Search results for: ordered logistic regression
2032 An Open-Source Guidance System for an Autonomous Planter Robot in Precision Agriculture
Authors: Nardjes Hamini, Mohamed Bachir Yagoubi
Abstract:
Precision agriculture has revolutionized farming by enabling farmers to monitor their crops remotely in real-time. By utilizing technologies such as sensors, farmers can detect the state of growth, hydration levels, and nutritional status and even identify diseases affecting their crops. With this information, farmers can make informed decisions regarding irrigation, fertilization, and pesticide application. Automated agricultural tasks, such as plowing, seeding, planting, and harvesting, are carried out by autonomous robots and have helped reduce costs and increase production. Despite the advantages of precision agriculture, its high cost makes it inaccessible to small and medium-sized farms. To address this issue, this paper presents an open-source guidance system for an autonomous planter robot. The system is composed of a Raspberry Pi-type nanocomputer equipped with Wi-Fi, a GPS module, a gyroscope, and a power supply module. The accompanying application allows users to enter and calibrate maps with at least four coordinates, enabling the localized contour of the parcel to be captured. The application comprises several modules, such as the mission entry module, which traces the planting trajectory and points, and the action plan entry module, which creates an ordered list of pre-established tasks such as loading, following the plan, returning to the garage, and entering sleep mode. A remote control module enables users to control the robot manually, visualize its location on the map, and use a real-time camera. Wi-Fi coverage is provided by an outdoor access point, covering a 2km circle. This open-source system offers a low-cost alternative for small and medium-sized farms, enabling them to benefit from the advantages of precision agriculture.Keywords: autonomous robot, guidance system, low-cost, medium farms, open-source system, planter robot, precision agriculture, real-time monitoring, remote control, small farms
Procedia PDF Downloads 1112031 Research Regarding Resistance Characteristics of Biscuits Assortment Using Cone Penetrometer
Authors: G.–A. Constantin, G. Voicu, E.–M. Stefan, P. Tudor, G. Paraschiv, M.–G. Munteanu
Abstract:
In the activity of handling and transport of food products, the products may be subjected to mechanical stresses that may lead to their deterioration by deformation, breaking, or crushing. This is the case for biscuits, regardless of their type (gluten-free or sugary), the addition of ingredients or flour from which they are made. However, gluten-free biscuits have a higher mechanical resistance to breakage or crushing compared to easily shattered sugar biscuits (especially those for children). The paper presents the results of the experimental evaluation of the texture for four varieties of commercial biscuits, using the penetrometer equipped with needle cone at five different additional weights on the cone-rod. The assortments of biscuits tested in the laboratory were Petit Beurre, Picnic, and Maia (all three manufactured by RoStar, Romania) and Sultani diet biscuits, manufactured by Eti Burcak Sultani (Turkey, in packs of 138 g). For the four varieties of biscuits and the five additional weights (50, 77, 100, 150 and 177 g), the experimental data obtained were subjected to regression analysis in the MS Office Excel program, using Velon's relationship (h = a∙ln(t) + b). The regression curves were analysed comparatively in order to identify possible differences and to highlight the variation of the penetration depth h, in relation to the time t. Based on the penetration depth between two-time intervals (every 5 seconds), the curves of variation of the penetration speed in relation to time were then drawn. It was found that Velon's law verifies the experimental data for all assortments of biscuits and for all five additional weights. The correlation coefficient R2 had in most of the analysed cases values over 0.850. The values recorded for the penetration depth were framed, in general, within 45-55 p.u. (penetrometric units) at an additional mass of 50 g, respectively between 155-168 p.u., at an additional mass of 177 g, at Petit Beurre biscuits. For Sultani diet biscuits, the values of the penetration depth were within the limits of 32-35 p.u., at an additional weight of 50 g and between 80-114 p.u., at an additional weight of 177g. The data presented in the paper can be used by both operators on the manufacturing technology flow, as well as by the traders of these food products, in order to establish the most efficient parametric of the working regimes (when packaging and handling).Keywords: biscuits resistance/texture, penetration depth, penetration velocity, sharp pin penetrometer
Procedia PDF Downloads 1302030 Adsorption and Desorption Behavior of Ionic and Nonionic Surfactants on Polymer Surfaces
Authors: Giulia Magi Meconi, Nicholas Ballard, José M. Asua, Ronen Zangi
Abstract:
Experimental and computational studies are combined to elucidate the adsorption proprieties of ionic and nonionic surfactants on hydrophobic polymer surface such us poly(styrene). To present these two types of surfactants, sodium dodecyl sulfate and poly(ethylene glycol)-block-poly(ethylene), commonly utilized in emulsion polymerization, are chosen. By applying quartz crystal microbalance with dissipation monitoring it is found that, at low surfactant concentrations, it is easier to desorb (as measured by rate) ionic surfactants than nonionic surfactants. From molecular dynamics simulations, the effective, attractive force of these nonionic surfactants to the surface increases with the decrease of their concentration, whereas, the ionic surfactant exhibits mildly the opposite trend. The contrasting behavior of ionic and nonionic surfactants critically relies on two observations obtained from the simulations. The first is that there is a large degree of interweavement between head and tails groups in the adsorbed layer formed by the nonionic surfactant (PEO/PE systems). The second is that water molecules penetrate this layer. In the disordered layer, these nonionic surfactants generate at the surface, only oxygens of the head groups present at the interface with the water phase or oxygens next to the penetrating waters can form hydrogen bonds. Oxygens inside this layer lose this favorable energy, with a magnitude that increases with the surfactants density at the interface. This reduced stability of the surfactants diminishes their driving force for adsorption. All that is shown to be in accordance with experimental results on the dynamics of surfactants desorption. Ionic surfactants assemble into an ordered structure and the attraction to the surface was even slightly augmented at higher surfactant concentration, in agreement with the experimentally determined adsorption isotherm. The reason these two types of surfactants behave differently is because the ionic surfactant has a small head group that is strongly hydrophilic, whereas the head groups of the nonionic surfactants are large and only weakly attracted to water.Keywords: emulsion polymerization process, molecular dynamics simulations, polymer surface, surfactants adsorption
Procedia PDF Downloads 3452029 Anxiety and Self-Perceived L2 Proficiency: A Comparison of Which Can Better Predict L2 Pronunciation Performance
Authors: Jiexuan Lin, Huiyi Chen
Abstract:
