Search results for: Adult dataset
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2456

Search results for: Adult dataset

866 A Multiple Case Study of How Bilingual-Bicultural Teachers' Language Shame and Loss Affects Teaching English Language Learners

Authors: Lisa Winstead, Penny Congcong Wang

Abstract:

This two-year multiple case study of eight Spanish-English speaking teachers explores bilingual-bicultural Latino teachers’ lived experiences as English Language Learners and, more recently, as adult teachers who work with English Language Learners in mainstream schools. Research questions explored include: How do bilingual-bicultural teachers perceive their native language use and sense of self within society from childhood to adulthood? Correspondingly, what are bilingual teachers’ perceptions of how their own language learning experience might affect teaching students of similar linguistic and cultural backgrounds? This study took place in an urban area in the Pacific Southwest of the United States. Participants were K-8 teachers and enrolled in a Spanish-English bilingual authorization program. Data were collected from journals, focus group interviews, field notes, and class artifacts. Within case and cross-case analysis revealed that the participants were shamed about their language use as children which contributed to their primary language loss. They similarly reported how experiences of mainstream educator and administrator language shaming invalidated their ability to provide support for Latino heritage ELLs, despite their bilingual-bicultural expertise. However, participants reported that counter-narratives from the bilingual authorization program, parents, community and church organizations, and cultural responsive teachers were effective in promoting their language retention, pride, and feelings of well-being.

Keywords: teacher education, bilingual education, English language learners, emergent bilinguals, social justice, language shame, language loss, translanguaging

Procedia PDF Downloads 189
865 Comparison Between Conventional Ultrafiltration Combined with Modified Ultrafiltration and Conventional Ultrafiltration Only for Adult Open-heart Surgery: Perspective from Systemic Inflammation, Vascular Resistance, and Cardiac Index

Authors: Ratna Farida Soenarto, Anas Alatas, Made Ryan Kharmayani

Abstract:

Background: Conventional ultrafiltration (CUF) system was shown to be helpful in reducing anti-inflammatory mediators for patients who underwent open heart surgery. Additionally, modified ultrafiltration (MUF) has been shown to reduce anti-inflammatory mediators further while reducing interstitial fluid volume at the same time. However, there has been minimal data concerning the efficacy of combining both ultrafiltration methods. This study aims to compare inflammation marker, vascular resistance, and cardiac index on CUF+MUF patients with CUF only patients undergoing open heart surgery. Method: This is a single blind randomized controlled trial on patients undergoing open heart surgery between June 2021 - October 2021 in CiptoMangunkusumo National Referral Hospital and Jakarta Heart Hospital. Patients wererandomized using block randomization into modified ultrafiltration following conventional ultrafiltration (CUF+MUF) and conventional ultrafiltration (CUF) only. Outcome assessed in this study were 24-hoursinterleukin-6 levels, systemic vascular resistance (SVR), pulmonary vascular resistance (PVR), and cardiac index. Results: A total of 38patients were included (19 CUF+MUF and 19 CUF subjects). There was no difference in postoperative IL-6 level between groups (p > 0.05).No difference in PVR was observed between groups.Higher difference in SVR was observed in CUF+MUF group (-646 vs. -261dyn/s/cm-5, p < 0.05). Higher cardiac index was observed on CUF+MUF group (0.93 vs. 0.48, p < 0.05). Conclusion: Patients undergoing open heart surgery with modified ultrafiltration following conventional ultrafiltration had similar systemic inflammatory response and better cardiac response than those having conventional ultrafiltration.

Keywords: open-heart, CUF, MUF, SVR, PVR, IL-6

Procedia PDF Downloads 153
864 Green Synthesis of Silver Nanoparticles with Aqueous Extract of Moringa oleifera Lam Leaves and Its Ameliorative Effect on Benign Prostatic Hyperplasia in Wistar Rat

Authors: Rotimi Larayetana, Yahaya Abdulrazaq, Oladunni O. Falola, Abayomi Ajayi

Abstract:

The aim of this study was to perform green synthesis of silver nanoparticles (AgNPs) with the aqueous extract of Moringa oleifera Lam (M oleifera) leaves and determine its effects on benign prostatic hyperplasia in Wistar rats. Silver nitrate (AgNO₃) solution was reduced using the aqueous extract of Moringa oleifera Lam leaves, the resultant biogenic AgNPs were characterized by Fourier transformed infrared spectrophotometric, SEM, TEM and X-ray diffraction analysis. Animal experiments involved thirty (30) adult male Wistar rats randomly divided into five groups (A to E; n ₌ 5). Group A received only subcutaneous injection of olive oil daily while the other groups got 3 mg/kg/daily of testosterone propionate (TP) subcutaneously plus 50 mg/kg/daily of AgNPs intraperitoneally (B), 3 mg/kg/daily of TP plus 25 mg/kg/daily of AgNPs (C), 3 mg/kg/daily of TP only (D) and 25 mg/kg/daily of AgNPs only (E). The animals were sacrificed after 14 days, and the prostate gland, liver, and kidney were processed for histological analysis. Phytochemical screening and GC-MS analysis were performed to determine the composition of the M oleifera extract used. Biogenic AgNPs with an average diameter of 23 nm were synthesized. Biogenic AgNPs ameliorated hormone-induced prostate enlargement, and the inhibition of prostatic hypertrophy could be due to the presence of a significant amount of plant fatty acids and phytosterols in the aqueous extract of M oleifera extract. However, the administration of biogenic AgNPs at higher doses impacted negatively on the cytoarchitecture of the liver. Green synthesis of AgNPs with the aqueous extract of Moringa oleifera might be beneficial for the treatment of BPH.

