Search results for: small data sets
27481 Landslide Susceptibility Analysis in the St. Lawrence Lowlands Using High Resolution Data and Failure Plane Analysis
Authors: Kevin Potoczny, Katsuichiro Goda
Abstract:
The St. Lawrence lowlands extend from Ottawa to Quebec City and are known for large deposits of sensitive Leda clay. Leda clay deposits are responsible for many large landslides, such as the 1993 Lemieux and 2010 St. Jude (4 fatalities) landslides. Due to the large extent and sensitivity of Leda clay, regional hazard analysis for landslides is an important tool in risk management. A 2018 regional study by Farzam et al. on the susceptibility of Leda clay slopes to landslide hazard uses 1 arc second topographical data. A qualitative method known as Hazus is used to estimate susceptibility by checking for various criteria in a location and determine a susceptibility rating on a scale of 0 (no susceptibility) to 10 (very high susceptibility). These criteria are slope angle, geological group, soil wetness, and distance from waterbodies. Given the flat nature of St. Lawrence lowlands, the current assessment fails to capture local slopes, such as the St. Jude site. Additionally, the data did not allow one to analyze failure planes accurately. This study majorly improves the analysis performed by Farzam et al. in two aspects. First, regional assessment with high resolution data allows for identification of local locations that may have been previously identified as low susceptibility. This then provides the opportunity to conduct a more refined analysis on the failure plane of the slope. Slopes derived from 1 arc second data are relatively gentle (0-10 degrees) across the region; however, the 1- and 2-meter resolution 2022 HRDEM provided by NRCAN shows that short, steep slopes are present. At a regional level, 1 arc second data can underestimate the susceptibility of short, steep slopes, which can be dangerous as Leda clay landslides behave retrogressively and travel upwards into flatter terrain. At the location of the St. Jude landslide, slope differences are significant. 1 arc second data shows a maximum slope of 12.80 degrees and a mean slope of 4.72 degrees, while the HRDEM data shows a maximum slope of 56.67 degrees and a mean slope of 10.72 degrees. This equates to a difference of three susceptibility levels when the soil is dry and one susceptibility level when wet. The use of GIS software is used to create a regional susceptibility map across the St. Lawrence lowlands at 1- and 2-meter resolutions. Failure planes are necessary to differentiate between small and large landslides, which have so far been ignored in regional analysis. Leda clay failures can only retrogress as far as their failure planes, so the regional analysis must be able to transition smoothly into a more robust local analysis. It is expected that slopes within the region, once previously assessed at low susceptibility scores, contain local areas of high susceptibility. The goal is to create opportunities for local failure plane analysis to be undertaken, which has not been possible before. Due to the low resolution of previous regional analyses, any slope near a waterbody could be considered hazardous. However, high-resolution regional analysis would allow for more precise determination of hazard sites.Keywords: hazus, high-resolution DEM, leda clay, regional analysis, susceptibility
Procedia PDF Downloads 7327480 Duration Patterns of English by Native British Speakers and Mandarin ESL Speakers
Authors: Chen Bingru
Abstract:
This study is intended to describe and analyze the effects of polysyllabic shortening and word or phrase boundary on the duration patterns of spoken utterances by Mandarin learners of English in comparison with native speakers of English. To investigate the relative contribution of these effects, two production experiments were conducted. The study included 11 native British English speakers and 20 Mandarin learners of English who were asked to produce four sets of tokens consisting of a mono-syllabic base form, disyllabic, and trisyllabic words derived from the base by the addition of suffixes, and a set of short sentences with a particular combination of phrase size, stress pattern, and boundary location. The duration of words and segments was measured, and results from the data analysis suggest that the amount of polysyllabic shortening and the effect of word or phrase position are likely to affect a Chinese accent for Mandarin ESL speakers. This study sheds light on research on the duration patterns of language by demonstrating the effect of duration-related factors on the foreign accent of Mandarin ESL speakers. It can also benefit both L2 learners and language teachers by increasing their sensitivity to the duration differences and difficulties experienced by L2 learners of English. An understanding of the amount of polysyllabic shortening and the effect of position in words and phrase on syllable duration can also facilitate L2 teachers to establish priorities for teaching pronunciation to ESL learners.Keywords: duration patterns, Chinese accent, Mandarin ESL speakers, polysyllabic shortening