The development of L2 pronunciation competence remains understudied in the literature and it is not clear what may influence learners’ development of L2 pronunciation. The present study was an attempt to find out which of the two common factors in L2 acquisition, i.e., foreign language anxiety or self-perceived L2 proficiency, can better predict Chinese EFL learners’ pronunciation performance. 78 first-year English majors, who had received a three-month pronunciation training course, were asked to 1) fill out a questionnaire on foreign language classroom anxiety, 2) self-report their L2 proficiency in general, in speaking and in pronunciation, and 3) complete an oral and a written test on their L2 pronunciation (the score of the oral part indicates participants’ pronunciation proficiency in oral production, and the score of the written part indexes participants’ ability in applying pronunciation knowledge in comprehension.) Results showed that the pronunciation scores were negatively correlated with the anxiety scores, and were positively correlated with the self-perceived pronunciation proficiency. But only the written scores in the L2 pronunciation test, not the oral scores, were positively correlated with the L2 self-perceived general proficiency. Neither the oral nor the written scores in the L2 pronunciation test had a significant correlation with the self-perceived speaking proficiency. Given the fairly strong correlations, the anxiety scores and the self-perceived pronunciation proficiency were put in regression models to predict L2 pronunciation performance. The anxiety factor alone accounted for 13.9% of the variance and the self-perceived pronunciation proficiency alone explained 12.1% of the variance. But when both anxiety scores and self-perceived pronunciation proficiency were put in a stepwise regression model, only the anxiety scores had a significant and unique contribution to the L2 pronunciation performance (4.8%). Taken together, the results suggested that the learners’ anxiety level could better predict their L2 pronunciation performance, compared with the self-perceived proficiency levels. The obtained data have the following pedagogical implications. 1) Given the fairly strong correlation between anxiety and L2 pronunciation performance, the instructors who are interested in predicting learners’ L2 pronunciation proficiency may measure their anxiety level, instead of their proficiency, as the predicting variable. 2) The correlation of oral scores (in the pronunciation test) with pronunciation proficiency, rather than with speaking proficiency, indicates that a) learners after receiving some amounts of training are to some extent able to evaluate their own pronunciation ability, implying the feasibility of incorporating self-evaluation and peer comments in course instruction; b) the ‘proficiency’ measure used to predict pronunciation performance should be used with caution. The proficiency of specific skills seemingly highly related to pronunciation (i.e., speaking in this case) may not be taken for granted as an effective predictor for pronunciation performance. 3) The correlation between the written scores with general L2 proficiency is interesting.Keywords: anxiety, Chinese EFL learners, L2 pronunciation, self-perceived L2 proficiency
Procedia PDF Downloads 3622028 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization
Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın
Abstract:
There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.Keywords: aircraft, fatigue, joint, life, optimization, prediction.
Procedia PDF Downloads 1782027 Application of Regularized Low-Rank Matrix Factorization in Personalized Targeting
Authors: Kourosh Modarresi
Abstract:
The Netflix problem has brought the topic of “Recommendation Systems” into the mainstream of computer science, mathematics, and statistics. Though much progress has been made, the available algorithms do not obtain satisfactory results. The success of these algorithms is rarely above 5%. This work is based on the belief that the main challenge is to come up with “scalable personalization” models. This paper uses an adaptive regularization of inverse singular value decomposition (SVD) that applies adaptive penalization on the singular vectors. The results show far better matching for recommender systems when compared to the ones from the state of the art models in the industry.Keywords: convex optimization, LASSO, regression, recommender systems, singular value decomposition, low rank approximation
Procedia PDF Downloads 4592026 Cybersecurity Breaches and Audit Outcomes: An Analysis of Auditor Changes and Going Concern Opinions
Authors: Sara Dehaiman Alqahtani
Abstract:
This study investigates the effects of cybersecurity breaches on critical audit outcomes, specifically focusing on auditor changes, engagement partner rotations, and the issuance of going concern opinions. Utilizing an extensive dataset of U.S.-based firms spanning from 2006 to 2023, the research employs propensity score matching (PSM) to address selection bias and control for confounding variables. The analysis reveals that, contrary to conventional expectations, firms that experience cybersecurity breaches are less likely to change their audit firms and engagement partners. Additionally, these breached firms are less likely to receive going concern opinions from their auditors. However, an exception is noted within the technology sector, where breached firms show a higher propensity to switch auditors, potentially to demonstrate a commitment to enhanced cybersecurity measures. The findings suggest a strong preference for continuity in auditor-client relationships following cybersecurity incidents. This preference underscores the importance of auditors' existing knowledge of a firm's systems and controls, which is deemed valuable during periods of heightened risk. The study extends the existing literature by moving beyond the well-documented impact of breaches on audit fees to explore other significant dimensions of the auditor-client relationship. It challenges the traditional assumption that increased risk from breaches leads to higher auditor turnover or more conservative audit opinions, highlighting instead a tendency towards maintaining stability. Methodologically, the research leverages PSM to create a balanced comparison between breached and non-breached firms, ensuring robustness in the findings. Logistic regression analyses further substantiate the associations between breaches and audit outcomes, controlling for various firm-specific characteristics such as size, financial performance, and industry classification. Supplemental analyses explore additional factors, including litigation risk, breach frequency, and industry-specific responses, providing a nuanced understanding of the dynamics at play. The study’s main contributions are threefold. First, it broadens the scope of research on cybersecurity breaches by examining their impact on auditor changes and going concern opinions, areas previously underexplored. Second, it offers empirical evidence that breached firms tend to retain their auditors and engagement partners, suggesting that continuity is valued over potential audit quality improvements through auditor changes. Third, it highlights sector-specific behaviors, particularly within the technology industry, where breaches do lead to higher auditor turnover, indicating industry-specific risk management strategies. Implications of this research are significant for auditors, clients, and regulators. Auditors may need to enhance their risk assessment frameworks to better incorporate cybersecurity risks, ensuring that audit practices remain robust in the face of evolving cyber threats. Clients should evaluate the benefits of retaining existing auditors against the potential advantages of engaging new auditors who might offer fresh perspectives and specialized cybersecurity expertise. Regulators might consider updating auditing standards to more explicitly address cybersecurity risks, ensuring that such threats are adequately reflected in audit procedures and disclosures. Overall, this study provides a comprehensive analysis of how cybersecurity breaches influence audit outcomes, revealing a preference for auditor continuity and questioning whether current auditing frameworks sufficiently account for cyber risks. By highlighting these trends, the research calls for a reassessment of audit practices and regulatory standards to better address the complexities introduced by the increasing prevalence of cyber threats in the digital age.Keywords: cybersecurity breaches, auditor changes, engagement partner rotations, going concern opinions, auditor-client relationships, audit risk assessment
Procedia PDF Downloads 142025 Supramolecular Approach towards Novel Applications: Battery, Band Gap and Gas Separation
Authors: Sudhakara Naidu Neppalli, Tejas S. Bhosale
Abstract:
It is well known that the block copolymer (BCP) can form a complex molecule, through non-covalent bonds such as hydrogen bond, ionic bond and co-ordination bond, with low molecular weight compound as well as with macromolecules, which provide vast applications, includes the alteration of morphology and properties of polymers. Hence we covered the research that, the importance of non-covalent bonds in increasing the non-favourable segmental interactions of the blocks was well examined by attaching and detaching the bonds between the BCP and additive. We also monitored the phase transition of block copolymer and effective interaction parameter (χeff) for Li-doped polymers using small angle x-ray scattering and transmission electron microscopy. The effective interaction parameter (χeff) between two block components was evaluated using Leibler theory based on the incompressible random phase approximation (RPA) for ionized BCP in a disordered state. Furthermore, conductivity experiments demonstrate that the ionic conductivity in the samples quenched from the different structures is morphology-independent, while it increases with increasing ion salt concentration. Morphological transitions, interaction parameter, and thermal stability also examined in quarternized block copolymer. D-spacing was used to estimate effective interaction parameter (χeff) of block components in weak and strong segregation regimes of ordered phase. Metal-containing polymer has been the topic of great attention in recent years due to their wide range of potential application. Similarly, metal- ligand complex is used as a supramolecular linker between the polymers giving rise to a ‘Metallo-Supramolecule assembly. More precisely, functionalized polymer end capped with 2, 2’:6’, 2”- terpyridine ligand can be selectively complexed with wide range of transition metal ions and then subsequently attached to other terpyridine terminated polymer block. In compare to other supramolecular assembly, BCP involved metallo-supramolecule assembly offers vast applications such as optical activity, electrical conductivity, luminescence and photo refractivity.Keywords: band gap, block copolymer, conductivity, interaction parameter, phase transition
Procedia PDF Downloads 1712024 Quantified Metabolomics for the Determination of Phenotypes and Biomarkers across Species in Health and Disease
Authors: Miroslava Cuperlovic-Culf, Lipu Wang, Ketty Boyle, Nadine Makley, Ian Burton, Anissa Belkaid, Mohamed Touaibia, Marc E. Surrette
Abstract:
Metabolic changes are one of the major factors in the development of a variety of diseases in various species. Metabolism of agricultural plants is altered the following infection with pathogens sometimes contributing to resistance. At the same time, pathogens use metabolites for infection and progression. In humans, metabolism is a hallmark of cancer development for example. Quantified metabolomics data combined with other omics or clinical data and analyzed using various unsupervised and supervised methods can lead to better diagnosis and prognosis. It can also provide information about resistance as well as contribute knowledge of compounds significant for disease progression or prevention. In this work, different methods for metabolomics quantification and analysis from Nuclear Magnetic Resonance (NMR) measurements that are used for investigation of disease development in wheat and human cells will be presented. One-dimensional 1H NMR spectra are used extensively for metabolic profiling due to their high reliability, wide range of applicability, speed, trivial sample preparation and low cost. This presentation will describe a new method for metabolite quantification from NMR data that combines alignment of spectra of standards to sample spectra followed by multivariate linear regression optimization of spectra of assigned metabolites to samples’ spectra. Several different alignment methods were tested and multivariate linear regression result has been compared with other quantification methods. Quantified metabolomics data can be analyzed in the variety of ways and we will present different clustering methods used for phenotype determination, network analysis providing knowledge about the relationships between metabolites through metabolic network as well as biomarker selection providing novel markers. These analysis methods have been utilized for the investigation of fusarium head blight resistance in wheat cultivars as well as analysis of the effect of estrogen receptor and carbonic anhydrase activation and inhibition on breast cancer cell metabolism. Metabolic changes in spikelet’s of wheat cultivars FL62R1, Stettler, MuchMore and Sumai3 following fusarium graminearum infection were explored. Extensive 1D 1H and 2D NMR measurements provided information for detailed metabolite assignment and quantification leading to possible metabolic markers discriminating resistance level in wheat subtypes. Quantification data is compared to results obtained using other published methods. Fusarium infection induced metabolic changes in different wheat varieties are discussed in the context of metabolic network and resistance. Quantitative metabolomics has been used for the investigation of the effect of targeted enzyme inhibition in cancer. In this work, the effect of 17 β -estradiol and ferulic acid on metabolism of ER+ breast cancer cells has been compared to their effect on ER- control cells. The effect of the inhibitors of carbonic anhydrase on the observed metabolic changes resulting from ER activation has also been determined. Metabolic profiles were studied using 1D and 2D metabolomic NMR experiments, combined with the identification and quantification of metabolites, and the annotation of the results is provided in the context of biochemical pathways.Keywords: metabolic biomarkers, metabolic network, metabolomics, multivariate linear regression, NMR quantification, quantified metabolomics, spectral alignment
Procedia PDF Downloads 3392023 The Impacts of Civil War on Import and Export in Ethiopia: A Case Study of the Tigray Region Conflict
Authors: Simegn Alemayehu Ayele
Abstract:
Abstract: On November 4, 2020, the Ethiopian government launched a military operation against the Tigray People's Liberation Front (TPLF) in Ethiopia's Tigray Province, sparking the beginning of the Tigray War. This study focuses on the most recent Tigray War as it explores the effects of the civil war on Ethiopia's import and export activity. This study examines the consequences of violence on Ethiopia's trade relations, including its trading partners, export volume, and import requirements, using a combination of qualitative and quantitative data. The research outcome showed that Ethiopia's trade activities have suffered significantly as a result of the Tigray conflict, with both imports and exports declining. Particularly, the violence has hampered logistics and transportation networks, which has reduced the number of products exported and imported. Furthermore, the conflict has weakened Ethiopia's trading relationships and reduced demand for Ethiopian commodities. The survey also reveals that some of Ethiopia's major trade routes have been closed as a result of the conflict, severely restricting trade activities. These findings underline the necessity for political stability and conflict resolution procedures to support the nation's import and export activity by indicating that civil war has substantial repercussions for Ethiopia's economic development and trade activities.Keywords: import demands, logistic networks, trade partiners, trade relatinships
Procedia PDF Downloads 862022 An Unexpected Helping Hand: Consequences of Redistribution on Personal Ideology
Authors: Simon B.A. Egli, Katja Rost
Abstract:
Literature on redistributive preferences has proliferated in past decades. A core assumption behind it is that variation in redistributive preferences can explain different levels of redistribution. In contrast, this paper considers the reverse. What if it is redistribution that changes redistributive preferences? The core assumption behind the argument is that if self-interest - which we label concrete preferences - and ideology - which we label abstract preferences - come into conflict, the former will prevail and lead to an adjustment of the latter. To test the hypothesis, data from a survey conducted in Switzerland during the first wave of the COVID-19 crisis is used. A significant portion of the workforce at the time unexpectedly received state money through the short-time working program. Short-time work was used as a proxy for self-interest and was tested (1) on the support given to hypothetical, ailing firms during the crisis and (2) on the prioritization of justice principles guiding state action. In a first step, several models using OLS-regressions on political orientation were estimated to test our hypothesis as well as to check for non-linear effects. We expected support for ailing firms to be the same regardless of ideology but only for people on short-time work. The results both confirm our hypothesis and suggest a non-linear effect. Far-right individuals on short-time work were disproportionally supportive compared to moderate ones. In a second step, ordered logit models were estimated to test the impact of short-time work and political orientation on the rankings of the distributive justice principles need, performance, entitlement, and equality. The results show that being on short-time work significantly alters the prioritization of justice principles. Right-wing individuals are much more likely to prioritize need and equality over performance and entitlement when they receive government assistance. No such effect is found among left-wing individuals. In conclusion, we provide moderate to strong evidence that unexpectedly finding oneself at the receiving end changes redistributive preferences if personal ideology is antithetical to redistribution. The implications of our findings on the study of populism, personal ideologies, and political change are discussed.Keywords: COVID-19, ideology, redistribution, redistributive preferences, self-interest
Procedia PDF Downloads 1412021 Investigating the Glass Ceiling Phenomenon: An Empirical Study of Glass Ceiling's Effects on Selection, Promotion and Female Effectiveness
Authors: Sharjeel Saleem
Abstract:
The glass ceiling has been a burning issue for many researchers. In this research, we examine gender of the BOD, training and development, workforce diversity, positive attitude towards women, and employee acts as antecedents of glass ceiling. Furthermore, we also look for effects of glass ceiling on likelihood of female selection and promotion and on female effectiveness. Multiple linear regression conducted on data drawn from different public and private sector organizations support our hypotheses. The research, however, is limited to Faisalabad city and only females from minority group are targeted here.Keywords: glass ceiling, stereotype attitudes, female effectiveness
Procedia PDF Downloads 2922020 Democracy as a Curve: A Study on How Democratization Impacts Economic Growth
Authors: Henrique Alpalhão
Abstract:
This paper attempts to model the widely studied relationship between a country's economic growth and its level of democracy, with an emphasis on possible non-linearities. We adopt the concept of 'political capital' as a measure of democracy, which is extremely uncommon in the literature and brings considerable advantages both in terms of dynamic considerations and plausibility. While the literature is not consensual on this matter, we obtain, via panel Arellano-Bond regression analysis on a database of more than 60 countries over 50 years, significant and robust results that indicate that the impact of democratization on economic growth varies according to the stage of democratic development each country is in.Keywords: democracy, economic growth, political capital, political economy
Procedia PDF Downloads 3232019 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images
Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang
Abstract:
Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network
Procedia PDF Downloads 952018 Unveiling the Mystery: Median Arcuate Ligament Syndrome in a Middle-Aged Female Presenting with Abdominal Pain
Authors: Thaer Khaleel Swaid, Maryam Al Ahmad, Ishtiaq Ahmad
Abstract:
47-year-old female, known to have a liver cyst and hemangiomas, presented to the gastroenterology clinic for chronic moderate postprandial epigastric pain, which is aggravated by food, leaning forward and relieved on lying flat. The pain was associated with nausea, vomiting, heartburn and excessive burping. She opened her bowel daily, having well-formed stools without blood or mucus. The patient denied NSAID intake, smoking or alcohol. On physical examination during the episode of pain abdomen revealed a soft, lax abdomen and mild tenderness in the epigastric region without organomegaly. Bowel sounds were audible. Her routine hematological and biochemical parameters were within normal, including CBC, Celiac serology, Lipase, Metabolic profile and H pylori stool antigen. The patient underwent an Ultrasound of the abdomen which showed multiple liver cysts, hemangioma, normal GB and biliary tree. Based on the clinical picture and to narrow our differential diagnosis, an ultrasound Doppler for the abdomen was ordered, and it showed celiac artery peak systolic velocity in expiration is 270cm/s, suggestive of median arcuate ligament syndrome. She Had computerized tomography abdomen done and showed a Narrowing of the celiac artery at the origin, likely secondary to low insertion of the median arcuate ligament. Furthermore, Gastroscopy and, later on colonoscopy were done, which was unremarkable. A laparoscopic decompression of the celiac trunk was indicated, for which the patient was referred to vascular surgery. This case confirms that Median Arcuate Ligament syndrome is an unusual diagnosis and is always challenging. Usually, patients undergo extensive workups before a final diagnosis is achieved. Our case highlights the challenge of diagnosing MALS since this entity is rare. It is a good choice to perform abdominal ultrasound with Doppler imaging on a patient with symptoms such as postprandial angina.Keywords: Unveiling the Mystery, MALS, rare entity, Rare vascular phenomenon
Procedia PDF Downloads 202017 Room Temperature Ionic Liquids Filled Mixed Matrix Membranes for CO2 Separation
Authors: Asim Laeeq Khan, Mazhar Amjad Gilani, Tayub Raza
Abstract:
The use of fossil fuels for energy generation leads to the emission of greenhouse gases particularly CO2 into the atmosphere. To date, several techniques have been proposed for the efficient removal of CO2 from flue gas mixtures. Membrane technology is a promising choice due to its several inherent advantages such as low capital cost, high energy efficiency, and low ecological footprint. One of the goals in the development of membranes is to achieve high permeability and selectivity. Mixed matrix membranes comprising of inorganic fillers embedded in polymer matrix are a class of membranes that have showed improved separation properties. One of the biggest challenges in the commercialization if mixed matrix membranes are the removal of non-selective voids existing at the polymer-filler interface. In this work, mixed matrix membranes were prepared using polysulfone as polymer matrix and ordered mesoporous MCM-41 as filler materials. A new approach to removing the interfacial voids was developed by introducing room temperature ionic (RTIL) at the polymer-filler interface. The results showed that the imidazolium based RTIL not only provided wettability characteristics but also helped in further improving the separation properties. The removal of interfacial voids and good contact between polymer and filler was verified by SEM measurement. The synthesized membranes were tested in a custom built gas permeation set-up for the measurement of gas permeability and ideal gas selectivity. The results showed that the mixed matrix membranes showed significantly higher CO2 permeability in comparison to the pristine membrane. In order to have further insight into the role of fillers, diffusion and solubility measurements were carried out. The results showed that the presence of highly porous fillers resulted in increasing the diffusion coefficient while the solubility showed a slight drop. The RTIL filled membranes showed higher CO2/CH4 and CO2/N2 selectivity than unfilled membranes while the permeability dropped slightly. The increase in selectivity was due to the highly selective RTIL used in this work. The study revealed that RTIL filled mixed matrix membranes are an interesting candidate for gas separation membranes.Keywords: ionic liquids, CO2 separation, membranes, mixed matrix membranes
Procedia PDF Downloads 4802016 Dividend Payout and Capital Structure: A Family Firm Perspective
