Search results for: artificial neural networks; crop water stress index; canopy temperature
23139 Effect of Different Parameters on the Swelling Behaviour of Thermo-Responsive Elastomers in a Nematogenic Solvent
Authors: Nouria Bouchikhi, Soufiane Bedjaoui, C. Tewfik Bouchaour, Lamia Alachaher Bedjaoui, Ulrich Maschke
Abstract:
Swelling properties and phase diagrams of binary systems composed of liquid crystalline networks and a low molecular mass liquid crystal (LMWLC) have been investigated. The networks were prepared by ultraviolet (UV) irradiation of reactive mixtures including a monomer, a cross-linking agent and a photo-initiator. These networks were prepared using two cross-linking agents: 1,6 hexanedioldiacrylate (HDDA) and a mesogenic acrylic acid 6-(4’-(6-acryloyloxy-hexyloxy) biphenyl-4-yl oxy) hexyl ester (AHBH). The obtained dry networks were characterized by differential scanning calorimetry, and immersed in an excess of a LMWLC solvent 4-cyano-4’-pentylbiphenyl (5CB), forming polymer gels. A detailed study by polarized optical microscopy allowed to determine the swelling degree of the gels and to follow the phase behavior of the solvent inside the polymer matrix in a wide range of temperature. It has been found that the gels undergo a sharp decrease of their swelling degree in response to an infinitesimal change of temperature. This finding adds new and interesting aspects on the actuators applications. We have subsequently explored the effect of different parameters on volume phase transition of these liquid crystalline materials. Such as the cross-linking density (CD), a nature of cross-linking agent and the photo initiator concentration.Keywords: cross-linking density, liquid crystalline elastomers, phase diagrams, swelling
Procedia PDF Downloads 33123138 Correlation of Stress and Blood Glucose Level in Working Women from Tribal Region of Navapur, Dist-Nandurbar
Authors: Surekha B. Bansode, Shakeela K. Shareef
Abstract:
Working women have to face complex issues of family life and professional life. Stress is the condition that results from person’s response to physical, emotional or environmental factors. The stress response can cause problems when it overreacts or fails to turn off and reset itself properly. In the present investigation correlation between stress and blood glucose level in working women group and non working women group was studied. Working women when compared with non working women, experienced more physical and psychological stress. An additional increase in fasting blood glucose levels could be attributed to stress and anxiety they undergo at the workplace. This may lead to increase their susceptibility to develop type II Diabetes Mellitus in coming future.Keywords: blood sugar, nutrition, stress, working women
Procedia PDF Downloads 52923137 Secret Security Smart Lock Using Artificial Intelligence Hybrid Algorithm
Authors: Vahid Bayrami Rad
Abstract:
Ever since humans developed a collective way of life to the development of urbanization, the concern of security has always been considered one of the most important challenges of life. To protect property, locks have always been a practical tool. With the advancement of technology, the form of locks has changed from mechanical to electric. One of the most widely used fields of using artificial intelligence is its application in the technology of surveillance security systems. Currently, the technologies used in smart anti-theft door handles are one of the most potential fields for using artificial intelligence. Artificial intelligence has the possibility to learn, calculate, interpret and process by analyzing data with the help of algorithms and mathematical models and make smart decisions. We will use Arduino board to process data.Keywords: arduino board, artificial intelligence, image processing, solenoid lock
Procedia PDF Downloads 6923136 Influence of Temperature on the Development and Feeding Activity of Southern Green Stink Bug Nezara viridula (Heteroptera: Pentatomidae)
Authors: Pavitra Sharma, A. K. Singh
Abstract:
The establishment of pest population in a habitat is greatly influenced by abiotic factors, such as temperature, photoperiod, and humidity. These factors influence the biology and behavior of insects and their pest status. Nezara viridula (Heteroptera: Pentatomidae), commonly known as southern green stink bug, is economically important pest of legumes. Both nymphs and adult suck the sap from different part of the plant and deteriorate the standing crop. Present study involves effects of temperature on incubation, hatching success and nymphal duration of N. viridula. The results indicated that the development of eggs requires optimal temperature range. Temperature conditions above and below the optimum range affect the incubation period as well as the percent hatchability of eggs. At 19°C, the egg incubation period was longest whereas it was shortest at 27°C. The change in temperature from the optimum condition also affected the hatchability of eggs in N. viridula. Decrease in the hatchability was observed with the decrease in temperature. However, the results were not statistically significant. Decrease in temperature from the optimum temperature to 19°C, also resulted in an increase in nymphal duration of N. viridula. However, no such effect of temperature within the studied range was observed on the morphology of nymphs or adults. Variation in temperature also had no adverse effects on the survival of laboratory bred population of Nezara nymphs. The feeding activity of the bug in relation to photoperiod was assessed by counting the number of punctures on the food surface. The results indicated that day-night regime did not affect the feeding activity of the bug significantly. The present study enhances our knowledge about the effect of environmental factors on the biology of insects and developing the strategy for ‘Integrated Pest Management’ of hemipteran insects by management of the physical factors.Keywords: development, feeding, hatchability, Nezara viridula