Keywords: benign prostatic hyperplasia, biogenic synthesis, Moringa oleifera, silver nanoparticles, testosterone

Procedia PDF Downloads 95
863 A Study of Body Weight and Type Traits Recorded on Hairy Goat in Punjab, Pakistan

Authors: A. Qayyum, G. Bilal, H. M. Waheed

Abstract:

The objectives of the study were to determine phenotypic variations in Hairy goats for quantitative and qualitative traits and to analyze the relationship between different body measurements and body weight in Hairy goats. Data were collected from the Barani Livestock Production Research Institute (BLPRI) at Kherimurat, Attock and potential farmers who were raising hairy goats in the Potohar region. Twelve (12) phenotypic parameters were measured on 99 adult Hairy goat (18 male and 81 female). Four qualitative and 8 quantitative traits were investigated. Qualitative traits were visually observed and expressed as percentages. Descriptive analysis was done on quantitative variables. All hairy goats had predominately black body coat color (72%), whereas white (11%) and brown (11%) body coat color were also observed. Both the pigmented (45.5%) and non-pigmented (54.5%) type of body skin were observed in the goat breed. Horns were present in the majority (91%) of animals. Most of the animals (83%) had straight facial head profiles. Analysis was performed in SAS On-Demand for Academics using PROC mixed model procedure. Overall means ± SD of body weight (BW), body length (BL), height at wither (HAW), ear length (EL), head length (HL), heart girth (HG), tail length (TL) and MC (muzzle circumference) were 41.44 ± 12.21 kg, 66.40 ± 7.87 cm, 75.17 ± 7.83 cm, 22.99 ± 6.75 cm, 15.07 ± 3.44 cm, 76.54 ± 8.80 cm, 18.28 ± 4.18 cm, and 26.24 ± 5.192 cm, respectively. Sex had a significant effect on BL and HG (P < 0.05), whereas BW, HAW, EL, HL, TL, and MC were not significantly affected (P > 0.05). The herd had a significant effect on BW, BL, HAW, HL, HG, and TL (P < 0.05) except EL and MC (P > 0.05). Hairy goats appear to have the potential for selection as mutton breeds in the Potohar region of Punjab. The findings of the present study would help in the characterization and conservation of hairy goats using genetic and genomic tools in the future.

Keywords: body weight, Hairy goat, type traits Punjab, Pakistan

Procedia PDF Downloads 67
862 A Cephalometric Superimposition of a Skeletal Class III Orthognathic Patient on Nasion-Sella Line

Authors: Albert Suryaprawira

Abstract:

The Nasion-Sella Line (NSL) has been used for several years as a reference line in longitudinal growth study. Therefore this line is considered to be stable not only to evaluate treatment outcome and to predict relapse possibility but also to manage prognosis. This is a radiographic superimposition of an adult male aged 19 years who complained of difficulty in aesthetic, talking and chewing. Patient has a midface hypoplasia profile (concave). He was diagnosed to have a severe Skeletal Class III with Class III malocclusion, increased lower vertical height, and an anterior open bite. A pre-treatment cephalometric radiograph was taken to analyse the skeletal problem and to measure the amount of bone movement and the prediction soft tissue response. A panoramic radiograph was also taken to analyse bone quality, bone abnormality, third molar impaction, etc. Before the surgery, a pre-surgical cephalometric radiograph was taken to re-evaluate the plan and to settle the final amount of bone cut. After the surgery, a post-surgical cephalometric radiograph was taken to confirm the result with the plan. The superimposition using NSL as a reference line between those radiographs was performed to analyse the outcome. It is important to describe the amount of hard and soft tissue movement and to predict the possibility of relapse after the surgery. The patient also needs to understand all the surgical plan, outcome and relapse prevention. The surgical management included maxillary impaction and advancement of Le Fort I osteotomy. The evaluation using NSL as a reference was a very useful method in determining the outcome and prognosis.

Keywords: Nasion-Sella Line, midface hypoplasia, Le Fort 1, maxillary advancement

Procedia PDF Downloads 142
861 Cognitive Impairment in Chronic Renal Patients on Hemodialysis

Authors: Fabiana Souza Orlandi, Juliana Gomes Duarte, Gabriela Dutra Gesualdo

Abstract:

Chronic renal disease (CKD), accompanied by hemodialysis, causes chronic renal failure in a number of situations that compromises not only physical, personal and environmental aspects, but also psychological, social and family aspects. Objective: To verify the level of cognitive impairment of chronic renal patients on hemodialysis. Methodology: This is a descriptive, cross-sectional study. The present study was performed in a Dialysis Center of a city in the interior of the State of São Paulo. The inclusion criteria were: being 18 years or older; have a medical diagnosis of CKD; being in hemodialysis treatment in this unit; and agree to participate in the research, with the signature of the Informed Consent (TCLE). A total of 115 participants were evaluated through the Participant Characterization Instrument and the Addenbrooke Cognitive Exam - Revised Version (ACE-R), being scored from 0 to 100, stipulating the cut-off note for the complete battery <78 and subdivided into five domains: attention and guidance; memory; fluency; language; (66.9%) and caucasian (54.7%), 53.7 (±14.8) years old. Most of the participants were retired (74.7%), with incomplete elementary schooling (36.5%) and the average time of treatment was 46 months. Most of the participants (61.3%) presented impairment in the area of attention and orientation, 80.4% in the spatial visual domain. Regarding the total ACE-R score, 75.7% of the participants presented scores below the established cut grade. Conclusion: There was a high percentage (75.7%) below the cut-off score established for ACE-R, suggesting that there may be some cognitive impairment among these participants, since the instrument only performs a screening on cognitive health. The results of the study are extremely important so that possible interventions can be traced in order to minimize impairment, thus improving the quality of life of chronic renal patients.

Keywords: cognition, chronic renal insufficiency, adult health, dialysis

Procedia PDF Downloads 366
860 Evaluating the Validity of CFD Model of Dispersion in a Complex Urban Geometry Using Two Sets of Experimental Measurements

Authors: Mohammad R. Kavian Nezhad, Carlos F. Lange, Brian A. Fleck

Abstract:

This research presents the validation study of a computational fluid dynamics (CFD) model developed to simulate the scalar dispersion emitted from rooftop sources around the buildings at the University of Alberta North Campus. The ANSYS CFX code was used to perform the numerical simulation of the wind regime and pollutant dispersion by solving the 3D steady Reynolds-averaged Navier-Stokes (RANS) equations on a building-scale high-resolution grid. The validation study was performed in two steps. First, the CFD model performance in 24 cases (eight wind directions and three wind speeds) was evaluated by comparing the predicted flow fields with the available data from the previous measurement campaign designed at the North Campus, using the standard deviation method (SDM), while the estimated results of the numerical model showed maximum average percent errors of approximately 53% and 37% for wind incidents from the North and Northwest, respectively. Good agreement with the measurements was observed for the other six directions, with an average error of less than 30%. In the second step, the reliability of the implemented turbulence model, numerical algorithm, modeling techniques, and the grid generation scheme was further evaluated using the Mock Urban Setting Test (MUST) dispersion dataset. Different statistical measures, including the fractional bias (FB), the geometric mean bias (MG), and the normalized mean square error (NMSE), were used to assess the accuracy of the predicted dispersion field. Our CFD results are in very good agreement with the field measurements.

