Search results for: dynamic network analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33172

Search results for: dynamic network analysis

31582 Human Walking Vertical Force and Vertical Vibration of Pedestrian Bridge Induced by Its Higher Components

Authors: Masahiro Yoneda

Abstract:

The purpose of this study is to identify human walking vertical force by using FFT power spectrum density from the experimental acceleration data of the human body. An experiment on human walking is carried out on a stationary floor especially paying attention to higher components of dynamic vertical walking force. Based on measured acceleration data of the human lumbar part, not only in-phase component with frequency of 2 fw, 3 fw, but also in-opposite-phase component with frequency of 0.5 fw, 1.5 fw, 2.5 fw where fw is the walking rate is observed. The vertical vibration of pedestrian bridge induced by higher components of human walking vertical force is also discussed in this paper. A full scale measurement for the existing pedestrian bridge with center span length of 33 m is carried out focusing on the resonance phenomenon due to higher components of human walking vertical force. Dynamic response characteristics excited by these vertical higher components of human walking are revealed from the dynamic design viewpoint of pedestrian bridge.

Keywords: simplified method, human walking vertical force, higher component, pedestrian bridge vibration

Procedia PDF Downloads 432
31581 Nafion Nanofiber Composite Membrane Fabrication for Fuel Cell Applications

Authors: C. N. Okafor, M. Maaza, T. A. E. Mokrani

Abstract:

A proton exchange membrane has been developed for Direct Methanol Fuel Cell (DMFC). The nanofiber network composite membranes were prepared by interconnected network of Nafion (perfuorosulfonic acid) nanofibers that have been embedded in an uncharged and inert polymer matrix, by electro-spinning. The spinning solution of Nafion with a low concentration (1 wt. % compared to Nafion) of high molecular weight poly(ethylene oxide), as a carrier polymer. The interconnected network of Nafion nanofibers with average fiber diameter in the range of 160-700nm, were used to make the membranes, with the nanofiber occupying up to 85% of the membrane volume. The matrix polymer was cross-linked with Norland Optical Adhesive 63 under UV. The resulting membranes showed proton conductivity of 0.10 S/cm at 25°C and 80% RH; and methanol permeability of 3.6 x 10-6 cm2/s.

Keywords: composite membrane, electrospinning, fuel cell, nanofibers

Procedia PDF Downloads 264
31580 Roasting Degree of Cocoa Beans by Artificial Neural Network (ANN) Based Electronic Nose System and Gas Chromatography (GC)

Authors: Juzhong Tan, William Kerr

Abstract:

Roasting is one critical procedure in chocolate processing, where special favors are developed, moisture content is decreased, and better processing properties are developed. Therefore, determination of roasting degree of cocoa bean is important for chocolate manufacturers to ensure the quality of chocolate products, and it also decides the commercial value of cocoa beans collected from cocoa farmers. The roasting degree of cocoa beans currently relies on human specialists, who sometimes are biased, and chemical analysis, which take long time and are inaccessible to many manufacturers and farmers. In this study, a self-made electronic nose system consists of gas sensors (TGS 800 and 2000 series) was used to detecting the gas generated by cocoa beans with a different roasting degree (0min, 20min, 30min, and 40min) and the signals collected by gas sensors were used to train a three-layers ANN. Chemical analysis of the graded beans was operated by traditional GC-MS system and the contents of volatile chemical compounds were used to train another ANN as a reference to electronic nosed signals trained ANN. Both trained ANN were used to predict cocoa beans with a different roasting degree for validation. The best accuracy of grading achieved by electronic nose signals trained ANN (using signals from TGS 813 826 820 880 830 2620 2602 2610) turned out to be 96.7%, however, the GC trained ANN got the accuracy of 83.8%.

Keywords: artificial neutron network, cocoa bean, electronic nose, roasting

Procedia PDF Downloads 232
31579 An ANN-Based Predictive Model for Diagnosis and Forecasting of Hypertension

Authors: Obe Olumide Olayinka, Victor Balanica, Eugen Neagoe

Abstract:

The effects of hypertension are often lethal thus its early detection and prevention is very important for everybody. In this paper, a neural network (NN) model was developed and trained based on a dataset of hypertension causative parameters in order to forecast the likelihood of occurrence of hypertension in patients. Our research goal was to analyze the potential of the presented NN to predict, for a period of time, the risk of hypertension or the risk of developing this disease for patients that are or not currently hypertensive. The results of the analysis for a given patient can support doctors in taking pro-active measures for averting the occurrence of hypertension such as recommendations regarding the patient behavior in order to lower his hypertension risk. Moreover, the paper envisages a set of three example scenarios in order to determine the age when the patient becomes hypertensive, i.e. determine the threshold for hypertensive age, to analyze what happens if the threshold hypertensive age is set to a certain age and the weight of the patient if being varied, and, to set the ideal weight for the patient and analyze what happens with the threshold of hypertensive age.