Authors: Abhinav Kumar Rajverma, Arun Kumar Misra, Abhijeet Chandra
Abstract:
Family involvement in business is universal across countries, with varying characteristics. Firms of developed economies have diffused ownership structure; however, that of emerging markets have concentrated ownership structure, having resemblance with that of family firms. Optimization of dividend payout and leverage are very crucial for firm’s valuation. This paper studies dividend paying behavior of National Stock Exchange listed Indian firms from financial year 2007 to 2016. The final sample consists of 422 firms and of these more than 49% (207) are family firms. Results reveal that family firms pay lower dividend and are more leveraged compared to non-family firms. This unique data set helps to understand dividend behavior and capital structure of sample firms over a long-time period and across varying family ownership concentration. Using panel regression models, this paper examines factors affecting dividend payout and capital structure and establishes a link between the two using Two-stage Least Squares regression model. Profitability shows a positive impact on dividend and negative impact on leverage, confirming signaling and pecking order theory. Further, findings support bankruptcy theory as firm size has a positive relation with dividend and leverage and volatility shows a negative relation with both dividend and leverage. Findings are also consistent with agency theory, family ownership concentration has negative relation with both dividend payments and leverage. Further, the impact of family ownership control confirms the similar finding. The study further reveals that firms with high family ownership concentration (family control) do have an impact on determining the level of private benefits. Institutional ownership is not significant for dividend payments. However, it shows significant negative relation with leverage for both family and non-family firms. Dividend payout and leverage show mixed association with each other. This paper provides evidence of how varying level of family ownership concentration and ownership control influences the dividend policy and capital structure of firms in an emerging market like India and it can have significant contribution towards understanding and formulating corporate dividend policy decisions and capital structure for emerging economies, where majority of firms exhibit behavior of family firm.Keywords: dividend, family firms, leverage, ownership structure
Procedia PDF Downloads 2812015 Citrullinated Myelin Basic Protein Mediated Inflammation in Astrocytes
Authors: Lali Shanshiashvili, Marika Chikviladze, Nino Mamulashvili, Maia Sepashvili, Nana Narmania, David Mikeladze
Abstract:
Purpose: During demyelinating inflammatory diseases and after the damage of the myelin sheet, myelin-derived proteins, including myelin basic protein (MBP), are secreted into the extracellular space. MBP shows extensive post-translational modifications, including the deimination of arginine residues. Deiminated MBP is structurally less ordered, susceptible to proteolytic attack, and more immunogenic than the unmodified one. It is hypothesized that MBP could change the inflammatory response in astrocytes. Methods: MBP was isolated and purified from bovine brain white matter. Primary astrocyte cultures were prepared from whole brains of 2-day-old Wistar rats. For evaluation of glutamate uptake/release in astrocytes following treatment of cells with MBP charge isomers, Glutamate Assay Kit was used. The expression of EAAT-2 (excitatory amino acid transporters), peroxisome proliferator-activated receptor gamma (PPAR- γ), inhibitor of nuclear factor kappa B (IkB), and high mobility group protein B1 (HMGB1) in astrocytes were assayed by Western Blot analysis. Results: This study investigated the action of deiminated isomer (C8) on the cultured primary astrocytes and compared its effects with the effects of unmodified C1 isomers. The study found that C8 and C1 MBP differently act on the uptake and release of glutamate in astrocytes: nonmodified C1 MBP increases the uptake of glutamate and does not change the release, whereas C8 decreases the release of glutamate but does not alter the uptake. Nevertheless, both isomers increased the expression of PPAR-γ and EAAT2 in the same intensity. However, immunostaining and Western Blots of cell lysates showed a decrease of IkB and increased expression of HMGB1 after the treatment of astrocytes by C8. Moreover, in the presence of C8, astrocytes release more nitric oxide than unmodified C1 isomers. Conclusion: These data suggest that the deiminated isomer of MBP evokes an inflammatory response and enhances the ability of astrocytes to release proinflammatory mediators through activation of NF-kB after the breakdown of myelin sheets. Acknowledgment: This research was supported by the SRNSF Georgia RF17_534 grant.Keywords: myelin basic protein, glutamate, deimination, astrocytes, inflammation
Procedia PDF Downloads 2062014 Spatiotemporal Evaluation of Climate Bulk Materials Production in Atmospheric Aerosol Loading
Authors: Mehri Sadat Alavinasab Ashgezari, Gholam Reza Nabi Bidhendi, Fatemeh Sadat Alavinasab Ashkezari
Abstract:
Atmospheric aerosol loading (AAL) from anthropogenic sources is an evidence in industrial development. The accelerated trends in material consumption at the global scale in recent years demonstrate consumption paradigms sensible to the planetary boundaries (PB). This paper is a statistical approach on recognizing the path of climate-relevant bulk materials production (CBMP) of steel, cement and plastics to AAL via an updated and validated spatiotemporal distribution. The methodology of statistical analysis used the most updated regional or global databases or instrumental technologies. This corresponded to a selection of processes and areas capable for tracking AAL within the last decade, analyzing the most validated data while leading to explore the behavior functions or models. The results also represented a correlation within socio economic metabolism idea between the materials specified as macronutrients of society and AAL as a PB with an unknown threshold. The selected country contributors of China, India, US and the sample country of Iran show comparable cumulative AAL values vs to the bulk materials domestic extraction and production rate in the study period of 2012 to 2022. Generally, there is a tendency towards gradual descend in the worldwide and regional aerosol concentration after 2015. As of our evaluation, a considerable share of human role, equivalent 20% from CBMP, is for the main anthropogenic species of aerosols, including sulfate, black carbon and organic particulate matters too. This study, in an innovative approach, also explores the potential role of AAL control mechanisms from the economy sectors where ordered and smoothing loading trends are accredited through the disordered phenomena of CBMP and aerosol precursor emissions. The equilibrium states envisioned is an approval to the well-established theory of Spin Glasses applicable in physical system like the Earth and here to AAL.Keywords: atmospheric aeroso loading, material flows, climate bulk materials, industrial ecology
Procedia PDF Downloads 812013 Foot Self-Monitoring Knowledge, Attitude, Practice, and Related Factors among Diabetic Patients: A Descriptive and Correlational Study in a Taiwan Teaching Hospital
Authors: Li-Ching Lin, Yu-Tzu Dai
Abstract:
Recurrent foot ulcers or foot amputation have a major impact on patients with diabetes mellitus (DM), medical professionals, and society. A critical procedure for foot care is foot self-monitoring. Medical professionals’ understanding of patients’ foot self-monitoring knowledge, attitude, and practice is beneficial for raising patients’ disease awareness. This study investigated these and related factors among patients with DM through a descriptive study of the correlations. A scale for measuring the foot self-monitoring knowledge, attitude, and practice of patients with DM was used. Purposive sampling was adopted, and 100 samples were collected from the respondents’ self-reports or from interviews. The statistical methods employed were an independent-sample t-test, one-way analysis of variance, Pearson correlation coefficient, and multivariate regression analysis. The findings were as follows: the respondents scored an average of 12.97 on foot self-monitoring knowledge, and the correct answer rate was 68.26%. The respondents performed relatively lower in foot health screenings and recording, and awareness of neuropathy in the foot. The respondents held a positive attitude toward self-monitoring their feet and a negative attitude toward having others check the soles of their feet. The respondents scored an average of 12.64 on foot self-monitoring practice. Their scores were lower in their frequency of self-monitoring their feet, recording their self-monitoring results, checking their pedal pulse, and examining if their soles were red immediately after taking off their shoes. Significant positive correlations were observed among foot self-monitoring knowledge, attitude, and practice. The correlation coefficient between self-monitoring knowledge and self-monitoring practice was 0.20, and that between self-monitoring attitude and self-monitoring practice was 0.44. Stepwise regression analysis revealed that the main predictive factors of the foot self-monitoring practice in patients with DM were foot self-monitoring attitude, prior experience in foot care, and an educational attainment of college or higher. These factors predicted 33% of the variance. This study concludes that patients with DM lacked foot self-monitoring practice and advises that the patients’ self-monitoring abilities be evaluated first, including whether patients have poor eyesight, difficulties in bending forward due to obesity, and people who can assist them in self-monitoring. In addition, patient education should emphasize self-monitoring knowledge and practice, such as perceptions regarding the symptoms of foot neurovascular lesions, pulse monitoring methods, and new foot self-monitoring equipment. By doing so, new or recurring ulcers may be discovered in their early stages.Keywords: diabetic foot, foot self-monitoring attitude, foot self-monitoring knowledge, foot self-monitoring practice
Procedia PDF Downloads 1972012 High School Gain Analytics From National Assessment Program – Literacy and Numeracy and Australian Tertiary Admission Rankin Linkage
Authors: Andrew Laming, John Hattie, Mark Wilson
Abstract:
Nine Queensland Independent high schools provided deidentified student-matched ATAR and NAPLAN data for all 1217 ATAR graduates since 2020 who also sat NAPLAN at the school. Graduating cohorts from the nine schools contained a mean 100 ATAR graduates with previous NAPLAN data from their school. Excluded were vocational students (mean=27) and any ATAR graduates without NAPLAN data (mean=20). Based on Index of Community Socio-Educational Access (ICSEA) prediction, all schools had larger that predicted proportions of their students graduating with ATARs. There were an additional 173 students not releasing their ATARs to their school (14%), requiring this data to be inferred by schools. Gain was established by first converting each student’s strongest NAPLAN domain to a statewide percentile, then subtracting this result from final ATAR. The resulting ‘percentile shift’ was corrected for plausible ATAR participation at each NAPLAN level. Strongest NAPLAN domain had the highest correlation with ATAR (R2=0.58). RESULTS School mean NAPLAN scores fitted ICSEA closely (R2=0.97). Schools achieved a mean cohort gain of two ATAR rankings, but only 66% of students gained. This ranged from 46% of top-NAPLAN decile students gaining, rising to 75% achieving gains outside the top decile. The 54% of top-decile students whose ATAR fell short of prediction lost a mean 4.0 percentiles (or 6.2 percentiles prior to correction for regression to the mean). 71% of students in smaller schools gained, compared to 63% in larger schools. NAPLAN variability in each of the 13 ICSEA1100 cohorts was 17%, with both intra-school and inter-school variation of these values extremely low (0.3% to 1.8%). Mean ATAR change between years in each school was just 1.1 ATAR ranks. This suggests consecutive school cohorts and ICSEA-similar schools share very similar distributions and outcomes over time. Quantile analysis of the NAPLAN/ATAR revealed heteroscedasticity, but splines offered little additional benefit over simple linear regression. The NAPLAN/ATAR R2 was 0.33. DISCUSSION Standardised data like NAPLAN and ATAR offer educators a simple no-cost progression metric to analyse performance in conjunction with their internal test results. Change is expressed in percentiles, or ATAR shift per student, which is layperson intuitive. Findings may also reduce ATAR/vocational stream mismatch, reveal proportions of cohorts meeting or falling short of expectation and demonstrate by how much. Finally, ‘crashed’ ATARs well below expectation are revealed, which schools can reasonably work to minimise. The percentile shift method is neither value-add nor a growth percentile. In the absence of exit NAPLAN testing, this metric is unable to discriminate academic gain from legitimate ATAR-maximizing strategies. But by controlling for ICSEA, ATAR proportion variation and student mobility, it uncovers progression to ATAR metrics which are not currently publicly available. However achieved, ATAR maximisation is a sought-after private good. So long as standardised nationwide data is available, this analysis offers useful analytics for educators and reasonable predictivity when counselling subsequent cohorts about their ATAR prospects.Keywords: NAPLAN, ATAR, analytics, measurement, gain, performance, data, percentile, value-added, high school, numeracy, reading comprehension, variability, regression to the mean
Procedia PDF Downloads 682011 Energy Content and Spectral Energy Representation of Wave Propagation in a Granular Chain
Authors: Rohit Shrivastava, Stefan Luding
Abstract:
A mechanical wave is propagation of vibration with transfer of energy and momentum. Studying the energy as well as spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing for the study of internal structure of solids. The study of Energy content (Kinetic, Potential and Total Energy) of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain can assist in understanding the energy attenuation due to disorder as a function of propagation distance. The spectral analysis of the energy signal can assist in understanding dispersion as well as attenuation due to scattering in different frequencies (scattering attenuation). The selection of one-dimensional granular chain also helps in studying only the P-wave attributes of the wave and removing the influence of shear or rotational waves. Granular chains with different mass distributions have been studied, by randomly selecting masses from normal, binary and uniform distributions and the standard deviation of the distribution is considered as the disorder parameter, higher standard deviation means higher disorder and lower standard deviation means lower disorder. For obtaining macroscopic/continuum properties, ensemble averaging has been used. Interpreting information from a Total Energy signal turned out to be much easier in comparison to displacement, velocity or acceleration signals of the wave, hence, indicating a better analysis method for wave propagation through granular materials. Increasing disorder leads to faster attenuation of the signal and decreases the Energy of higher frequency signals transmitted, but at the same time the energy of spatially localized high frequencies also increases. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits diffusive like propagation, which eventually becomes localized at long periods of time.Keywords: discrete elements, energy attenuation, mass disorder, granular chain, spectral energy, wave propagation
Procedia PDF Downloads 2922010 Effects of Cash Transfers Mitigation Impacts in the Face of Socioeconomic External Shocks: Evidence from Egypt
Authors: Basma Yassa
Abstract:
Evidence on cash transfers’ effectiveness in mitigating macro and idiosyncratic shocks’ impacts has been mixed and is mostly concentrated in Latin America, Sub-Saharan Africa, and South Asia with very limited evidence from the MENA region. Yet conditional cash transfers schemes have been continually used, especially in Egypt, as the main social protection tool in response to the recent socioeconomic crises and macro shocks. We use 2 panel datasets and 1 cross-sectional dataset to estimate the effectiveness of cash transfers as a shock-mitigative mechanism in the Egyptian context. In this paper, the results from the different models (Panel Fixed Effects model and the Regression Discontinuity Design (RDD) model) confirm that micro and macro shocks lead to significant decline in several household-level welfare outcomes and that Takaful cash transfers have a significant positive impact in mitigating the negative shock impacts, especially on households’ debt incidence, debt levels, and asset ownership, but not necessarily on food, and non-food expenditure levels. The results indicate large positive significant effects on decreasing household incidence of debt by up to 12.4 percent and lowered the debt size by approximately 18 percent among Takaful beneficiaries compared to non-beneficiaries’. Similar evidence is found on asset ownership levels, as the RDD model shows significant positive effects on total asset ownership and productive asset ownership, but the model failed to detect positive impacts on per capita food and non-food expenditures. Further extensions are still in progress to compare the models’ results with the DID model results when using a nationally representative ELMPS panel data (2018/2024) rounds. Finally, our initial analysis suggests that conditional cash transfers are effective in buffering the negative shock impacts on certain welfare indicators even after successive macro-economic shocks in 2022 and 2023 in the Egyptian Context.Keywords: cash transfers, fixed effects, household welfare, household debt, micro shocks, regression discontinuity design
Procedia PDF Downloads 472009 Inbreeding and Its Effect on Growth Performance in a Closed Herd of New Zealand White Rabbits
Authors: M. Sakthivel, A. Devaki, D. Balasubramanyam, P. Kumarasamy, A. Raja, R. Anilkumar, H. Gopi
Abstract:
The influence of inbreeding on growth traits in the New Zealand White rabbits maintained at Sheep Breeding and Research Station, Sandynallah, The Nilgiris, India was studied in a closed herd. Data were collected over a period of 15 years (1998 to 2012). The traits studied were body weights at weaning (W42), post-weaning (W70) and marketing (W135) age and growth efficiency traits viz., average daily gain (ADG), relative growth rate (RGR) and Kleiber ratio (KR) estimated on a daily basis at different age intervals (1=42 to 70 days; 2=70 to 135 days and 3=42 to 135 days) from weaning to marketing. The effects of inbreeding along with other non-genetic factors (sex of the kit, season and period of birth of the kit) were analyzed using least-squares method. The inbreeding (F) and equivalent inbreeding (EF) coefficients were taken as fixed classes as well as covariates in separate analyses. When taken as covariate, the effect was analyzed as partial regression of respective growth trait on individual inbreeding coefficient (F or EF). The mean body weights at weaning, post-weaning and marketing were 0.715, 1.276 and 2.187 kg, respectively. The maximum growth efficiency was noticed between weaning and post-weaning. Season and period had highly significant influence on all the growth parameters studied and sex of the kit had significant influence on certain growth efficiency traits only. The average coefficients of inbreeding and equivalent inbreeding in the population were 13.233 and 17.585 percent, respectively. About 11.17 percent of total matings were highly inbred in which full-sib, half-sib and parent-offspring matings were 1.20, 6.30 and 3.67 percent, respectively. The regression of body weight traits on F and EF showed negative effect whereas most of the growth efficiency traits showed positive effects. Significant inbreeding depression was observed in W42 and W70. The depression in W42 was 0.214 kg and 0.139 kg and in W70 was 0.269 kg and 0.172 kg for every one unit increase in F and EF, respectively. Though the trait W135 showed positive value and ADG1 showed depression, the effects of inbreeding and equivalent inbreeding were non-significant in these traits. Higher values of inbreeding depression could be due to more variance of F or EF in the population. The analysis of the effect of level of inbreeding on growth traits revealed that the inbreeding class was significant on W70, ADG2, RGR2 and KR2 while EF classes had significant influence only on ADG2, RGR2 and KR2. Obviously, inbreeding does not have a positive effect, therefore, these results suggest that inbreeding had no effect on these traits.Keywords: growth parameters, equivalent inbreeding, inbreeding effects, rabbit genetics
Procedia PDF Downloads 3672008 Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding: Genetic Algorithm Approach
Authors: D. S. Nagesh, G. L. Datta
Abstract:
In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases, design of experiments technique to postulate multiple linear regression equations have been used. Nowadays, Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted.Keywords: smaw, genetic algorithm, bead geometry, optimization/inverse mapping
Procedia PDF Downloads 4542007 Genetic Algorithm Approach for Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding
Authors: D. S. Nagesh, G. L. Datta
Abstract:
In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases design of experiments technique to postulate multiple linear regression equations have been used. Nowadays Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted.Keywords: SMAW, genetic algorithm, bead geometry, optimization/inverse mapping
Procedia PDF Downloads 4212006 Automatic Target Recognition in SAR Images Based on Sparse Representation Technique
Authors: Ahmet Karagoz, Irfan Karagoz
Abstract:
Synthetic Aperture Radar (SAR) is a radar mechanism that can be integrated into manned and unmanned aerial vehicles to create high-resolution images in all weather conditions, regardless of day and night. In this study, SAR images of military vehicles with different azimuth and descent angles are pre-processed at the first stage. The main purpose here is to reduce the high speckle noise found in SAR images. For this, the Wiener adaptive filter, the mean filter, and the median filters are used to reduce the amount of speckle noise in the images without causing loss of data. During the image segmentation phase, pixel values are ordered so that the target vehicle region is separated from other regions containing unnecessary information. The target image is parsed with the brightest 20% pixel value of 255 and the other pixel values of 0. In addition, by using appropriate parameters of statistical region merging algorithm, segmentation comparison is performed. In the step of feature extraction, the feature vectors belonging to the vehicles are obtained by using Gabor filters with different orientation, frequency and angle values. A number of Gabor filters are created by changing the orientation, frequency and angle parameters of the Gabor filters to extract important features of the images that form the distinctive parts. Finally, images are classified by sparse representation method. In the study, l₁ norm analysis of sparse representation is used. A joint database of the feature vectors generated by the target images of military vehicle types is obtained side by side and this database is transformed into the matrix form. In order to classify the vehicles in a similar way, the test images of each vehicle is converted to the vector form and l₁ norm analysis of the sparse representation method is applied through the existing database matrix form. As a result, correct recognition has been performed by matching the target images of military vehicles with the test images by means of the sparse representation method. 97% classification success of SAR images of different military vehicle types is obtained.Keywords: automatic target recognition, sparse representation, image classification, SAR images
Procedia PDF Downloads 3672005 D-Lysine Assisted 1-Ethyl-3-(3-Dimethylaminopropyl)Carbodiimide / N-Hydroxy Succinimide Initiated Crosslinked Collagen Scaffold with Controlled Structural and Surface Properties
Authors: G. Krishnamoorthy, S. Anandhakumar
Abstract:
The effect of D-Lysine (D-Lys) on collagen with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide(EDC)/N-hydroxysuccinimide(NHS) initiated cross linking using experimental and modelling tools are evaluated. The results of the Coll-D-Lys-EDC/NHS scaffold also indicate an increase in the tensile strength (TS), percentage of elongation (% E), denaturation temperature (Td), and decrease the decomposition rate compared to L-Lys-EDC/NHS. Scanning electron microscopic (SEM) and atomic force microscopic (AFM) analyses revealed a well ordered with properly oriented and well-aligned structure of scaffold. The D-Lys stabilizes the scaffold against degradation by collagenase than L-Lys. The cell assay showed more than 98% fibroblast viability (NIH3T3) and improved cell adhesions, protein adsorption after 72h of culture when compared with native scaffold. Cell attachment after 74h was robust, with cytoskeletal analysis showing that the attached cells were aligned along the fibers assuming a spindle-shape appearance, despite, gene expression analyses revealed no apparent alterations in mRNA levels, although cell proliferation was not adversely affected. D-Lysine (D-Lys) plays a pivotal role in the self-assembly and conformation of collagen fibrils. The D-Lys assisted EDC/NHS initiated cross-linking induces the formation of an carboxamide by the activation of the side chain -COOH group, followed by aminolysis of the O-iso acylurea intermediates by the -NH2 groups are directly joined via an isopeptides bond. This leads to the formation of intra- and inter-helical cross links. Modeling studies indicated that D-Lys bind with collagen-like peptide (CLP) through multiple H-bonding and hydrophobic interactions. Orientational changes in collagenase on CLP-D-Lys are observed which may decrease its accessibility to degradation and stabilize CLP against the action of the former. D-Lys has lowest binding energy and improved fibrillar-assembly and staggered alignment without the undesired structural stiffness and aggregations. The proteolytic machinery is not well equipped to deal with Coll-D-Lys than Coll-L-Lys scaffold. The information derived from the present study could help in designing collagenolytically stable heterochiral collagen based scaffold for biomedical applications.Keywords: collagen, collagenase, collagen like peptide, D-lysine, heterochiral collagen scaffold
Procedia PDF Downloads 3932004 ScRNA-Seq RNA Sequencing-Based Program-Polygenic Risk Scores Associated with Pancreatic Cancer Risks in the UK Biobank Cohort
Authors: Yelin Zhao, Xinxiu Li, Martin Smelik, Oleg Sysoev, Firoj Mahmud, Dina Mansour Aly, Mikael Benson
Abstract:
Background: Early diagnosis of pancreatic cancer is clinically challenging due to vague, or no symptoms, and lack of biomarkers. Polygenic risk score (PRS) scores may provide a valuable tool to assess increased or decreased risk of PC. This study aimed to develop such PRS by filtering genetic variants identified by GWAS using transcriptional programs identified by single-cell RNA sequencing (scRNA-seq). Methods: ScRNA-seq data from 24 pancreatic ductal adenocarcinoma (PDAC) tumor samples and 11 normal pancreases were analyzed to identify differentially expressed genes (DEGs) in in tumor and microenvironment cell types compared to healthy tissues. Pathway analysis showed that the DEGs were enriched for hundreds of significant pathways. These were clustered into 40 “programs” based on gene similarity, using the Jaccard index. Published genetic variants associated with PDAC were mapped to each program to generate program PRSs (pPRSs). These pPRSs, along with five previously published PRSs (PGS000083, PGS000725, PGS000663, PGS000159, and PGS002264), were evaluated in a European-origin population from the UK Biobank, consisting of 1,310 PDAC participants and 407,473 non-pancreatic cancer participants. Stepwise Cox regression analysis was performed to determine associations between pPRSs with the development of PC, with adjustments of sex and principal components of genetic ancestry. Results: The PDAC genetic variants were mapped to 23 programs and were used to generate pPRSs for these programs. Four distinct pPRSs (P1, P6, P11, and P16) and two published PRSs (PGS000663 and PGS002264) were significantly associated with an increased risk of developing PC. Among these, P6 exhibited the greatest hazard ratio (adjusted HR[95% CI] = 1.67[1.14-2.45], p = 0.008). In contrast, P10 and P4 were associated with lower risk of developing PC (adjusted HR[95% CI] = 0.58[0.42-0.81], p = 0.001, and adjusted HR[95% CI] = 0.75[0.59-0.96], p = 0.019). By comparison, two of the five published PRS exhibited an association with PDAC onset with HR (PGS000663: adjusted HR[95% CI] = 1.24[1.14-1.35], p < 0.001 and PGS002264: adjusted HR[95% CI] = 1.14[1.07-1.22], p < 0.001). Conclusion: Compared to published PRSs, scRNA-seq-based pPRSs may be used not only to assess increased but also decreased risk of PDAC.Keywords: cox regression, pancreatic cancer, polygenic risk score, scRNA-seq, UK biobank
Procedia PDF Downloads 1032003 Testing a Dose-Response Model of Intergenerational Transmission of Family Violence
Authors: Katherine Maurer
Abstract:
Background and purpose: Violence that occurs within families is a global social problem. Children who are victims or witness to family violence are at risk for many negative effects both proximally and distally. One of the most disconcerting long-term effects occurs when child victims become adult perpetrators: the intergenerational transmission of family violence (ITFV). Early identification of those children most at risk for ITFV is needed to inform interventions to prevent future family violence perpetration and victimization. Only about 25-30% of child family violence victims become perpetrators of adult family violence (either child abuse, partner abuse, or both). Prior research has primarily been conducted using dichotomous measures of exposure (yes; no) to predict ITFV, given the low incidence rate in community samples. It is often assumed that exposure to greater amounts of violence predicts greater risk of ITFV. However, no previous longitudinal study with a community sample has tested a dose-response model of exposure to physical child abuse and parental physical intimate partner violence (IPV) using count data of frequency and severity of violence to predict adult ITFV. The current study used advanced statistical methods to test if increased childhood exposure would predict greater risk of ITFV. Methods: The study utilized 3 panels of prospective data from a cohort of 15 year olds (N=338) from the Project on Human Development in Chicago Neighborhoods longitudinal study. The data were comprised of a stratified probability sample of seven ethnic/racial categories and three socio-economic status levels. Structural equation modeling was employed to test a hurdle regression model of dose-response to predict ITFV. A version of the Conflict Tactics Scale was used to measure physical violence victimization, witnessing parental IPV and young adult IPV perpetration and victimization. Results: Consistent with previous findings, past 12 months incidence rates severity and frequency of interpersonal violence were highly skewed. While rates of parental and young adult IPV were about 40%, an unusually high rate of physical child abuse (57%) was reported. The vast majority of a number of acts of violence, whether minor or severe, were in the 1-3 range in the past 12 months. Reported frequencies of more than 5 times in the past year were rare, with less than 10% of those reporting more than six acts of minor or severe physical violence. As expected, minor acts of violence were much more common than acts of severe violence. Overall, regression analyses were not significant for the dose-response model of ITFV. Conclusions and implications: The results of the dose-response model were not significant due to a lack of power in the final sample (N=338). Nonetheless, the value of the approach was confirmed for the future research given the bi-modal nature of the distributions which suggest that in the context of both child physical abuse and physical IPV, there are at least two classes when frequency of acts is considered. Taking frequency into account in predictive models may help to better understand the relationship of exposure to ITFV outcomes. Further testing using hurdle regression models is suggested.Keywords: intergenerational transmission of family violence, physical child abuse, intimate partner violence, structural equation modeling
Procedia PDF Downloads 244