Keywords: CFD, plume dispersion, complex urban geometry, validation study, wind flow

Procedia PDF Downloads 135
859 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors

Authors: Sudhir Kumar Singh, Debashish Chakravarty

Abstract:

Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.

Keywords: finite element method, geotechnical engineering, machine learning, slope stability

Procedia PDF Downloads 101
858 A Retrospective Cross Sectional Study of Blood Culture Results in a Tertiary Hospital, Ekiti, Nigeria

Authors: S. I. Nwadioha, M. S. Odimayo, J. A. Omotayo, A. Olu Taiwo, O. E. Olabiyi

Abstract:

The current study was conducted to determine the epidemiology and antibiotic sensitivity pattern of bacteria isolated from blood of septicemic patients for improved antibiotic therapy. A three-year descriptive study has been carried out at Microbiology Laboratory, Ekiti State University Teaching Hospital, Ado Ekiti, from April 2012 to April 2015. Information compiled from patients’ records includes age, sex, isolated organisms and antibiotic susceptibility patterns. Three hundred and thirteen blood cultures were collected from neonatology and pediatrics wards, Out Patients’ Department (OPD) and from other adult patients. Forty-one cultures yielded mono microbial growth (no polymicrobial growth), giving an incidence of 13.1% positive blood culture (N=41/313). There were 58.4% Gram-negative bacilli and 41.6% Gram-positive cocci in the microbial growth. Bacteria isolated were Staphylococcus aureus 34%(14/41), Klebsiella species22% (9/41), Enterococci 17%(7/41), Proteus species12%(5/41), Escherichia coli 7%(3/41) and Streptococcal pneumoniae 7%(3/41). There was a (35%) higher occurrence of septicemia in neonates than in any other age groups in the hospital. Bacterial sensitivity to 13 antibiotic agents was determined by antibiotics disc diffusion using modified Kirby Bauer’s method. Gram-positive organisms showed a higher antibiotic sensitivity ranging from 14- 100% than the Gram-negative bacteria (11-80%). Staphylococcus aureus and Klebsiella species are the most prevalent organisms. The third generation Cephalosporins (Ceftriaxone) and Floroquinolone(Levofloxacin, Ofloxacin) have proved reliable for management of these blood infections.

Keywords: blood cultures, septicemia, antibiogram, Nigeria

Procedia PDF Downloads 233
857 Influence of Loudness Compression on Hearing with Bone Anchored Hearing Implants

Authors: Anja Kurz, Marc Flynn, Tobias Good, Marco Caversaccio, Martin Kompis

Abstract:

Bone Anchored Hearing Implants (BAHI) are routinely used in patients with conductive or mixed hearing loss, e.g. if conventional air conduction hearing aids cannot be used. New sound processors and new fitting software now allow the adjustment of parameters such as loudness compression ratios or maximum power output separately. Today it is unclear, how the choice of these parameters influences aided speech understanding in BAHI users. In this prospective experimental study, the effect of varying the compression ratio and lowering the maximum power output in a BAHI were investigated. Twelve experienced adult subjects with a mixed hearing loss participated in this study. Four different compression ratios (1.0; 1.3; 1.6; 2.0) were tested along with two different maximum power output settings, resulting in a total of eight different programs. Each participant tested each program during two weeks. A blinded Latin square design was used to minimize bias. For each of the eight programs, speech understanding in quiet and in noise was assessed. For speech in quiet, the Freiburg number test and the Freiburg monosyllabic word test at 50, 65, and 80 dB SPL were used. For speech in noise, the Oldenburg sentence test was administered. Speech understanding in quiet and in noise was improved significantly in the aided condition in any program, when compared to the unaided condition. However, no significant differences were found between any of the eight programs. In contrast, on a subjective level there was a significant preference for medium compression ratios of 1.3 to 1.6 and higher maximum power output.

Keywords: Bone Anchored Hearing Implant, baha, compression, maximum power output, speech understanding

Procedia PDF Downloads 387
856 Utility of CT Perfusion Imaging for Diagnosis and Management of Delayed Cerebral Ischaemia Following Subarachnoid Haemorrhage

Authors: Abdalla Mansour, Dan Brown, Adel Helmy, Rikin Trivedi, Mathew Guilfoyle

Abstract:

Introduction: Diagnosing delayed cerebral ischaemia (DCI) following aneurysmal subarachnoid haemorrhage (SAH) can be challenging, particularly in poor-grade patients. Objectives: This study sought to assess the value of routine CTP in identifying (or excluding) DCI and in guiding management. Methods: Eight-year retrospective neuroimaging study at a large UK neurosurgical centre. Subjects included a random sample of adult patients with confirmed aneurysmal SAH that had a CTP scan during their inpatient stay, over a 8-year period (May 2014 - May 2022). Data collected through electronic patient record and PACS. Variables included age, WFNS scale, aneurysm site, treatment, the timing of CTP, radiologist report, and DCI management. Results: Over eight years, 916 patients were treated for aneurysmal SAH; this study focused on 466 patients that were randomly selected. Of this sample, 181 (38.84%) had one or more CTP scans following brain aneurysm treatment (Total 318). The first CTP scan in each patient was performed at 1-20 days following ictus (median 4 days). There was radiological evidence of DCI in 83, and no reversible ischaemia was found in 80. Findings were equivocal in the remaining 18. Of the 103 patients treated with clipping, 49 had DCI radiological evidence, in comparison to 31 of 69 patients treated with endovascular embolization. The remaining 9 patients are either unsecured aneurysms or non-aneurysmal SAH. Of the patients with radiological evidence of DCI, 65 had a treatment change following the CTP directed at improving cerebral perfusion. In contrast, treatment was not changed for (61) patients without radiological evidence of DCI. Conclusion: CTP is a useful adjunct to clinical assessment in the diagnosis of DCI and is helpful in identifying patients that may benefit from intensive therapy and those in whom it is unlikely to be effective.