Keywords: neural network, hypertension, data set, training set, supervised learning

Procedia PDF Downloads 390
31578 Double Wishbone Pushrod Suspension Systems Co-Simulation for Racing Applications

Authors: Suleyman Ogul Ertugrul, Mustafa Turgut, Serkan Inandı, Mustafa Gorkem Coban, Mustafa Kıgılı, Ali Mert, Oguzhan Kesmez, Murat Ozancı, Caglar Uyulan

Abstract:

In high-performance automotive engineering, the realistic simulation of suspension systems is crucial for enhancing vehicle dynamics and handling. This study focuses on the double wishbone suspension system, prevalent in racing vehicles due to its superior control and stability characteristics. Utilizing MATLAB and Adams Car simulation software, we conduct a comprehensive analysis of displacement behaviors and damper sizing under various dynamic conditions. The initial phase involves using MATLAB to simulate the entire suspension system, allowing for the preliminary determination of damper size based on the system's response under simulated conditions. Following this, manual calculations of wheel loads are performed to assess the forces acting on the front and rear suspensions during scenarios such as braking, cornering, maximum vertical loads, and acceleration. Further dynamic force analysis is carried out using MATLAB Simulink, focusing on the interactions between suspension components during key movements such as bumps and rebounds. This simulation helps in formulating precise force equations and in calculating the stiffness of the suspension springs. To enhance the accuracy of our findings, we focus on a detailed kinematic and dynamic analysis. This includes the creation of kinematic loops, derivation of relevant equations, and computation of Jacobian matrices to accurately determine damper travel and compression metrics. The calculated spring stiffness is crucial in selecting appropriate springs to ensure optimal suspension performance. To validate and refine our results, we replicate the analyses using the Adams Car software, renowned for its detailed handling of vehicular dynamics. The goal is to achieve a robust, reliable suspension setup that maximizes performance under the extreme conditions encountered in racing scenarios. This study exemplifies the integration of theoretical mechanics with advanced simulation tools to achieve a high-performance suspension setup that can significantly improve race car performance, providing a methodology that can be adapted for different types of racing vehicles.

Keywords: FSAE, suspension system, Adams Car, kinematic

Procedia PDF Downloads 49
31577 Geographic Information Systems and a Breath of Opportunities for Supply Chain Management: Results from a Systematic Literature Review

Authors: Anastasia Tsakiridi

Abstract:

Geographic information systems (GIS) have been utilized in numerous spatial problems, such as site research, land suitability, and demographic analysis. Besides, GIS has been applied in scientific fields like geography, health, and economics. In business studies, GIS has been used to provide insights and spatial perspectives in demographic trends, spending indicators, and network analysis. To date, the information regarding the available usages of GIS in supply chain management (SCM) and how these analyses can benefit businesses is limited. A systematic literature review (SLR) of the last 5-year peer-reviewed academic literature was conducted, aiming to explore the existing usages of GIS in SCM. The searches were performed in 3 databases (Web of Science, ProQuest, and Business Source Premier) and reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. The analysis resulted in 79 papers. The results indicate that the existing GIS applications used in SCM were in the following domains: a) network/ transportation analysis (in 53 of the papers), b) location – allocation site search/ selection (multiple-criteria decision analysis) (in 45 papers), c) spatial analysis (demographic or physical) (in 34 papers), d) combination of GIS and supply chain/network optimization tools (in 32 papers), and e) visualization/ monitoring or building information modeling applications (in 8 papers). An additional categorization of the literature was conducted by examining the usage of GIS in the supply chain (SC) by the business sectors, as indicated by the volume of the papers. The results showed that GIS is mainly being applied in the SC of the biomass biofuel/wood industry (33 papers). Other industries that are currently utilizing GIS in their SC were the logistics industry (22 papers), the humanitarian/emergency/health care sector (10 papers), the food/agro-industry sector (5 papers), the petroleum/ coal/ shale gas sector (3 papers), the faecal sludge sector (2 papers), the recycle and product footprint industry (2 papers), and the construction sector (2 papers). The results were also presented by the geography of the included studies and the GIS software used to provide critical business insights and suggestions for future research. The results showed that research case studies of GIS in SCM were conducted in 26 countries (mainly in the USA) and that the most prominent GIS software provider was the Environmental Systems Research Institute’s ArcGIS (in 51 of the papers). This study is a systematic literature review of the usage of GIS in SCM. The results showed that the GIS capabilities could offer substantial benefits in SCM decision-making by providing key insights to cost minimization, supplier selection, facility location, SC network configuration, and asset management. However, as presented in the results, only eight industries/sectors are currently using GIS in their SCM activities. These findings may offer essential tools to SC managers who seek to optimize the SC activities and/or minimize logistic costs and to consultants and business owners that want to make strategic SC decisions. Furthermore, the findings may be of interest to researchers aiming to investigate unexplored research areas where GIS may improve SCM.