Procedia PDF Downloads 17823135 Experimental Study and Evaluation of Farm Environmental Monitoring System Based on the Internet of Things, Sudan
Authors: Farid Eltom A. E., Mustafa Abdul-Halim, Abdalla Markaz, Sami Atta, Mohamed Azhari, Ahmed Rashed
Abstract:
Smart environment sensors integrated with ‘Internet of Things’ (IoT) technology can provide a new concept in tracking, sensing, and monitoring objects in the environment. The aim of the study is to evaluate the farm environmental monitoring system based on (IoT) and to realize the automated management of agriculture and the implementation of precision production. Until now, irrigation monitoring operations in Sudan have been carried out using traditional methods, which is a very costly and unreliable mechanism. However, by utilizing soil moisture sensors, irrigation can be conducted only when needed without fear of plant water stress. The result showed that software application allows farmers to display current and historical data on soil moisture and nutrients in the form of line charts. Design measurements of the soil factors: moisture, electrical, humidity, conductivity, temperature, pH, phosphorus, and potassium; these factors, together with a timestamp, are sent to the data server using the Lora WAN interface. It is considered scientifically agreed upon in the modern era that artificial intelligence works to arrange the necessary procedures to take care of the terrain, predict the quality and quantity of production through deep analysis of the various operations in agricultural fields, and also support monitoring of weather conditions.Keywords: smart environment, monitoring systems, IoT, LoRa Gateway, center pivot
Procedia PDF Downloads 4823134 Factorization of Computations in Bayesian Networks: Interpretation of Factors
Authors: Linda Smail, Zineb Azouz
Abstract:
Given a Bayesian network relative to a set I of discrete random variables, we are interested in computing the probability distribution P(S) where S is a subset of I. The general idea is to write the expression of P(S) in the form of a product of factors where each factor is easy to compute. More importantly, it will be very useful to give an interpretation of each of the factors in terms of conditional probabilities. This paper considers a semantic interpretation of the factors involved in computing marginal probabilities in Bayesian networks. Establishing such a semantic interpretations is indeed interesting and relevant in the case of large Bayesian networks.Keywords: Bayesian networks, D-Separation, level two Bayesian networks, factorization of computation
Procedia PDF Downloads 52923133 Research on Air pollution Spatiotemporal Forecast Model Based on LSTM
Authors: JingWei Yu, Hong Yang Yu
Abstract:
At present, the increasingly serious air pollution in various cities of China has made people pay more attention to the air quality index(hereinafter referred to as AQI) of their living areas. To face this situation, it is of great significance to predict air pollution in heavily polluted areas. In this paper, based on the time series model of LSTM, a spatiotemporal prediction model of PM2.5 concentration in Mianyang, Sichuan Province, is established. The model fully considers the temporal variability and spatial distribution characteristics of PM2.5 concentration. The spatial correlation of air quality at different locations is based on the Air quality status of other nearby monitoring stations, including AQI and meteorological data to predict the air quality of a monitoring station. The experimental results show that the method has good prediction accuracy that the fitting degree with the actual measured data reaches more than 0.7, which can be applied to the modeling and prediction of the spatial and temporal distribution of regional PM2.5 concentration.Keywords: LSTM, PM2.5, neural networks, spatio-temporal prediction
Procedia PDF Downloads 13423132 Neural Network Based Path Loss Prediction for Global System for Mobile Communication in an Urban Environment
Authors: Danladi Ali
Abstract:
In this paper, we measured GSM signal strength in the Dnepropetrovsk city in order to predict path loss in study area using nonlinear autoregressive neural network prediction and we also, used neural network clustering to determine average GSM signal strength receive at the study area. The nonlinear auto-regressive neural network predicted that the GSM signal is attenuated with the mean square error (MSE) of 2.6748dB, this attenuation value is used to modify the COST 231 Hata and the Okumura-Hata models. The neural network clustering revealed that -75dB to -95dB is received more frequently. This means that the signal strength received at the study is mostly weak signalKeywords: one-dimensional multilevel wavelets, path loss, GSM signal strength, propagation, urban environment and model
Procedia PDF Downloads 38223131 Water Intake and Influence of Ambient Temperature on Carcass Characteristics of Savannah Brown Goats Fed Graded Levels of Maize Cob Diets Supplemented with Cowpea Husk