Keywords: SAH, vasospasm, aneurysm, delayed cerebral ischemia

Procedia PDF Downloads 68
855 Non-Uniform Filter Banks-based Minimum Distance to Riemannian Mean Classifition in Motor Imagery Brain-Computer Interface

Authors: Ping Tan, Xiaomeng Su, Yi Shen

Abstract:

The motion intention in the motor imagery braincomputer interface is identified by classifying the event-related desynchronization (ERD) and event-related synchronization ERS characteristics of sensorimotor rhythm (SMR) in EEG signals. When the subject imagines different limbs or different parts moving, the rhythm components and bandwidth will change, which varies from person to person. How to find the effective sensorimotor frequency band of subjects is directly related to the classification accuracy of brain-computer interface. To solve this problem, this paper proposes a Minimum Distance to Riemannian Mean Classification method based on Non-Uniform Filter Banks. During the training phase, the EEG signals are decomposed into multiple different bandwidt signals by using multiple band-pass filters firstly; Then the spatial covariance characteristics of each frequency band signal are computered to be as the feature vectors. these feature vectors will be classified by the MDRM (Minimum Distance to Riemannian Mean) method, and cross validation is employed to obtain the effective sensorimotor frequency bands. During the test phase, the test signals are filtered by the bandpass filter of the effective sensorimotor frequency bands, and the extracted spatial covariance feature vectors will be classified by using the MDRM. Experiments on the BCI competition IV 2a dataset show that the proposed method is superior to other classification methods.

Keywords: non-uniform filter banks, motor imagery, brain-computer interface, minimum distance to Riemannian mean

Procedia PDF Downloads 126
854 Protective Effect of Saponin Extract from the Root of Garcinia kola (Bitter Kola) against Paracetamol-Induced Hepatotoxicity in Albino Rats

Authors: Alli Smith Yemisi Rufina, Adanlawo Isaac Gbadura

Abstract:

Liver disorders are one of the major problems of the world. Despite its frequent occurrence, high morbidity, and high mortality, its medical management is currently inadequate. This study was designed to evaluate the Hepatoprotective effect of saponin extract of the root of Garcinia kola on the integrity of the liver of paracetamol induced Wistar albino rats. Twenty-five male adult Wistar albino rats were divided into five (5) groups. Group I, was the Control group that received distilled water only, group II was the negative control that received 2 g/kg of paracetamol on the 13th day, and group III, IV, and V were pre-treated with 100, 200 and 400 mg/kg of the saponin extract before inducing the liver damage on the 13th day with 2 g/kg of paracetamol. Twenty-four hours after administration, the rats were sacrificed, and blood samples were collected. The serum Alanine Transaminase (ALT), Aspartate Transaminase (AST), Alkaline Phosphatase (ALP) activities, Bilirubin and Conjugated Bilirubin, Glucose and Protein concentrations were evaluated. The liver was fixed immediately in Formalin and was processed and stained with Haematoxylin and Eosin (H&E). Administration of saponin extract from the root of Garcinia kola significantly decreased paracetamol induced elevated enzymes in the test group. Also, histological observations showed that saponin extract of the root of Garcinia kola exhibited a significant liver protection against the toxicant as evident by the cells trying to return to normal. Saponin extract from the root of Garcinia kola indicated a protection of the structural integrity of the hepatocytic cell membrane and regeneration of the damaged liver.

Keywords: hepatoprotective, liver damage, Garcinia kola, saponin, paracetamol

Procedia PDF Downloads 261
853 Reducing CO2 Emission Using EDA and Weighted Sum Model in Smart Parking System

Authors: Rahman Ali, Muhammad Sajjad, Farkhund Iqbal, Muhammad Sadiq Hassan Zada, Mohammed Hussain

Abstract:

Emission of Carbon Dioxide (CO2) has adversely affected the environment. One of the major sources of CO2 emission is transportation. In the last few decades, the increase in mobility of people using vehicles has enormously increased the emission of CO2 in the environment. To reduce CO2 emission, sustainable transportation system is required in which smart parking is one of the important measures that need to be established. To contribute to the issue of reducing the amount of CO2 emission, this research proposes a smart parking system. A cloud-based solution is provided to the drivers which automatically searches and recommends the most preferred parking slots. To determine preferences of the parking areas, this methodology exploits a number of unique parking features which ultimately results in the selection of a parking that leads to minimum level of CO2 emission from the current position of the vehicle. To realize the methodology, a scenario-based implementation is considered. During the implementation, a mobile application with GPS signals, vehicles with a number of vehicle features and a list of parking areas with parking features are used by sorting, multi-level filtering, exploratory data analysis (EDA, Analytical Hierarchy Process (AHP)) and weighted sum model (WSM) to rank the parking areas and recommend the drivers with top-k most preferred parking areas. In the EDA process, “2020testcar-2020-03-03”, a freely available dataset is used to estimate CO2 emission of a particular vehicle. To evaluate the system, results of the proposed system are compared with the conventional approach, which reveal that the proposed methodology supersedes the conventional one in reducing the emission of CO2 into the atmosphere.