Keywords: supply chain management, logistics, systematic literature review, GIS

Procedia PDF Downloads 141
31576 Embedded Visual Perception for Autonomous Agricultural Machines Using Lightweight Convolutional Neural Networks

Authors: René A. Sørensen, Søren Skovsen, Peter Christiansen, Henrik Karstoft

Abstract:

Autonomous agricultural machines act in stochastic surroundings and therefore, must be able to perceive the surroundings in real time. This perception can be achieved using image sensors combined with advanced machine learning, in particular Deep Learning. Deep convolutional neural networks excel in labeling and perceiving color images and since the cost of high-quality RGB-cameras is low, the hardware cost of good perception depends heavily on memory and computation power. This paper investigates the possibility of designing lightweight convolutional neural networks for semantic segmentation (pixel wise classification) with reduced hardware requirements, to allow for embedded usage in autonomous agricultural machines. Using compression techniques, a lightweight convolutional neural network is designed to perform real-time semantic segmentation on an embedded platform. The network is trained on two large datasets, ImageNet and Pascal Context, to recognize up to 400 individual classes. The 400 classes are remapped into agricultural superclasses (e.g. human, animal, sky, road, field, shelterbelt and obstacle) and the ability to provide accurate real-time perception of agricultural surroundings is studied. The network is applied to the case of autonomous grass mowing using the NVIDIA Tegra X1 embedded platform. Feeding case-specific images to the network results in a fully segmented map of the superclasses in the image. As the network is still being designed and optimized, only a qualitative analysis of the method is complete at the abstract submission deadline. Proceeding this deadline, the finalized design is quantitatively evaluated on 20 annotated grass mowing images. Lightweight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show competitive performance with regards to accuracy and speed. It is feasible to provide cost-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.

Keywords: autonomous agricultural machines, deep learning, safety, visual perception

Procedia PDF Downloads 394
31575 Probabilistic Graphical Model for the Web

Authors: M. Nekri, A. Khelladi

Abstract:

The world wide web network is a network with a complex topology, the main properties of which are the distribution of degrees in power law, A low clustering coefficient and a weak average distance. Modeling the web as a graph allows locating the information in little time and consequently offering a help in the construction of the research engine. Here, we present a model based on the already existing probabilistic graphs with all the aforesaid characteristics. This work will consist in studying the web in order to know its structuring thus it will enable us to modelize it more easily and propose a possible algorithm for its exploration.

Keywords: clustering coefficient, preferential attachment, small world, web community

Procedia PDF Downloads 271
31574 Detection of Atrial Fibrillation Using Wearables via Attentional Two-Stream Heterogeneous Networks

Authors: Huawei Bai, Jianguo Yao, Fellow, IEEE

Abstract:

Atrial fibrillation (AF) is the most common form of heart arrhythmia and is closely associated with mortality and morbidity in heart failure, stroke, and coronary artery disease. The development of single spot optical sensors enables widespread photoplethysmography (PPG) screening, especially for AF, since it represents a more convenient and noninvasive approach. To our knowledge, most existing studies based on public and unbalanced datasets can barely handle the multiple noises sources in the real world and, also, lack interpretability. In this paper, we construct a large- scale PPG dataset using measurements collected from PPG wrist- watch devices worn by volunteers and propose an attention-based two-stream heterogeneous neural network (TSHNN). The first stream is a hybrid neural network consisting of a three-layer one-dimensional convolutional neural network (1D-CNN) and two-layer attention- based bidirectional long short-term memory (Bi-LSTM) network to learn representations from temporally sampled signals. The second stream extracts latent representations from the PPG time-frequency spectrogram using a five-layer CNN. The outputs from both streams are fed into a fusion layer for the outcome. Visualization of the attention weights learned demonstrates the effectiveness of the attention mechanism against noise. The experimental results show that the TSHNN outperforms all the competitive baseline approaches and with 98.09% accuracy, achieves state-of-the-art performance.

Keywords: PPG wearables, atrial fibrillation, feature fusion, attention mechanism, hyber network

Procedia PDF Downloads 119
31573 Influence of Surface Fault Rupture on Dynamic Behavior of Cantilever Retaining Wall: A Numerical Study

Authors: Partha Sarathi Nayek, Abhiparna Dasgupta, Maheshreddy Gade

Abstract:

Earth retaining structure plays a vital role in stabilizing unstable road cuts and slopes in the mountainous region. The retaining structures located in seismically active regions like the Himalayas may experience moderate to severe earthquakes. An earthquake produces two kinds of ground motion: permanent quasi-static displacement (fault rapture) on the fault rupture plane and transient vibration, traveling a long distance. There has been extensive research work to understand the dynamic behavior of retaining structures subjected to transient ground motions. However, understanding the effect caused by fault rapture phenomena on retaining structures is limited. The presence of shallow crustal active faults and natural slopes in the Himalayan region further highlights the need to study the response of retaining structures subjected to fault rupture phenomena. In this paper, an attempt has been made to understand the dynamic response of the cantilever retaining wall subjected to surface fault rupture. For this purpose, a 2D finite element model consists of a retaining wall, backfill and foundation have been developed using Abaqus 6.14 software. The backfill and foundation material are modeled as per the Mohr-Coulomb failure criterion, and the wall is modeled as linear elastic. In this present study, the interaction between backfill and wall is modeled as ‘surface-surface contact.’ The entire simulation process is divided into three steps, i.e., the initial step, gravity load step, fault rupture step. The interaction property between wall and soil and fixed boundary condition to all the boundary elements are applied in the initial step. In the next step, gravity load is applied, and the boundary elements are allowed to move in the vertical direction to incorporate the settlement of soil due to the gravity load. In the final step, surface fault rupture has been applied to the wall-backfill system. For this purpose, the foundation is divided into two blocks, namely, the hanging wall block and the footwall block. A finite fault rupture displacement is applied to the hanging wall part while the footwall bottom boundary is kept as fixed. Initially, a numerical analysis is performed considering the reverse fault mechanism with a dip angle of 45°. The simulated result is presented in terms of contour maps of permanent displacements of the wall-backfill system. These maps highlighted that surface fault rupture can induce permanent displacement in both horizontal and vertical directions, which can significantly influence the dynamic behavior of the wall-backfill system. Further, the influence of fault mechanism, dip angle, and surface fault rupture position is also investigated in this work.