Authors: A. H. Dikko, D. N. Tsado, T. Z. Adama, Y. M. Ishiaku, S. U. Oyibo
Abstract:
This study investigated water intake and influence of ambient temperature on carcass characteristics of Savannah Brown goats fed graded levels of maize cob diets. A total of sixteen (16) Savannah Brown goats aged between 8-12 weeks with an average body weight of 10.19+0.19 kg were used. The goats were randomly allotted to four (4) dietary treatments, T1 (0 % maize cob diet), T2 (10% maize cob diet), T3 (20% maize cob diet) and T4 (30% maize cob diet) respectively. The goats were also fed cowpea husk as supplement. A complete randomized design was used. Each treatment was allotted four (4) goats and replicated twice with two (2) goats per replicate. The goats were kept under feedlot management and were allowed 7 days adjustment period during which the animals were dewormed using albendzole and treated with antibiotics against any sign of disease(s). The goats were each offered 500 g of experimental diet between 7.00 am-8.00 am daily and the supplement was given to them between 4.00 pm-5.00 pm daily. The goats were offered three (3) litters of water daily without restriction. The experiment lasted for nine (9) weeks. Two (2) goats were randomly selected from each treatment and slaughtered for carcass characteristic and sensory evaluation. The result showed that ambient temperature had significant (P<0.05) correlations with water intake and feed intake among the treatment groups. There was a strongly positive significant (P<0.01) correlations between feed intake, water intake and ambient temperatures. The result on carcass characteristics showed significant (P<0.05) differences among all the treatment groups. The goats fed 20% maize cob performed significantly (P<0.05) better in most carcass cuts than those fed 0% inclusion level. Also, the result on sensory evaluation showed that colour, tenderness, juiciness and flavor for both cooked and fried meat were significantly (P<0.05) different among all the treatment groups. It can be concluded that 20 % inclusion of maize cob in the diet of Savanna Brown goats will improve meat yield and water intake. Therefore, inclusion of maize cob into the diet of Savanna Brown goats up to 20% is here by recommended.Keywords: water intake, ambient temperature, savannah brown goats, carcass
Procedia PDF Downloads 43823130 Automated Detection of Related Software Changes by Probabilistic Neural Networks Model
Authors: Yuan Huang, Xiangping Chen, Xiaonan Luo
Abstract:
Current software are continuously updating. The change between two versions usually involves multiple program entities (e.g., packages, classes, methods, attributes) with multiple purposes (e.g., changed requirements, bug fixing). It is hard for developers to understand which changes are made for the same purpose. Whether two changes are related is not decided by the relationship between this two entities in the program. In this paper, we summarized 4 coupling rules(16 instances) and 4 state-combination types at the class, method and attribute levels for software change. Related Change Vector (RCV) are defined based on coupling rules and state-combination types, and applied to classify related software changes by using Probabilistic Neural Network during a software updating.Keywords: PNN, related change, state-combination, logical coupling, software entity
Procedia PDF Downloads 43723129 Free Vibration and Buckling of Rectangular Plates under Nonuniform In-Plane Edge Shear Loads
Authors: T. H. Young, Y. J. Tsai
Abstract:
A method for determining the stress distribution of a rectangular plate subjected to two pairs of arbitrarily distributed in-plane edge shear loads is proposed, and the free vibration and buckling of such a rectangular plate are investigated in this work. The method utilizes two stress functions to synthesize the stress-resultant field of the plate with each of the stress functions satisfying the biharmonic compatibility equation. The sum of stress-resultant fields due to these two stress functions satisfies the boundary conditions at the edges of the plate, from which these two stress functions are determined. Then, the free vibration and buckling of the rectangular plate are investigated by the Galerkin method. Numerical results obtained by this work are compared with those appeared in the literature, and good agreements are observed.Keywords: stress analysis, free vibration, plate buckling, nonuniform in-plane edge shear
Procedia PDF Downloads 15623128 An Experimental Test of the Effects of Acute and Chronic Stress on Maternal Sensitivity
Authors: Mindy A. Brown, Emma E. Reardon, Jennifer Isenhour, Sheila E. Crowell, K. Lee Raby, Elisabeth Conradt
Abstract:
The positive impact of maternal sensitivity on infant social and emotional development is well-known, as is the notion that stress may impair a mother’s ability to provide sensitive care for her infant. However, individual differences in susceptibility to parenting-related stress are less understood. This study explores how chronic prenatal stress moderates the effect of acute stressors on maternal sensitivity. Data were gathered from 110 mothers and their 7-month-old infants. Mothers were exposed to either an acute stress task or a control task, after which they engaged in the still-face paradigm, a face-to-face interaction where maternal sensitivity was measured. Chronic maternal stress was assessed using the UCLA Life Stress Interview during the third trimester of pregnancy. The results revealed that among mothers exposed to the stress condition, those with higher chronic stress levels in the previous six months displayed significantly lower sensitivity during the still-face paradigm compared to those with lower chronic stress. Notably, past stress levels had no effect on maternal sensitivity in the control condition. These findings suggest a moderating effect of chronic stress on maternal caregiving behavior, with higher prenatal stress diminishing a mother’s ability to cope with acute parenting-related stressors in the present. The mechanisms behind this may involve changes in stress reactivity pathways, such as the hypothalamic-pituitary-adrenal (HPA) axis or altered emotion regulation strategies developed in response to chronic stress. Understanding these pathways could guide targeted interventions for mothers who may be more vulnerable to stress, improving caregiving outcomes.Keywords: acute stress, maternal stress, prenatal stress, still-face paradigm
Procedia PDF Downloads 2423127 Spatial Variability of Soil Pollution and Health Risks Due to Long-Term Wastewater Irrigation in Egypt
Authors: Mohamed Eladham Fadl M. E. Fadl
Abstract:
In Egypt, wastewater has been used for irrigation in areas with fresh water scarcity. However, continuous applications may cause potential risks. Thus, the current study aims at screening the impacts of long-term wastewater irrigation on soil pollution and human health due to the exposure of heavy metals. Soils of nine sites in Al-Qalyubiyah Governorate, Egypt were sampled and analyzed for different properties. Wastewater resulted in a build-up of metals in soils. The pollution index (PI) showed the order of Cd > Pb > Ni > Zn. The integrated pollution index of Nemerow’s (IPIN) exceeded the safe limit of 0.7. The enrichment factor (EF) surpassed 1.0 value proving anthropogenic effects. The geo-accumulation index (Igeo) indicated that Pb, Ni, and Zn-induced none to moderate pollution, while high threats were associated with Cd. The calculated hazard index proved a potential health risk for humans, particularly children. It is recommended to perform a treatment to the wastewater used in irrigation to avoid such threats.Keywords: pollution, health risks, heavy metals, effluent, irrigation, GIS techniques
Procedia PDF Downloads 33823126 Adsorptive Performance of Surface Modified Montmorillonite in Vanadium Removal from Real Mine Water
Authors: Opeyemi Atiba-Oyewo, Taile Y. Leswfi, Maurice S. Onyango, Christian Wolkersdorfer
Abstract:
This paper describes the preparation of surface modified montmorillonite using hexadecyltrimethylammonium bromide (HDTMA-Br) for the removal of vanadium from mine water. The adsorbent before and after adsorption was characterised by Fourier transform infra-red (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM), while the amount of vanadium adsorbed was determined by ICP-OES. The batch adsorption method was employed using vanadium concentrations in solution ranging from 50 to 320 mg/L and vanadium tailings seepage water from a South African mine. Also, solution pH, temperature and sorbent mass were varied. Results show that the adsorption capacity was affected by solution pH, temperature, sorbent mass and the initial concentration. Electrical conductivity of the mine water before and after adsorption was measured to estimate the total dissolved solids in the mine water. Equilibrium isotherm results revealed that vanadium sorption follows the Freundlich isotherm, indicating that the surface of the sorbent was heterogeneous. The pseudo-second order kinetic model gave the best fit to the kinetic experimental data compared to the first order and Elovich models. The results of this study may be used to predict the uptake efficiency of South Africa montmorillonite in view of its application for the removal of vanadium from mine water. However, the choice of this adsorbent for the uptake of vanadium or other contaminants will depend on the composition of the effluent to be treated.Keywords: adsorption, vanadium, modified montmorillonite, equilibrium, kinetics, mine water
Procedia PDF Downloads 43323125 Estimation of Sediment Transport into a Reservoir Dam
Authors: Kiyoumars Roushangar, Saeid Sadaghian
Abstract:
Although accurate sediment load prediction is very important in planning, designing, operating and maintenance of water resources structures, the transport mechanism is complex, and the deterministic transport models are based on simplifying assumptions often lead to large prediction errors. In this research, firstly, two intelligent ANN methods, Radial Basis and General Regression Neural Networks, are adopted to model of total sediment load transport into Madani Dam reservoir (north of Iran) using the measured data and then applicability of the sediment transport methods developed by Engelund and Hansen, Ackers and White, Yang, and Toffaleti for predicting of sediment load discharge are evaluated. Based on comparison of the results, it is found that the GRNN model gives better estimates than the sediment rating curve and mentioned classic methods.Keywords: sediment transport, dam reservoir, RBF, GRNN, prediction
Procedia PDF Downloads 49623124 Yield Onset of Thermo-Mechanical Loading of FGM Thick Walled Cylindrical Pressure Vessels
Authors: S. Ansari Sadrabadi, G. H. Rahimi
Abstract:
In this paper, thick walled Cylindrical tanks or tubes made of functionally graded material under internal pressure and temperature gradient are studied. Material parameters have been considered as power functions. They play important role in the elastoplastic behavior of these materials. To clarify their role, different materials with different parameters have been used under temperature gradient. Finally, their effect and loading effect have been determined in first yield point. Also, the important role of temperature gradient was also shown. At the end the study has been results obtained from changes in the elastic modulus and yield stress. Also special attention is also given to the effects of this internal pressure and temperature gradient in the creation of tensile and compressive stresses.Keywords: FGM, cylindrical pressure tubes, small deformation theory, yield onset, thermal loading
Procedia PDF Downloads 41923123 Identifying Confirmed Resemblances in Problem-Solving Engineering, Both in the Past and Present
Authors: Colin Schmidt, Adrien Lecossier, Pascal Crubleau, Philippe Blanchard, Simon Richir
Abstract:
Introduction:The widespread availability of artificial intelligence, exemplified by Generative Pre-trained Transformers (GPT) relying on large language models (LLM), has caused a seismic shift in the realm of knowledge. Everyone now has the capacity to swiftly learn how these models can either serve them well or not. Today, conversational AI like ChatGPT is grounded in neural transformer models, a significant advance in natural language processing facilitated by the emergence of renowned LLMs constructed using neural transformer architecture. Inventiveness of an LLM : OpenAI's GPT-3 stands as a premier LLM, capable of handling a broad spectrum of natural language processing tasks without requiring fine-tuning, reliably producing text that reads as if authored by humans. However, even with an understanding of how LLMs respond to questions asked, there may be lurking behind OpenAI’s seemingly endless responses an inventive model yet to be uncovered. There may be some unforeseen reasoning emerging from the interconnection of neural networks here. Just as a Soviet researcher in the 1940s questioned the existence of Common factors in inventions, enabling an Under standing of how and according to what principles humans create them, it is equally legitimate today to explore whether solutions provided by LLMs to complex problems also share common denominators. Theory of Inventive Problem Solving (TRIZ) : We will revisit some fundamentals of TRIZ and how Genrich ALTSHULLER was inspired by the idea that inventions and innovations are essential means to solve societal problems. It's crucial to note that traditional problem-solving methods often fall short in discovering innovative solutions. The design team is frequently hampered by psychological barriers stemming from confinement within a highly specialized knowledge domain that is difficult to question. We presume ChatGPT Utilizes TRIZ 40. Hence, the objective of this research is to decipher the inventive model of LLMs, particularly that of ChatGPT, through a comparative study. This will enhance the efficiency of sustainable innovation processes and shed light on how the construction of a solution to a complex problem was devised. Description of the Experimental Protocol : To confirm or reject our main hypothesis that is to determine whether ChatGPT uses TRIZ, we will follow a stringent protocol that we will detail, drawing on insights from a panel of two TRIZ experts. Conclusion and Future Directions : In this endeavor, we sought to comprehend how an LLM like GPT addresses complex challenges. Our goal was to analyze the inventive model of responses provided by an LLM, specifically ChatGPT, by comparing it to an existing standard model: TRIZ 40. Of course, problem solving is our main focus in our endeavours.Keywords: artificial intelligence, Triz, ChatGPT, inventiveness, problem-solving
Procedia PDF Downloads 7423122 Improving the Penalty-free Multi-objective Evolutionary Design Optimization of Water Distribution Systems
Authors: Emily Kambalame
Abstract:
Water distribution networks necessitate many investments for construction, prompting researchers to seek cost reduction and efficient design solutions. Optimization techniques are employed in this regard to address these challenges. In this context, the penalty-free multi-objective evolutionary algorithm (PFMOEA) coupled with pressure-dependent analysis (PDA) was utilized to develop a multi-objective evolutionary search for the optimization of water distribution systems (WDSs). The aim of this research was to find out if the computational efficiency of the PFMOEA for WDS optimization could be enhanced. This was done by applying real coding representation and retaining different percentages of feasible and infeasible solutions close to the Pareto front in the elitism step of the optimization. Two benchmark network problems, namely the Two-looped and Hanoi networks, were utilized in the study. A comparative analysis was then conducted to assess the performance of the real-coded PFMOEA in relation to other approaches described in the literature. The algorithm demonstrated competitive performance for the two benchmark networks by implementing real coding. The real-coded PFMOEA achieved the novel best-known solutions ($419,000 and $6.081 million) and a zero-pressure deficit for the two networks, requiring fewer function evaluations than the binary-coded PFMOEA. In previous PFMOEA studies, elitism applied a default retention of 30% of the least cost-feasible solutions while excluding all infeasible solutions. It was found in this study that by replacing 10% and 15% of the feasible solutions with infeasible ones that are close to the Pareto front with minimal pressure deficit violations, the computational efficiency of the PFMOEA was significantly enhanced. The configuration of 15% feasible and 15% infeasible solutions outperformed other retention allocations by identifying the optimal solution with the fewest function evaluationKeywords: design optimization, multi-objective evolutionary, penalty-free, water distribution systems
