic wastewater, the mixture then entering to the UASB. In the long term, organic and nitrogen removal performance was evaluated. All along the operation, most COD was removed in pre-stage (COD removal efficiency > 64.1%), including some macromolecular organic matter, like: tryptophan, tyrosinase and fulvic acid, which could weaken the damage of organic matter to anammox. And the An/O/A operating mode of SBR was beneficial to the achievement and maintenance of partial nitrification (PN). Hence, sufficient and steady nitrite supply was another favorable condition to anammox enhancement. Besides, the flexible mixing ratio helped to gain a substrate ratio appropriate to anammox (1.32-1.46), which further enhance the anammox. Further, the UASB was used and gas recirculation strategy was adopted in the post-stage, aiming to achieve granulation by the selection pressure. As expected, the granules formed rapidly during 38 days, which increased from 153.3 to 354.3 μm. Based on bioactivity and gene measurement, the anammox metabolism and abundance level rose evidently, by 2.35 mgN/gVss·h and 5.3 x109. The anammox bacteria mainly distributed in the large granules (>1000 μm), while the biomass in the flocs (<200 μm) and microgranules (200-500 μm) barely displayed anammox bioactivity. Enhanced anammox promoted the advanced autotrophic nitrogen removal, which increased from 71.9% to 93.4%, even when the temperature was only 12.9 ℃. Therefore, it was feasible to enhance anammox in the multiple favorable conditions created, and the strategy extended the application of anammox to the full-scale mainstream, enhanced the understanding of anammox in the aspects of culturing conditions.

Keywords: anammox, granules, nitrite accumulation, nitrogen removal efficiency

Procedia PDF Downloads 40
4651 A Critical Appraisal of CO₂ Entrance Pressure with Heat

Authors: Abrar Al-Mutairi, Talal Al-Bazali

Abstract:

In this study, changes in capillary entry pressure of shale, as it interacts with CO₂, under different temperatures (25 °C to 250 °C) have been investigated. The combined impact of temperature and petrophysical properties (water content, water activity, permeability and porosity) of shale was also addressed. Results showed that the capillary entry pressure of shale when it interacted with CO₂ was highly affected by temperature. In general, increasing the temperature decreased capillary entry pressure of shale. We believe that pore dilation, where pore throat size expands due to the application of heat, may have caused this decrease in capillary entry pressure of shale. However, in some cases we found that at higher temperature some shale samples showed that the temperature activated clay swelling may have caused an apparent decrease in pore throat radii of shale which translates into higher capillary entry pressure of shale. Also, our results showed that there is no distinct relationship between shale’s water content, water activity, permeability, and porosity on the capillary entry pressure of shale samples as it interacted with CO₂ at different temperatures.

Keywords: heat, threshold pressure, CO₂ sequestration, shale

Procedia PDF Downloads 111
4650 Removal of Heavy Metal from Wastewater using Bio-Adsorbent

Authors: Rakesh Namdeti

Abstract:

The liquid waste-wastewater- is essentially the water supply of the community after it has been used in a variety of applications. In recent years, heavy metal concentrations, besides other pollutants, have increased to reach dangerous levels for the living environment in many regions. Among the heavy metals, Lead has the most damaging effects on human health. It can enter the human body through the uptake of food (65%), water (20%), and air (15%). In this background, certain low-cost and easily available biosorbent was used and reported in this study. The scope of the present study is to remove Lead from its aqueous solution using Olea EuropaeaResin as biosorbent. The results showed that the biosorption capacity of Olea EuropaeaResin biosorbent was more for Lead removal. The Langmuir, Freundlich, Tempkin, and Dubinin-Radushkevich (D-R) models were used to describe the biosorption equilibrium of Lead Olea EuropaeaResin biosorbent, and the biosorption followed the Langmuir isotherm. The kinetic models showed that the pseudo-second-order rate expression was found to represent well the biosorption data for the biosorbent.

Keywords: novel biosorbent, central composite design, Lead, isotherms, kinetics

Procedia PDF Downloads 71
4649 Temperature Evolution, Microstructure and Mechanical Properties of Heat-Treatable Aluminum Alloy Welded by Friction Stir Welding: Comparison with Tungsten Inert Gas

Authors: Saliha Gachi, Mouloud Aissani, Fouad Boubenider

Abstract:

Friction Stir Welding (FSW) is a solid-state welding technique that can join material without melting the plates to be welded. In this work, we are interested to demonstrate the potentiality of FSW for joining the heat-treatable aluminum alloy 2024-T3 which is reputed as difficult to be welded by fusion techniques. Thereafter, the FSW joint is compared with another one obtained from a conventional fusion process Tungsten Inert Gas (TIG). FSW welds are made up using an FSW tool mounted on a milling machine. Single pass welding was applied to fabricated TIG joint. The comparison between the two processes has been made on the temperature evolution, mechanical and microstructure behavior. The microstructural examination revealed that FSW weld is composed of four zones: Base metal (BM), Heat affected zone (HAZ), Thermo-mechanical affected zone (THAZ) and the nugget zone (NZ). The NZ exhibits a recrystallized equiaxed refined grains that induce better mechanical properties and good ductility compared to TIG joint where the grains have a larger size in the welded region compared with the BM due to the elevated heat input. The microhardness results show that, in FSW weld, the THAZ contains the lowest microhardness values and increase in the NZ; however, in TIG process, the lowest values are localized on the NZ.

Keywords: friction stir welding, tungsten inert gaz, aluminum, microstructure

Procedia PDF Downloads 271
4648 Effect of Moisture Removal from Molten Salt on Corrosion of Alloys

Authors: Bhavesh D. Gajbhiye, Divya Raghunandanan, C. S. Sona, Channamallikarjun S. Mathpati

Abstract:

Molten fluoride salt FLiNaK (LiF-NaF-KF: 46.5-11.5-42 mol %) is a promising candidate as high temperature coolant for next generation nuclear reactors due to its superior thermophysical properties. Corrosion of alloys in molten FLiNaK has however been recognized as a serious issue in the selection of structural materials. Corrosion experiments of alloys Inconel-625 (Fe-Ni alloy) and Hastelloy-B (Ni-Mo alloy) were performed in FLiNaK salt. The tests were carried out at a temperature of 650°C in graphite crucibles for 60 hours under inert atmosphere. Corrosion experiments were performed to study the effect of moisture removal in the salt by pre heating and vacuum drying. Weight loss of the alloy samples due to corrosion was measured and corrosion rate was estimated. The surface morphology of the alloy samples was analyzed by Scanning Electron Microscopy. A significant decrease in the corrosion rate was observed for the alloys studied in moisture removed salt.

Keywords: FLiNaK, hastelloy, inconel, weight loss

Procedia PDF Downloads 487