Keywords: surface fault rupture, retaining wall, dynamic response, finite element analysis

Procedia PDF Downloads 105
31572 Approximate Solution of Some Mixed Boundary Value Problems of the Generalized Theory of Couple-Stress Thermo-Elasticity

Authors: Manana Chumburidze, David Lekveishvili

Abstract:

We have considered the harmonic oscillations and general dynamic (pseudo oscillations) systems of theory generalized Green-Lindsay of couple-stress thermo-elasticity for isotropic, homogeneous elastic media. Approximate solution of some mixed boundary value problems for finite domain, bounded by the some closed surface are constructed.

Keywords: the couple-stress thermoelasticity, boundary value problems, dynamic problems, approximate solution

Procedia PDF Downloads 504
31571 Optimization of Assay Parameters of L-Glutaminase from Bacillus cereus MTCC1305 Using Artificial Neural Network

Authors: P. Singh, R. M. Banik

Abstract:

Artificial neural network (ANN) was employed to optimize assay parameters viz., time, temperature, pH of reaction mixture, enzyme volume and substrate concentration of L-glutaminase from Bacillus cereus MTCC 1305. ANN model showed high value of coefficient of determination (0.9999), low value of root mean square error (0.6697) and low value of absolute average deviation. A multilayer perceptron neural network trained with an error back-propagation algorithm was incorporated for developing a predictive model and its topology was obtained as 5-3-1 after applying Levenberg Marquardt (LM) training algorithm. The predicted activity of L-glutaminase was obtained as 633.7349 U/l by considering optimum assay parameters, viz., pH of reaction mixture (7.5), reaction time (20 minutes), incubation temperature (35˚C), substrate concentration (40mM), and enzyme volume (0.5ml). The predicted data was verified by running experiment at simulated optimum assay condition and activity was obtained as 634.00 U/l. The application of ANN model for optimization of assay conditions improved the activity of L-glutaminase by 1.499 fold.

Keywords: Bacillus cereus, L-glutaminase, assay parameters, artificial neural network

Procedia PDF Downloads 428
31570 Design and Optimization of Open Loop Supply Chain Distribution Network Using Hybrid K-Means Cluster Based Heuristic Algorithm

Authors: P. Suresh, K. Gunasekaran, R. Thanigaivelan

Abstract:

Radio frequency identification (RFID) technology has been attracting considerable attention with the expectation of improved supply chain visibility for consumer goods, apparel, and pharmaceutical manufacturers, as well as retailers and government procurement agencies. It is also expected to improve the consumer shopping experience by making it more likely that the products they want to purchase are available. Recent announcements from some key retailers have brought interest in RFID to the forefront. A modified K- Means Cluster based Heuristic approach, Hybrid Genetic Algorithm (GA) - Simulated Annealing (SA) approach, Hybrid K-Means Cluster based Heuristic-GA and Hybrid K-Means Cluster based Heuristic-GA-SA for Open Loop Supply Chain Network problem are proposed. The study incorporated uniform crossover operator and combined crossover operator in GAs for solving open loop supply chain distribution network problem. The algorithms are tested on 50 randomly generated data set and compared with each other. The results of the numerical experiments show that the Hybrid K-means cluster based heuristic-GA-SA, when tested on 50 randomly generated data set, shows superior performance to the other methods for solving the open loop supply chain distribution network problem.

Keywords: RFID, supply chain distribution network, open loop supply chain, genetic algorithm, simulated annealing

Procedia PDF Downloads 164
31569 On the Network Packet Loss Tolerance of SVM Based Activity Recognition

Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir

Abstract:

In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.

Keywords: activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss

Procedia PDF Downloads 475
31568 dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling

Authors: Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, Sy-Miin Chow

Abstract:

Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.