Procedia PDF Downloads 6223121 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions
Authors: Vikrant Gupta, Amrit Goswami
Abstract:
The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition
Procedia PDF Downloads 13623120 Directional Dependence of the Stress-Strain Behavior of Reinforced Sand
Authors: Alaa H. J. Al-Rkaby, A. Chegenizadeh, H. R. Nikraz
Abstract:
The technique of reinforcing soil is an efficient, reliable and cost-effective alternative way for improving the performance of soil in civil engineering applications. Despite the anisotropic states of stresses induced within soil elements by many geotechnical structures such as footings, highways and offshore, most of the previous studies have been carried out under isotropic conditions. The anisotropic stress state in term of the inclined principal stress and the inequality of the intermediate and minor principal stresses cannot be investigated using conventional devices. Therefore, the advanced hollow cylinder apparatus, used in this work, provides a great opportunity to simulate such anisotropic stress states. To date, very little consideration has been given to how the direction of principal stress α and intermediate principal stress ratio b can affect the performance of the reinforced sand. This study presented that the anisotropic conditions of α and b resulted in significant variations in the deviator stress and volumetric strain of sand reinforced with geosynthetics. Anisotropic effect has been decreased by adding clay content.Keywords: anisotropy, reinforced sand, direction of principal stress, intermediate principal stress ratio
Procedia PDF Downloads 19923119 Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System
Authors: Rohit Tripathi, Sumit Tiwari, G. N. Tiwari
Abstract:
In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, India. Energy and exergy performance of N - partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Water collector system has been compared for two cases: (i) 25% area of water collector covered by PV module, (ii) 75% area of water collector covered by PV module. It is observed that case (i) has been best suited for thermal performance and case (ii) for electrical energy as well as overall exergy.Keywords: compound parabolic concentrator, energy, photovoltaic thermal, temperature dependent electrical efficiency
Procedia PDF Downloads 40523118 A Hybrid Hopfield Neural Network for Dynamic Flexible Job Shop Scheduling Problems
Authors: Aydin Teymourifar, Gurkan Ozturk
Abstract:
In this paper, a new hybrid Hopfield neural network is proposed for the dynamic, flexible job shop scheduling problem. A new heuristic based and easy to implement energy function is designed for the Hopfield neural network, which penalizes the constraints violation and decreases makespan. Moreover, for enhancing the performance, several heuristics are integrated to it that achieve active, and non-delay schedules also, prevent early convergence of the neural network. The suggested algorithm that is designed as a generalization of the previous studies for the flexible and dynamic scheduling problems can be used for solving real scheduling problems. Comparison of the presented hybrid method results with the previous studies results proves its efficiency.Keywords: dynamic flexible job shop scheduling, neural network, heuristics, constrained optimization
Procedia PDF Downloads 41823117 Evaluation of Affecting Factors on Effectiveness of Animal Artificial Insemination Training Courses in Zanjan Province
Authors: Ali Ashraf Hamedi Oghul Beyk
Abstract:
This research is aimed in order to demonstrate the factors affecting on effectiveness of animal artificial insemination training courses in Zanjan province. The research method is descriptive and correlation. Research tools a questionnaire and research sample are 104 persons who participated in animal artificial insemination training courses. The data resulted from this procedure was analysed by using SPSS software under windows system.independent variables include :individual, sociological, technical, and organizational, dependent variable is: affecting factors on effectiveness of animal artificial insemination training courses the finding of this study indicates that there is a significant correlation(99/0) between individual variables such as motivation and interest and experiment and effectiveness of animal artificial insemination training courses. There is significant correlation (95/0) between sociological variables such as job and education and effectiveness of animal artificial insemination training course. There is significant correlation (99/0) between techn ical variables such as training quality media and instructional materials. Moreover, effectiveness of animal artificial insemination training course there is significant correlation(0/95) between organizational variables such as trainers combination,place conditions.Keywords: animal artificial insemination, effect, effectiveness, training courses, Zanjan