Keywords: car parking, Co2, Co2 reduction, IoT, merge sort, number plate recognition, smart car parking

Procedia PDF Downloads 146
852 Acceleration-Based Motion Model for Visual Simultaneous Localization and Mapping

Authors: Daohong Yang, Xiang Zhang, Lei Li, Wanting Zhou

Abstract:

Visual Simultaneous Localization and Mapping (VSLAM) is a technology that obtains information in the environment for self-positioning and mapping. It is widely used in computer vision, robotics and other fields. Many visual SLAM systems, such as OBSLAM3, employ a constant-speed motion model that provides the initial pose of the current frame to improve the speed and accuracy of feature matching. However, in actual situations, the constant velocity motion model is often difficult to be satisfied, which may lead to a large deviation between the obtained initial pose and the real value, and may lead to errors in nonlinear optimization results. Therefore, this paper proposed a motion model based on acceleration, which can be applied on most SLAM systems. In order to better describe the acceleration of the camera pose, we decoupled the pose transformation matrix, and calculated the rotation matrix and the translation vector respectively, where the rotation matrix is represented by rotation vector. We assume that, in a short period of time, the changes of rotating angular velocity and translation vector remain the same. Based on this assumption, the initial pose of the current frame is estimated. In addition, the error of constant velocity model was analyzed theoretically. Finally, we applied our proposed approach to the ORBSLAM3 system and evaluated two sets of sequences on the TUM dataset. The results showed that our proposed method had a more accurate initial pose estimation and the accuracy of ORBSLAM3 system is improved by 6.61% and 6.46% respectively on the two test sequences.

Keywords: error estimation, constant acceleration motion model, pose estimation, visual SLAM

Procedia PDF Downloads 94
851 Epilepsy Seizure Prediction by Effective Connectivity Estimation Using Granger Causality and Directed Transfer Function Analysis of Multi-Channel Electroencephalogram

Authors: Mona Hejazi, Ali Motie Nasrabadi

Abstract:

Epilepsy is a persistent neurological disorder that affects more than 50 million people worldwide. Hence, there is a necessity to introduce an efficient prediction model for making a correct diagnosis of the epileptic seizure and accurate prediction of its type. In this study we consider how the Effective Connectivity (EC) patterns obtained from intracranial Electroencephalographic (EEG) recordings reveal information about the dynamics of the epileptic brain and can be used to predict imminent seizures, as this will enable the patients (and caregivers) to take appropriate precautions. We use this definition because we believe that effective connectivity near seizures begin to change, so we can predict seizures according to this feature. Results are reported on the standard Freiburg EEG dataset which contains data from 21 patients suffering from medically intractable focal epilepsy. Six channels of EEG from each patients are considered and effective connectivity using Directed Transfer Function (DTF) and Granger Causality (GC) methods is estimated. We concentrate on effective connectivity standard deviation over time and feature changes in five brain frequency sub-bands (Alpha, Beta, Theta, Delta, and Gamma) are compared. The performance obtained for the proposed scheme in predicting seizures is: average prediction time is 50 minutes before seizure onset, the maximum sensitivity is approximate ~80% and the false positive rate is 0.33 FP/h. DTF method is more acceptable to predict epileptic seizures and generally we can observe that the greater results are in gamma and beta sub-bands. The research of this paper is significantly helpful for clinical applications, especially for the exploitation of online portable devices.

Keywords: effective connectivity, Granger causality, directed transfer function, epilepsy seizure prediction, EEG

Procedia PDF Downloads 469
850 Light and Electron Study of Acrylamide–Induced Hypothalamic Changes

Authors: Keivan Jamshidi

Abstract:

Distal swelling and eventual degeneration of axon in the CNS and PNS have been considered to be the characteristic neuropathological effects of acrylamide (ACR) neuropathy. This study was conducted to determine the neurotoxic effects of different doses of ACR (0.5, 5, 50, 100, and 500 mg/kg per day × 11days i. p.) on hypothalamus of rat using the de Olmos amino cupric-silver stain and electron microscopy. For this purpose 60 adult male rats (Wistar, approximately 250 g) were randomly assigned in 5 treatment groups as A, B, C, D, E) exposed to 0.5, 5, 50, 100, and 500 mg/kg per dayx11days i. p. and one control group as F received daily i. p. injections of 0.9% saline (3ml/kg). As indices of developing neurotoxicity, weight gain, gait scores and landing hindlimb foot splay were determined. After 11 days, two rats for silver stain, and two rats for EM were randomly selected; dissected and proper samples were collected from hypothalamus. Results did show no neurological behavior in groups A, B and F were observed in group C. Rats in groups D and E died within 1-2 hours due to sever toxemia. In histopathological studies based on de Olmos technique no argyrophilic neurons or processes were observed in stained sections obtained from hypothalamus of rats belong to groups A, B, and F while moderate to severe argyrophilic changes were observed in different nuclei and regions of stained sections obtained from hypothalamus of rats belong to group C. In ultra-structural studies some variations in the myelin sheet of injured axons including decompactation, interlaminar space formation, disruption of the laminar sheet, accumulation of neurofilaments, vacculation, and clumping inside the axolem, and finally complete disappearance of laminar sheet were observed.

Keywords: acrylamide, hypothalamus, rat, de Olmos amino cupric, silver stain, electron microscopy

Procedia PDF Downloads 528
849 The Effects of Ellagic Acid on Rat Liver Induced Tobacco Smoke

Authors: Nalan Kaya, Elif Erdem, Mehmet Ali Kisacam, Gonca Ozan, Enver Ozan

Abstract:

Tobacco smokers continuously inhale thousands of carcinogens and free radicals. It is estimated that about 1017 oxidant molecules are present in each puff of tobacco smoke. It is known that smoking has adverse effects on the structure and functions of the liver. Ellagic acid (EA) has antioxidant, antiapoptotic, anticarcinogenic, antibacterial and antiinflammatory effects. The aim of our study was to investigate the possible protective effect of ellagic acid against tobacco smoke-mediated oxidative stress in the rat liver. Twenty-four male adult (8 weeks old) Spraque-Dawley rats were divided randomly into 4 equal groups: group I (control), group II (tobacco smoke), group III (tobacco smoke + corn oil) and group IV (tobacco smoke + ellagic acid). The rats in group II, III and IV, were exposed to tobacco smoke 1 hour twice a day for 12 weeks. In addition to tobacco smoke exposure, 12 mg/kg ellagic acid (dissolved in corn oil), was applied to the rats in group IV by oral gavage. An equal amount of corn oil used in solving ellagic acid was applied to the rats by oral gavage in group III. At the end of the experimental period, rats were decapitated, and liver tissues were removed. Histological and biochemical analyzes were performed. Sinusoidal dilatation, inflammatory cell infiltration in portal area, increased Kuppfer cells were examined in tobacco smoke group and tobacco smoke+ corn oil groups. The results, observed in tobacco smoke and tobacco smoke+corn oil groups, were found significantly decreased in tobacco smoke+EA group. Group-II and group-III MDA levels were significantly higher, and GSH activities were not different than group-I. Compared to group-II, group-IV MDA level was decreased, and GSH activities was increased significantly. The results indicate that ellagic acid could protect the liver tissue from the tobacco smoke harmful effects.