Keywords: dynamic modeling, missing data, mobility, multiple imputation

Procedia PDF Downloads 162
31567 Seismic Response of Structure Using a Three Degree of Freedom Shake Table

Authors: Ketan N. Bajad, Manisha V. Waghmare

Abstract:

Earthquakes are the biggest threat to the civil engineering structures as every year it cost billions of dollars and thousands of deaths, around the world. There are various experimental techniques such as pseudo-dynamic tests – nonlinear structural dynamic technique, real time pseudo dynamic test and shaking table test method that can be employed to verify the seismic performance of structures. Shake table is a device that is used for shaking structural models or building components which are mounted on it. It is a device that simulates a seismic event using existing seismic data and nearly truly reproducing earthquake inputs. This paper deals with the use of shaking table test method to check the response of structure subjected to earthquake. The various types of shake table are vertical shake table, horizontal shake table, servo hydraulic shake table and servo electric shake table. The goal of this experiment is to perform seismic analysis of a civil engineering structure with the help of 3 degree of freedom (i.e. in X Y Z direction) shake table. Three (3) DOF shaking table is a useful experimental apparatus as it imitates a real time desired acceleration vibration signal for evaluating and assessing the seismic performance of structure. This study proceeds with the proper designing and erection of 3 DOF shake table by trial and error method. The table is designed to have a capacity up to 981 Newton. Further, to study the seismic response of a steel industrial building, a proportionately scaled down model is fabricated and tested on the shake table. The accelerometer is mounted on the model, which is used for recording the data. The experimental results obtained are further validated with the results obtained from software. It is found that model can be used to determine how the structure behaves in response to an applied earthquake motion, but the model cannot be used for direct numerical conclusions (such as of stiffness, deflection, etc.) as many uncertainties involved while scaling a small-scale model. The model shows modal forms and gives the rough deflection values. The experimental results demonstrate shake table as the most effective and the best of all methods available for seismic assessment of structure.

Keywords: accelerometer, three degree of freedom shake table, seismic analysis, steel industrial shed

Procedia PDF Downloads 137
31566 Analysis of Bored Piles with and without Geogrid in a Selected Area in Kocaeli/Turkey

Authors: Utkan Mutman, Cihan Dirlik

Abstract:

Kocaeli/TURKEY district in which wastewater held in a chosen field increased property has made piling in order to improve the ground under the aeration basin. In this study, the degree of improvement the ground after bored piling held in the field were investigated. In this context, improving the ground before and after the investigation was carried out and that the solution values obtained by the finite element method analysis using Plaxis program have been made. The diffuses in the aeration basin whose treatment is to aide is influenced with and without geogrid on the ground. On the ground been improved, for the purpose of control of manufactured bored piles, pile continuity, and pile load tests were made. Taking into consideration both the data in the field as well as dynamic loads in the aeration basic, an analysis was made on Plaxis program and compared the data obtained from the analysis result and data obtained in the field.

Keywords: geogrid, bored pile, soil improvement, plaxis

Procedia PDF Downloads 265
31565 Investigating the UAE Residential Valuation System: A Framework for Analysis

Authors: Simon Huston, Ebraheim Lahbash, Ali Parsa

Abstract:

The development of the United Arab Emirates (UAE) into a regional trade, tourism, finance and logistics hub has transformed its real estate markets. However, speculative activity and price volatility remain concerns. UAE residential market values (MV) are exposed to fluctuations in capital flows and migration which in turn are affected by geopolitical uncertainty, oil price volatility, and global investment market sentiment. Internally, a complex interplay between administrative boundaries, land tenure, building quality and evolving location characteristics fragments UAE residential property markets. In short, the UAE Residential Valuation System (UAE-RVS) confronts multiple challenges to collect, filter and analyze relevant information in complex and dynamic spatial and capital markets. A robust (RVS) can mitigate the risk of unhelpful volatility, speculative excess or investment mistakes. The research outlines the institutional, ontological, dynamic, and epistemological issues at play. We highlight the importance of system capabilities, valuation standard salience and stakeholders trust.

Keywords: valuation, property rights, information, institutions, trust, salience

Procedia PDF Downloads 378
31564 A Critical Discourse Analysis of Protesters in the Debates of Al Jazeera Channel of the Yemeni Revolution

Authors: Raya Sulaiman

Abstract:

Critical discourse analysis investigates how discourse is used to abuse power relationships. Political debates constitute discourses which mirror aspects of ideologies. The Arab world has been one of the most unsettled zones in the world and has dominated global politics due to the Arab revolutions which started in 2010. This study aimed at uncovering the ideological intentions in the formulation and circulation of hegemonic political ideology in the TV political debates of the 2011 to 2012 Yemen revolution, how ideology was used as a tool of hegemony. The study specifically examined the ideologies associated with the use of protesters as a social actor. Data of the study consisted of four debates (17350 words) from four live debate programs: The Opposite Direction, In Depth, Behind the News and the Revolution Talk that were staged at Al Jazeera TV channel between 2011 and 2012. Data was readily transcribed by Al Jazeera online. Al Jazeera was selected for the study because it is the most popular TV network in the Arab world and has a strong presence, especially during the Arab revolutions. Al Jazeera has also been accused of inciting protests across the Arab region. Two debate sites were identified in the data: government and anti-government. The government side represented the president Ali Abdullah Saleh and his regime while the anti-government side represented the gathering squares who demanded the president to ‘step down’. The study analysed verbal discourse aspects of the debates using critical discourse analysis: aspects from the Social Actor Network model of van Leeuwen. This framework provides a step-by-step analysis model, and analyses discourse from specific grammatical processes into broader semantic issues. It also provides representative findings since it considers discourse as representative and reconstructed in social practice. Study findings indicated that Al Jazeera and the anti-government had similarities in terms of the ideological intentions related to the protesters. Al Jazeera victimized and incited the protesters which were similar to the anti-government. Al Jazeera used assimilation, nominalization, and active role allocation as the linguistic aspects in order to reach its ideological intentions related to the protesters. Government speakers did not share the same ideological intentions with Al Jazeera. Study findings indicated that Al Jazeera had excluded the government from its debates causing a violation to its slogan, the opinion, and the other opinion. This study implies the powerful role of discourse in shaping ideological media intentions and influencing the media audience.