Procedia PDF Downloads 38623116 Salinity Effects on Germination of Malaysian Rice Varieties and Weedy Rice Biotypes
Authors: M. Kamal Uddin, H. Mohd Dandan, Ame H. Alidin
Abstract:
Germination and seedling growth of plant species are reduced in saline due to an external osmotic potential. An experiment was conducted at the laboratory, Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, to compare the salt effect on seed germination and growth of weedy rice and cultivated rice. Seeds (10 in each) were placed in petri dishes. Five salinity levels 0 (distilled water), 4, 8, 12 and 16 dSm-1 (NaCl) were applied. The number of germinated seeds was recorded daily. The final germination percentage, germination index (GI), seedling vigour index (SVI) mean germination time (MGT), shoot and root dry weight were estimated. At highest salinity (16 dSm-1) germination percentage was higher (100%) in weedy rice awn and weedy rice compact. Lowest germination percentage was in MR219 and TQR-8 (50-60%). Mean germination time (MGT) was found higher in all weedy rice biotypes compared to cultivated rice. At highest salinity (16dSm-1) weedy rice open produced the highest MGT (9.92) followed by weedy rice compact (9.73) while lowest MGT was in MR219 (9.48). At highest salinity (16dSm-1) germination index was higher in weedy rice awn (11.71) and compact type (9.62). Lowest germination index was in MR219 (5.90) and TQR-8 (8.94). At the highest salinity (16 dSm−1), seedling vigor index was highest in weedy rice awn (6.06) followed by weedy rice compact (5.26); while lowest was in MR219 (2.11) followed by MR269 (3.82).On the basis of Germination index, seedling vigor index and growth related results it could be concluded that weedy rice awn, compact and open biotypes were more salt tolerant compared to other cultivated rice MR219, MR269, and TQR-8.Keywords: germination, salinity, rice and weedy rice, sustainable agriculture
Procedia PDF Downloads 49123115 Development of an Artificial Ear for Bone-Conducted Objective Occlusion Measurement
Authors: Yu Luan
Abstract:
The bone-conducted objective occlusion effect (OE) is characterized by a discomforting sensation of fullness experienced in an occluded ear. This phenomenon arises from various external stimuli, such as human speech, chewing, and walking, which generate vibrations transmitted through the body to the ear canal walls. The bone-conducted OE occurs due to the pressure build-up inside the occluded ear caused by sound radiating into the ear canal cavity from its walls. In the hearing aid industry, artificial ears are utilized as a tool for developing hearing aids. However, the currently available commercial artificial ears primarily focus on pure acoustics measurements, neglecting the bone-conducted vibration aspect. This research endeavors to develop an artificial ear specifically designed for bone-conducted occlusion measurements. Finite element analysis (FEA) modeling has been employed to gain insights into the behavior of the artificial ear.Keywords: artificial ear, bone conducted vibration, occlusion measurement, finite element modeling
Procedia PDF Downloads 8823114 Numerical Study of Fiber Bragg Grating Sensor: Longitudinal and Transverse Detection of Temperature and Strain
Authors: K. Khelil, H. Ammar, K. Saouchi
Abstract:
Fiber Bragg Grating (FBG) structure is an periodically modulated optical fiber. It acts as a selective filter of wavelength whose reflected peak is called Bragg wavelength and it depends on the period of the fiber and the refractive index. The simulation of FBG is based on solving the Coupled Mode Theory equation by using the Transfer Matrix Method which is carried out using MATLAB. It is found that spectral reflectivity is shifted when the change of temperature and strain is uniform. Under non-uniform temperature or strain perturbation, the spectrum is both shifted and destroyed. In case of transverse loading, reflectivity spectrum is split into two peaks, the first is specific to X axis, and the second belongs to Y axis. FBGs are used in civil engineering to detect perturbations applied to buildings.Keywords: Bragg wavelength, coupled mode theory, optical fiber, temperature measurement
Procedia PDF Downloads 49423113 The Research of Weights Identify of Harbin Ecological Security Evaluation Index Based on AHP
Authors: Rong Guo, Mengshi Huang, Yujing Bai
Abstract:
With the rapid development of urbanization, the urban population increases and urban sprawl appeared. And these issues led to a sharp deterioration of the ecological environment. So, the urban ecological security evaluation was imminent. The weights identify of index was a key step of the research of ecological security evaluation. The AHP was widely used in the extensive research of weights identify of ecological security index. The characteristics of authority and quantitative can fully reflect the views of relevant experts. On the basis of building the ecological security evaluation index of Harbin, the paper combed and used the basic principle of the AHP, and calculated the weights of Harbin ecological security evaluation index through the process of the expert opinions “summary-feedback-summary”. And lay a foundation of future study of Harbin ecological security index, and guide the quantitative evaluation of Harbin ecological security.Keywords: AHP, ecological security, evaluation Index, weights identify, harbin
Procedia PDF Downloads 49723112 Identification of Landslide Features Using Back-Propagation Neural Network on LiDAR Digital Elevation Model