Keywords: ellagic acid, liver, rat, tobacco smoke

Procedia PDF Downloads 300
848 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease

Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani

Abstract:

Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.

Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence

Procedia PDF Downloads 20
847 The Effects of Transcranial Direct Current Stimulation on Brain Oxygenation and Pleasure during Exercise

Authors: Alexandre H. Okano, Pedro M. D. Agrícola, Daniel G. Da S. Machado, Luiz I. Do N. Neto, Luiz F. Farias Junior, Paulo H. D. Nascimento, Rickson C. Mesquita, John F. Araujo, Eduardo B. Fontes, Hassan M. Elsangedy, Shinsuke Shimojo, Li M. Li

Abstract:

The prefrontal cortex is involved in the reward system and the insular cortex integrates the afferent inputs arriving from the body’ systems and turns into feelings. Therefore, modulating neuronal activity in these regions may change individuals’ perception in a given situation such as exercise. We tested whether transcranial direct current stimulation (tDCS) change cerebral oxygenation and pleasure during exercise. Fourteen volunteer healthy adult men were assessed into five different sessions. First, subjects underwent to a maximum incremental test on a cycle ergometer. Then, subjects were randomly assigned to a transcranial direct current stimulation (2mA for 15 min) intervention in a cross over design in four different conditions: anode and cathode electrodes on T3 and Fp2 targeting the insular cortex, and Fpz and F4 targeting prefrontal cortex, respectively; and their respective sham. These sessions were followed by 30 min of moderate intensity exercise. Brain oxygenation was measured in prefrontal cortex with a near infrared spectroscopy. Perceived exertion and pleasure were also measured during exercise. The asymmetry in prefrontal cortex oxygenation before the stimulation decreased only when it was applied over this region which did not occur after insular cortex or sham stimulation. Furthermore, pleasure was maintained during exercise only after prefrontal cortex stimulation (P > 0.7), while there was a decrease throughout exercise (P < 0.03) during the other conditions. We conclude that tDCS over the prefrontal cortex changes brain oxygenation in ventromedial prefrontal cortex and maintains perceived pleasure during exercise. Therefore, this technique might be used to enhance effective responses related to exercise.

Keywords: affect, brain stimulation, dopamine neuromodulation, pleasure, reward, transcranial direct current stimulation

Procedia PDF Downloads 326
846 Molecular Identification and Evolutionary Status of Lucilia bufonivora: An Obligate Parasite of Amphibians in Europe

Authors: Gerardo Arias, Richard Wall, Jamie Stevens

Abstract:

Lucilia bufonivora Moniez, is an obligate parasite of toads and frogs widely distributed in Europe. Its sister taxon Lucilia silvarum Meigen behaves mainly as a carrion breeder in Europe, however it has been reported as a facultative parasite of amphibians. These two closely related species are morphologically almost identical, which has led to misidentification, and in fact, it has been suggested that the amphibian myiasis cases by L. silvarum reported in Europe should be attributed to L. bufonivora. Both species remain poorly studied and their taxonomic relationships are still unclear. The identification of the larval specimens involved in amphibian myiasis with molecular tools and phylogenetic analysis of these two closely related species may resolve this problem. In this work seventeen unidentified larval specimens extracted from toad myiasis cases of the UK, the Netherlands and Switzerland were obtained, their COX1 (mtDNA) and EF1-α (Nuclear DNA) gene regions were amplified and then sequenced. The 17 larval samples were identified with both molecular markers as L. bufonivora. Phylogenetic analysis was carried out with 10 other blowfly species, including L. silvarum samples from the UK and USA. Bayesian Inference trees of COX1 and a combined-gene dataset suggested that L. silvarum and L. bufonivora are separate sister species. However, the nuclear gene EF1-α does not appear to resolve their relationships, suggesting that the rates of evolution of the mtDNA are much faster than those of the nuclear DNA. This work provides the molecular evidence for successful identification of L. bufonivora and a molecular analysis of the populations of this obligate parasite from different locations across Europe. The relationships with L. silvarum are discussed.

Keywords: calliphoridae, molecular evolution, myiasis, obligate parasitism

Procedia PDF Downloads 242
845 Impact of Cd and Pb Impregnation on the Health of an Adult Population Neighbouring a Landfill

Authors: M. Cabral, A. Verdin, G. Garçon, A. Touré, C. Diop, M. Fall, S. Bouhsina, D. Dewaele, F.Cazier, A. Tall Dia, P. Shirali, A. Diouf

Abstract:

This case-control study dealt with the health adverse effects within the population neighboring the Mbeubeuss waste dump, which is located near the district of Malika (Diamalaye II) in Dakar (Senegal). All the household and industrial waste arising from Dakar are stored in this open landfill without being covered and are therefore possible sources of Pb and Cd contaminated air emissions and lixiviates. The objective of this study is part of improving the health of the population neighboring Mbeubeuss by determining Pb and Cd concentrations both in environment and humans, and studying possible renal function alterations within the adults. Soil and air samples were collected in the control site (Darou Salam) and the waste dump neighboring site (Diamalaye II). Control and exposed adults were recruited as living in Darou Salam (n = 52) and in Diamalaye II (n = 77). Pb and Cd concentrations in soil, air and biological samples were determined. Moreover, we were interested in analyzing some impregnation (zinc protoporphyrin, d-aminolevulinic acid dehydratase) and oxidative stress biomarkers (malonedialdehyde, gluthatione status), in addition to several nephrotoxicity parameters (creatinuria, proteinuria, lactate dehydrogenase, CC16 protein, glutathione S-transferase-alpha and retinol binding protein) in blood and/or urine. The results showed the significant Pb and Cd contamination of the soil and air samples derived from the landfill, and therefore of the neighboring population of adults. This critical exposure to environmental Pb and Cd had some harmful consequences for their health, as shown by the reported oxidative stress and nephrotoxicity signs.