Keywords: Al Jazeera network, critical discourse analysis, ideology, Yemeni revolution

Procedia PDF Downloads 222
31563 Seismic Behavior of Concrete Filled Steel Tube Reinforced Concrete Column

Authors: Raghabendra Yadav, Baochun Chen, Huihui Yuan, Zhibin Lian

Abstract:

Pseudo-dynamic test (PDT) method is an advanced seismic test method that combines loading technology with computer technology. Large-scale models or full scale seismic tests can be carried out by using this method. CFST-RC columns are used in civil engineering structures because of their better seismic performance. A CFST-RC column is composed of four CFST limbs which are connected with RC web in longitudinal direction and with steel tube in transverse direction. For this study, a CFST-RC pier is tested under Four different earthquake time histories having scaled PGA of 0.05g. From the experiment acceleration, velocity, displacement and load time histories are observed. The dynamic magnification factors for acceleration due to Elcentro, Chi-Chi, Imperial Valley and Kobe ground motions are observed as 15, 12, 17 and 14 respectively. The natural frequency of the pier is found to be 1.40 Hz. The result shows that this type of pier has excellent static and earthquake resistant properties.

Keywords: bridge pier, CFST-RC pier, pseudo dynamic test, seismic performance, time history

Procedia PDF Downloads 184
31562 Purchasing Decision-Making in Supply Chain Management: A Bibliometric Analysis

Authors: Ahlem Dhahri, Waleed Omri, Audrey Becuwe, Abdelwahed Omri

Abstract:

In industrial processes, decision-making ranges across different scales, from process control to supply chain management. The purchasing decision-making process in the supply chain is presently gaining more attention as a critical contributor to the company's strategic success. Given the scarcity of thorough summaries in the prior studies, this bibliometric analysis aims to adopt a meticulous approach to achieve quantitative knowledge on the constantly evolving subject of purchasing decision-making in supply chain management. Through bibliometric analysis, we examine a sample of 358 peer-reviewed articles from the Scopus database. VOSviewer and Gephi software were employed to analyze, combine, and visualize the data. Data analytic techniques, including citation network, page-rank analysis, co-citation, and publication trends, have been used to identify influential works and outline the discipline's intellectual structure. The outcomes of this descriptive analysis highlight the most prominent articles, authors, journals, and countries based on their citations and publications. The findings from the research illustrate an increase in the number of publications, exhibiting a slightly growing trend in this field. Co-citation analysis coupled with content analysis of the most cited articles identified five research themes mentioned as follows integrating sustainability into the supplier selection process, supplier selection under disruption risks assessment and mitigation strategies, Fuzzy MCDM approaches for supplier evaluation and selection, purchasing decision in vendor problems, decision-making techniques in supplier selection and order lot sizing problems. With the help of a graphic timeline, this exhaustive map of the field illustrates a visual representation of the evolution of publications that demonstrate a gradual shift from research interest in vendor selection problems to integrating sustainability in the supplier selection process. These clusters offer insights into a wide variety of purchasing methods and conceptual frameworks that have emerged; however, they have not been validated empirically. The findings suggest that future research would emerge with a greater depth of practical and empirical analysis to enrich the theories. These outcomes provide a powerful road map for further study in this area.

Keywords: bibliometric analysis, citation analysis, co-citation, Gephi, network analysis, purchasing, SCM, VOSviewer

Procedia PDF Downloads 84
31561 Keyframe Extraction Using Face Quality Assessment and Convolution Neural Network

Authors: Rahma Abed, Sahbi Bahroun, Ezzeddine Zagrouba

Abstract:

Due to the huge amount of data in videos, extracting the relevant frames became a necessity and an essential step prior to performing face recognition. In this context, we propose a method for extracting keyframes from videos based on face quality and deep learning for a face recognition task. This method has two steps. We start by generating face quality scores for each face image based on the use of three face feature extractors, including Gabor, LBP, and HOG. The second step consists in training a Deep Convolutional Neural Network in a supervised manner in order to select the frames that have the best face quality. The obtained results show the effectiveness of the proposed method compared to the methods of the state of the art.