Authors: Chia-Hao Chang, Geng-Gui Wang, Jee-Cheng Wu
Abstract:
The prediction of a landslide is a difficult task because it requires a detailed study of past activities using a complete range of investigative methods to determine the changing condition. In this research, first step, LiDAR 1-meter by 1-meter resolution of digital elevation model (DEM) was used to generate six environmental factors of landslide. Then, back-propagation neural networks (BPNN) was adopted to identify scarp, landslide areas and non-landslide areas. The BPNN uses 6 environmental factors in input layer and 1 output layer. Moreover, 6 landslide areas are used as training areas and 4 landslide areas as test areas in the BPNN. The hidden layer is set to be 1 and 2; the hidden layer neurons are set to be 4, 5, 6, 7 and 8; the learning rates are set to be 0.01, 0.1 and 0.5. When using 1 hidden layer with 7 neurons and the learning rate sets to be 0.5, the result of Network training root mean square error is 0.001388. Finally, evaluation of BPNN classification accuracy by the confusion matrix shows that the overall accuracy can reach 94.4%, and the Kappa value is 0.7464.Keywords: digital elevation model, DEM, environmental factors, back-propagation neural network, BPNN, LiDAR
Procedia PDF Downloads 14423111 Irrigation Water Quality Evaluation in Jiaokou Irrigation District, Guanzhong Basin
Authors: Qiying Zhang, Panpan Xu, Hui Qian
Abstract:
Groundwater is an important water resource in the world, especially in arid and semi-arid regions. In the present study, 141 groundwater samples were collected and analyzed for various physicochemical parameters to assess the irrigation water quality using six indicators (sodium percentage (Na%), sodium adsorption ratio (SAR), magnesium hazard (MH), residual sodium carbonate (RSC), permeability index (PI), and potential salinity (PS)). The results show that the patterns for the average cation and anion concentrations were in decreasing orders of Na+ > Mg2+ > Ca2+ > K+and SO42- > HCO3- > Cl- > NO3- > CO32- > F-, respectively. The values of Na%, MH, and PS show that most of the groundwater samples are not suitable for irrigation. The same conclusion is drawn from the USSL and Wilcox diagrams. PS values indicate that Cl-and SO42-have a great influence on irrigation water in Jiaokou Irrigation District. RSC and PI values indicate that more than half of groundwater samples are suitable for irrigation. The finding is beneficial for the policymakers for future water management schemes to achieve a sustainable development goal.Keywords: groundwater chemistry, Guanzhong Basin, irrigation water quality evaluation, Jiaokou Irrigation District
Procedia PDF Downloads 21023110 Reservoir-Triggered Seismicity of Water Level Variation in the Lake Aswan
Authors: Abdel-Monem Sayed Mohamed
Abstract:
Lake Aswan is one of the largest man-made reservoirs in the world. The reservoir began to fill in 1964 and the level rose gradually, with annual irrigation cycles, until it reached a maximum water level of 181.5 m in November 1999, with a capacity of 160 km3. The filling of such large reservoir changes the stress system either through increasing vertical compressional stress by loading and/or increased pore pressure through the decrease of the effective normal stress. The resulted effect on fault zones changes stability depending strongly on the orientation of pre-existing stress and geometry of the reservoir/fault system. The main earthquake occurred on November 14, 1981, with magnitude 5.5. This event occurred after 17 years of the reservoir began to fill, along the active part of the Kalabsha fault and located not far from the High Dam. Numerous of small earthquakes follow this earthquake and continue till now. For this reason, 13 seismograph stations (radio-telemetry network short-period seismometers) were installed around the northern part of Lake Aswan. The main purpose of the network is to monitor the earthquake activity continuously within Aswan region. The data described here are obtained from the continuous record of earthquake activity and lake-water level variation through the period from 1982 to 2015. The seismicity is concentrated in the Kalabsha area, where there is an intersection of the easterly trending Kalabsha fault with the northerly trending faults. The earthquake foci are distributed in two seismic zones, shallow and deep in the crust. Shallow events have focal depths of less than 12 km while deep events extend from 12 to 28 km. Correlation between the seismicity and the water level variation in the lake provides great suggestion to distinguish the micro-earthquakes, particularly, those in shallow seismic zone in the reservoir–triggered seismicity category. The water loading is one factor from several factors, as an activating medium in triggering earthquakes. The common factors for all cases of induced seismicity seem to be the presence of specific geological conditions, the tectonic setting and water loading. The role of the water loading is as a supplementary source of earthquake events. So, the earthquake activity in the area originated tectonically (ML ≥ 4) and the water factor works as an activating medium in triggering small earthquakes (ML ≤ 3). Study of the inducing seismicity from the water level variation in Aswan Lake is of great importance and play great roles necessity for the safety of the High Dam body and its economic resources.Keywords: Aswan lake, Aswan seismic network, seismicity, water level variation
Procedia PDF Downloads 370