Keywords: Pb and Cd environmental exposure, impregnation markers, landfill, nephrotoxicity markers

Procedia PDF Downloads 442
844 A Study of Preliminary Findings of Behavioral Patterns under Captive Conditions in Chinkara (Gazella bennettii) with Prospects for Future Conservation

Authors: Muhammad Idnan, Arshad Javid, Muhammad Nadeem

Abstract:

The present study was conducted from April 2013 to March 2014 to observe the behavioral parameters of Chinkara (Gazella bennettii) under captive conditions by comparing the captive-born and wild-caught animals for conservation strategies. Understanding the behavioral conformations plays a significant role in captive management. Due to human population explosion and mechanized hunting, the captive breeding seems to be the best way for sports hunting, bush meat, for leather industry and horns for traditional medicinal usage. Primarily, captive management has been used on trial and error basis due to deficiency of ethology of this least concerned species. Behavior of [(20 wild-caught (WC) and 10 captive-bred (CB)] adult Chinkara was observed at captive breeding facilities for ungulates at Ravi Campus, University of Veterinary and Animal Sciences at Kasur district which is situated on southeast side of Lahore. The average annual rainfall is about 650 mm, with frequent raining during monsoon. A focal sample was used to observe the various behavioral patterns for CB and WC chinkara. A similarity was observed in behavioral parameters in WC and CB animals, however, when the differences were considered, WC male deer showed a significantly higher degree of agonistic interaction as compared to the CB male chinkara. These findings suggest that there is no immediate impact of captivity on behavior of chinkara nevertheless 10 generations of captivity. It is suggested that the Chinkara is not suitable for domestication and for successful deer farming, a further study is recommended for ethology of chinkara.

Keywords: Chinkara (Gazella bennettii), domestication, deer farming, ex-situ conservation

Procedia PDF Downloads 165
843 Investigation and Analysis of Residential Building Energy End-Use Profile in Hot and Humid Area with Reference to Zhuhai City in China

Authors: Qingqing Feng, S. Thomas Ng, Frank Xu

Abstract:

Energy consumption in domestic sector has been increasing rapidly in China all along these years. Confronted with environmental challenges, the international society has made a concerted effort by setting the Paris Agreement, the Sustainable Development Goals, and the New Urban Agenda. Thus it’s very important for China to put forward reasonable countermeasures to boost building energy conservation which necessitates looking into the actuality of residential energy end-use profile and its influence factors. In this study, questionnaire surveys have been conducted in Zhuhai city in China, a typical city in hot summer warm winter climate zone. The data solicited mainly include the occupancy schedule, building’s information, residents’ information, household energy uses, the type, quantity and use patterns of appliances and occupants’ satisfaction. Over 200 valid samples have been collected through face-to-face interviews. Descriptive analysis, clustering analysis, correlation analysis and sensitivity analysis were then conducted on the dataset to understand the energy end-use profile. The findings identify: 1) several typical clusters of occupancy patterns and appliances utilization patterns; 2) the top three sensitive factors influencing energy consumption; 3) the correlations between satisfaction and energy consumption. For China with many different climates zones, it’s difficult to find a silver bullet on energy conservation. The aim of this paper is to provide a theoretical basis for multi-stakeholders including policy makers, residents, and academic communities to formulate reasonable energy saving blueprints for hot and humid urban residential buildings in China.

Keywords: residential building, energy end-use profile, questionnaire survey, sustainability

Procedia PDF Downloads 126
842 Current Methods for Drug Property Prediction in the Real World

Authors: Jacob Green, Cecilia Cabrera, Maximilian Jakobs, Andrea Dimitracopoulos, Mark van der Wilk, Ryan Greenhalgh

Abstract:

Predicting drug properties is key in drug discovery to enable de-risking of assets before expensive clinical trials and to find highly active compounds faster. Interest from the machine learning community has led to the release of a variety of benchmark datasets and proposed methods. However, it remains unclear for practitioners which method or approach is most suitable, as different papers benchmark on different datasets and methods, leading to varying conclusions that are not easily compared. Our large-scale empirical study links together numerous earlier works on different datasets and methods, thus offering a comprehensive overview of the existing property classes, datasets, and their interactions with different methods. We emphasise the importance of uncertainty quantification and the time and, therefore, cost of applying these methods in the drug development decision-making cycle. To the best of the author's knowledge, it has been observed that the optimal approach varies depending on the dataset and that engineered features with classical machine learning methods often outperform deep learning. Specifically, QSAR datasets are typically best analysed with classical methods such as Gaussian Processes, while ADMET datasets are sometimes better described by Trees or deep learning methods such as Graph Neural Networks or language models. Our work highlights that practitioners do not yet have a straightforward, black-box procedure to rely on and sets a precedent for creating practitioner-relevant benchmarks. Deep learning approaches must be proven on these benchmarks to become the practical method of choice in drug property prediction.