Keywords: keyframe extraction, face quality assessment, face in video recognition, convolution neural network

Procedia PDF Downloads 229
31560 An Integer Nonlinear Program Proposal for Intermodal Transportation Service Network Design

Authors: Laaziz El Hassan

Abstract:

The Service Network Design Problem (SNDP) is a tactical issue in freight transportation firms. The existing formulations of the problem for intermodal rail-road transportation were not always adapted to the intermodality in terms of full asset utilization and modal shift reinforcement. The objective of the article is to propose a model having a more compliant formulation with intermodality, including constraints highlighting the imperatives of asset management, reinforcing modal shift from road to rail and reducing, by the way, road mode CO2 emissions. The model is a fixed charged, path based integer nonlinear program. Its objective is to minimize services total cost while ensuring full assets utilization to satisfy freight demand forecast. The model's main feature is that it gives as output both the train sizes and the services frequencies for a planning period. We solved the program using a commercial solver and discussed the numerical results.

Keywords: intermodal transport network, service network design, model, nonlinear integer program, path-based, service frequencies, modal shift

Procedia PDF Downloads 118
31559 Dynamic Response around Inclusions in Infinitely Inhomogeneous Media

Authors: Jinlai Bian, Zailin Yang, Guanxixi Jiang, Xinzhu Li

Abstract:

The problem of elastic wave propagation in inhomogeneous medium has always been a classic problem. Due to the frequent occurrence of earthquakes, many economic losses and casualties have been caused, therefore, to prevent earthquake damage to people and reduce damage, this paper studies the dynamic response around the circular inclusion in the whole space with inhomogeneous modulus, the inhomogeneity of the medium is reflected in the shear modulus of the medium with the spatial position, and the density is constant, this method can be used to solve the problem of the underground buried pipeline. Stress concentration phenomena are common in aerospace and earthquake engineering, and the dynamic stress concentration factor (DSCF) is one of the main factors leading to material damage, one of the important applications of the theory of elastic dynamics is to determine the stress concentration in the body with discontinuities such as cracks, holes, and inclusions. At present, the methods include wave function expansion method, integral transformation method, integral equation method and so on. Based on the complex function method, the Helmholtz equation with variable coefficients is standardized by using conformal transformation method and wave function expansion method, the displacement and stress fields in the whole space with circular inclusions are solved in the complex coordinate system, the unknown coefficients are solved by using boundary conditions, by comparing with the existing results, the correctness of this method is verified, based on the superiority of the complex variable function theory to the conformal transformation, this method can be extended to study the inclusion problem of arbitrary shapes. By solving the dynamic stress concentration factor around the inclusions, the influence of the inhomogeneous parameters of the medium and the wavenumber ratio of the inclusions to the matrix on the dynamic stress concentration factor is analyzed. The research results can provide some reference value for the evaluation of nondestructive testing (NDT), oil exploration, seismic monitoring, and soil-structure interaction.

Keywords: circular inclusions, complex variable function, dynamic stress concentration factor (DSCF), inhomogeneous medium

Procedia PDF Downloads 134
31558 Variations of the Modal Characteristics of the Feeding Stage with Different Preloaded Linear Guide

Authors: Jui-Pui Hung, Yong-Run Chen, Wei-Cheng Shih, Chun-Wei Lin

Abstract:

This study was aimed to assess the variations of the modal characteristics of the feeding stage with different linear guide modulus. The dynamic characteristics of the feeding stage were characterized in terms of the modal stiffness, modal frequency and modal damping, which are assessed from the vibration tests. According to the experimental measurements, the actual preload of the linear guide modulus was found to deviate from the rated values as setting in factory. This may be due to the assemblage errors of guide modules. For the stage with linear guides, the dynamic stiffness was affected to change by the preload set on the rolling balls. The variation of the dynamic stiffness at first and second modes is 20.8 and 10.5%, respectively when the linear guide preload is adjusted from medium and high amount. But the modal damping ratio is reduced by 8.97 and 9.65%, respectively. For high-frequency mode, the modal stiffness increases by 171.2% and the damping ratio reduced by 34.4%. Current results demonstrate the importance in the determining the preloaded amount of linear guide modulus in practical application.

Keywords: contact stiffness, feeding stage, linear guides, modal characteristics, pre-load

Procedia PDF Downloads 426
31557 A Comprehensive Study and Evaluation on Image Fashion Features Extraction

Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen

Abstract:

Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.

Keywords: convolutional neural network, feature representation, image processing, machine modelling

Procedia PDF Downloads 138
31556 Computational Identification of Signalling Pathways in Protein Interaction Networks

Authors: Angela U. Makolo, Temitayo A. Olagunju

Abstract:

The knowledge of signaling pathways is central to understanding the biological mechanisms of organisms since it has been identified that in eukaryotic organisms, the number of signaling pathways determines the number of ways the organism will react to external stimuli. Signaling pathways are studied using protein interaction networks constructed from protein-protein interaction data obtained using high throughput experimental procedures. However, these high throughput methods are known to produce very high rates of false positive and negative interactions. In order to construct a useful protein interaction network from this noisy data, computational methods are applied to validate the protein-protein interactions. In this study, a computational technique to identify signaling pathways from a protein interaction network constructed using validated protein-protein interaction data was designed. A weighted interaction graph of the Saccharomyces cerevisiae (Baker’s Yeast) organism using the proteins as the nodes and interactions between them as edges was constructed. The weights were obtained using Bayesian probabilistic network to estimate the posterior probability of interaction between two proteins given the gene expression measurement as biological evidence. Only interactions above a threshold were accepted for the network model. A pathway was formalized as a simple path in the interaction network from a starting protein and an ending protein of interest. We were able to identify some pathway segments, one of which is a segment of the pathway that signals the start of the process of meiosis in S. cerevisiae.

Keywords: Bayesian networks, protein interaction networks, Saccharomyces cerevisiae, signalling pathways

Procedia PDF Downloads 540
31555 Determinants of the Users Intention of Social-Local-Mobile Applications

Authors: Chia-Chen Chen, Mu-Yen Chen

Abstract:

In recent years, with the vigorous growth of hardware and software technologies of smart mobile devices coupling with the rapid increase of social network influence, mobile commerce also presents the commercial operation mode of the future mainstream. For the time being, SoLoMo has become one of the very popular commercial models, its full name and meaning mainly refer to that users can obtain three key service types through smart mobile devices (Mobile) and omnipresent network services, and then link to the social (Social) web site platform to obtain the information exchange, again collocating with position and situational awareness technology to get the service suitable for the location (Local), through anytime, anywhere and any personal use of different mobile devices to provide the service concept of seamless integration style, and more deriving infinite opportunities of the future. The study tries to explore the use intention of users with SoLoMo mobile application formula, proposing research model to integrate TAM, ISSM, IDT and network externality, and with questionnaires to collect data and analyze results to verify the hypothesis, results show that perceived ease-of-use (PEOU), perceived usefulness (PU), and network externality have significant impact on the use intention with SoLoMo mobile application formula, and the information quality, relative advantages and observability have impacts on the perceived usefulness, and further affecting the use intention.

Keywords: SoLoMo (social, local, and mobile), technology acceptance model, innovation diffusion theory, network externality

Procedia PDF Downloads 528
31554 A Dynamic Approach for Evaluating the Climate Change Risks on Building Performance

Authors: X. Lu, T. Lu, S. Javadi

Abstract:

A simple dynamic approach is presented for analyzing thermal and moisture dynamics of buildings, which is of particular relevance to understanding climate change impacts on buildings, including assessment of risks and applications of resilience strategies. With the goal to demonstrate the proposed modeling methodology, to verify the model, and to show that wooden materials provide a mechanism that can facilitate the reduction of moisture risks and be more resilient to global warming, a wooden church equipped with high precision measurement systems was taken as a test building for full-scale time-series measurements. Sensitivity analyses indicate a high degree of accuracy in the model prediction regarding the indoor environment. The model is then applied to a future projection of climate indoors aiming to identify significant environmental factors, the changing temperature and humidity, and effective response to the climate change impacts. The paper suggests that wooden building materials offer an effective and resilient response to anticipated future climate changes.

Keywords: dynamic model, forecast, climate change impact, wooden structure, buildings

Procedia PDF Downloads 150
31553 The Thinking of Dynamic Formulation of Rock Aging Agent Driven by Data

Authors: Longlong Zhang, Xiaohua Zhu, Ping Zhao, Yu Wang

Abstract:

The construction of mines, railways, highways, water conservancy projects, etc., have formed a large number of high steep slope wounds in China. Under the premise of slope stability and safety, the minimum cost, green and close to natural wound space repair, has become a new problem. Nowadays, in situ element testing and analysis, monitoring, field quantitative factor classification, and assignment evaluation will produce vast amounts of data. Data processing and analysis will inevitably differentiate the morphology, mineral composition, physicochemical properties between rock wounds, by which to dynamically match the appropriate techniques and materials for restoration. In the present research, based on the grid partition of the slope surface, tested the content of the combined oxide of rock mineral (SiO₂, CaO, MgO, Al₂O₃, Fe₃O₄, etc.), and classified and assigned values to the hardness and breakage of rock texture. The data of essential factors are interpolated and normalized in GIS, which formed the differential zoning map of slope space. According to the physical and chemical properties and spatial morphology of rocks in different zones, organic acids (plant waste fruit, fruit residue, etc.), natural mineral powder (zeolite, apatite, kaolin, etc.), water-retaining agent, and plant gum (melon powder) were mixed in different proportions to form rock aging agents. To spray the aging agent with different formulas on the slopes in different sections can affectively age the fresh rock wound, providing convenience for seed implantation, and reducing the transformation of heavy metals in the rocks. Through many practical engineering practices, a dynamic data platform of rock aging agent formula system is formed, which provides materials for the restoration of different slopes. It will also provide a guideline for the mixed-use of various natural materials to solve the complex, non-uniformity ecological restoration problem.

Keywords: data-driven, dynamic state, high steep slope, rock aging agent, wounds

Procedia PDF Downloads 111