Keywords: activity (QSAR), ADMET, classical methods, drug property prediction, empirical study, machine learning

Procedia PDF Downloads 81
841 Optimal Approach for Siewert Type Ⅱ Adenocarcinoma of the Esophagogastric Junction: A Systematic Review and Metanalysis

Authors: Maatouk Mohamed, Nouira Mariem

Abstract:

Background and aims: Healthcare-associated infections (HAI) represent a major public health problem worldwide. They represent one of the most serious adverse events in health care. The objectives of our study were to estimate the prevalence of HAI at the Charles Nicolle Hospital (CNH) and to identify the main associated factors as well as to estimate the frequency of antibiotic use. Methods: It was a cross sectional study at the CNH with a unique passage per department (OctoberDecember 2018). All patients present at the wards for more than 48 hours were included. All patients from outpatient consultations, emergency and dialysis departments were not included. The site definitions of infections proposed by the Centers for Disease Control and Prevention (CDC) were used. Only clinically and/or microbiologically confirmed active HAIs were included. Results: A total of 318 patients were included with a mean age of 52 years and a sex ratio (Female/Male) of 1.05. A total of 41 patients had one or more active HAIs, corresponding to a prevalence of 13.1% (95% CI: 9.3%-16.9%). The most frequent sites infections were urinary tract infections and pneumonia. Multivariate analysis among adult patients (>=18 years) (n=261), revealed that infection on admission (p=0.01), alcoholism (p=0.01), high blood pressure (p=0.008), having at least one invasive device inserted (p=0.004), and history of recent surgery (p=0.03), increased significantly the risk of HAIs. More than 1 of 3 patients (35.4%) were under antibiotics on the day of the survey, of which more than half (57.4%) were under 2 or more types of antibiotics. Conclusion: The prevalence of HAIs and antibiotic prescriptions at the CNH were considerably high. An infection prevention and control committee, as well as the development of an Antibiotic stewardship program with continuous monitoring using repeated prevalence surveys must be implemented to limit the frequency of these infections effectively.

Keywords: tumors, oesophagectomy, esophagogastric junction, systematic review

Procedia PDF Downloads 81
840 The Effects of Social Media on the Dreams of Preadolescent Girls

Authors: Saveria Capecchi

Abstract:

The aim of the quali-quantitative research conducted in the spring of 2021 (still in the midst of the Covid-19 emergency) was to analyze the relationship between the imaginary of 142 girls aged 10-12 from two Italian cities in the Emilia-Romagna region (the capital, Bologna, and Parma) and the influence that various socialization agents can have on it, with particular attention to social media. In order to investigate the relationship between imagination and media, two tools were used: first, the girls wrote an essay in class about their future lives, imagining waking up one morning as a thirty-year-old adults. Six types of "dreams" reflecting the values and lifestyles characteristic of contemporary Italian society emerged. Additionally, the girls completed a questionnaire on their leisure time and, in particular, media consumption aimed at identifying their favorite characters. The results provided insights into understanding the reference values and lifestyles that define their subculture (they belong to the so-called Generation Z). Another interesting aspect of this research is the possibility of comparing the results with those of a similar study on preadolescent imaginary conducted in 1995, involving 292 girls from Milan and Bologna, belonging to the Millennial generation. The narratives about the imagined adult life reflect some crucial changes undergone by Italian society in a quarter of a century: there are advancements towards gender equality, and the imagined family is increasingly detached from tradition. There is a more persistent dream of a life marked by beauty, wealth, and fame, while at the same time, there is a greater social commitment, from solidarity with marginalized people to environmentalism. Furthermore, the mentioned new digital and robotic professions will project us into the near future.

Keywords: gender equality, gender stereotypes, imaginary, preadolescents, social media

Procedia PDF Downloads 54
839 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification

Authors: Ian Omung'a

Abstract:

Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.

Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision

Procedia PDF Downloads 93
838 Etiquette Learning and Public Speaking: Early Etiquette Learning and Its Impact on Higher Education and Working Professionals

Authors: Simran Ballani

Abstract:

The purpose of this paper is to call education professionals to implement etiquette and public speaking skills for preschoolers, primary, middle and higher school students. In this paper the author aims to present importance of etiquette learning and public speaking curriculum for preschoolers, reflect on experiences from implementation of the curriculum and discuss the effect of the said implementation on higher education/global job market. Author’s aim to introduce this curriculum was to provide children with innovative learning and all around development. This training of soft skills at kindergarten level can have a long term effect on their social behaviors which in turn can contribute to professional success once they are ready for campus recruitment/global job markets. Additionally, if preschoolers learn polite, appropriate behavior at early age, it will enable them to become more socially attentive and display good manners as an adult. It is easier to nurture these skills in a child rather than changing bad manners at adulthood. Preschool/Kindergarten education can provide the platform for children to learn these crucial soft skills irrespective of the ethnicity, economic or social background they come from. These skills developed at such early years can go a long way to shape them into better and confident individuals. Unfortunately, accessibility of the etiquette learning and public speaking skill education is not standardized in pre-primary or primary level and most of the time embedding into the kindergarten curriculum is next to nil. All young children should be provided with equal opportunity to learn these soft skills which are essential for finding their place in job market.

Keywords: Early Childhood Learning, , public speaking, , confidence building, , innovative learning

Procedia PDF Downloads 111
837 Development of Medical Intelligent Process Model Using Ontology Based Technique

Authors: Emmanuel Chibuogu Asogwa, Tochukwu Sunday Belonwu

Abstract:

An urgent demand for creative solutions has been created by the rapid expansion of medical knowledge, the complexity of patient care, and the requirement for more precise decision-making. As a solution to this problem, the creation of a Medical Intelligent Process Model (MIPM) utilizing ontology-based appears as a promising way to overcome this obstacle and unleash the full potential of healthcare systems. The development of a Medical Intelligent Process Model (MIPM) using ontology-based techniques is motivated by a lack of quick access to relevant medical information and advanced tools for treatment planning and clinical decision-making, which ontology-based techniques can provide. The aim of this work is to develop a structured and knowledge-driven framework that leverages ontology, a formal representation of domain knowledge, to enhance various aspects of healthcare. Object-Oriented Analysis and Design Methodology (OOADM) were adopted in the design of the system as we desired to build a usable and evolvable application. For effective implementation of this work, we used the following materials/methods/tools: the medical dataset for the test of our model in this work was obtained from Kaggle. The ontology-based technique was used with Confusion Matrix, MySQL, Python, Hypertext Markup Language (HTML), Hypertext Preprocessor (PHP), Cascaded Style Sheet (CSS), JavaScript, Dreamweaver, and Fireworks. According to test results on the new system using Confusion Matrix, both the accuracy and overall effectiveness of the medical intelligent process significantly improved by 20% compared to the previous system. Therefore, using the model is recommended for healthcare professionals.

Keywords: ontology-based, model, database, OOADM, healthcare

Procedia PDF Downloads 78