Procedia PDF Downloads 13727479 Enhanced Extra Trees Classifier for Epileptic Seizure Prediction
Authors: Maurice Ntahobari, Levin Kuhlmann, Mario Boley, Zhinoos Razavi Hesabi
Abstract:
For machine learning based epileptic seizure prediction, it is important for the model to be implemented in small implantable or wearable devices that can be used to monitor epilepsy patients; however, current state-of-the-art methods are complex and computationally intensive. We use Shapley Additive Explanation (SHAP) to find relevant intracranial electroencephalogram (iEEG) features and improve the computational efficiency of a state-of-the-art seizure prediction method based on the extra trees classifier while maintaining prediction performance. Results for a small contest dataset and a much larger dataset with continuous recordings of up to 3 years per patient from 15 patients yield better than chance prediction performance (p < 0.004). Moreover, while the performance of the SHAP-based model is comparable to that of the benchmark, the overall training and prediction time of the model has been reduced by a factor of 1.83. It can also be noted that the feature called zero crossing value is the best EEG feature for seizure prediction. These results suggest state-of-the-art seizure prediction performance can be achieved using efficient methods based on optimal feature selection.Keywords: machine learning, seizure prediction, extra tree classifier, SHAP, epilepsy
Procedia PDF Downloads 11127478 A Review on Intelligent Systems for Geoscience
Authors: R Palson Kennedy, P.Kiran Sai
Abstract:
This article introduces machine learning (ML) researchers to the hurdles that geoscience problems present, as well as the opportunities for improvement in both ML and geosciences. This article presents a review from the data life cycle perspective to meet that need. Numerous facets of geosciences present unique difficulties for the study of intelligent systems. Geosciences data is notoriously difficult to analyze since it is frequently unpredictable, intermittent, sparse, multi-resolution, and multi-scale. The first half addresses data science’s essential concepts and theoretical underpinnings, while the second section contains key themes and sharing experiences from current publications focused on each stage of the data life cycle. Finally, themes such as open science, smart data, and team science are considered.Keywords: Data science, intelligent system, machine learning, big data, data life cycle, recent development, geo science
Procedia PDF Downloads 13327477 Observation and Experience of Using Mechanically Activated Fly Ash in Concrete
Authors: Rudolf Hela, Lenka Bodnarova
Abstract:
Paper focuses on experimental testing of possibilities of mechanical activation of fly ash and observation of influence of specific surface and granulometry on final properties of fresh and hardened concrete. Mechanical grinding prepared various fineness of fly ash, which was classed by specific surface in accordance with Blain and their granulometry was determined by means of laser granulometer. Then, sets of testing specimens were made from mix designs of identical composition with 25% or Portland cement CEM I 42.5 R replaced with fly ash with various specific surface and granulometry. Mix design with only Portland cement was used as reference. Mix designs were tested on consistency of fresh concrete and compressive strength after 7, 28, 60, and 90 days.Keywords: concrete, fly ash, latent hydraulicity, mechanically activated fly ash
Procedia PDF Downloads 21027476 The Structural Alteration of DNA Native Structure of Staphylococcus aureus Bacteria by Designed Quinoxaline Small Molecules Result in Their Antibacterial Properties
Authors: Jeet Chakraborty, Sanjay Dutta
Abstract:
Antibiotic resistance by bacteria has proved to be a severe threat to mankind in recent times, and this fortifies an urgency to design and develop potent antibacterial small molecules/compounds with nonconventional mechanisms than the conventional ones. DNA carries the genetic signature of any organism, and bacteria maintain their genomic DNA inside the cell in a well-regulated compact form with the help of various nucleoid associated proteins like HU, HNS, etc. These proteins control various fundamental processes like gene expression, replication, etc., inside the cell. Alteration of the native DNA structure of bacteria can lead to severe consequences in cellular processes inside the bacterial cell that ultimately result in the death of the organism. The change in the global DNA structure by small molecules initiates a plethora of cellular responses that have not been very well investigated. Echinomycin and Triostin-A are biologically active Quinoxaline small molecules that typically consist of a quinoxaline chromophore attached with an octadepsipeptide ring. They bind to double-stranded DNA in a sequence-specific way and have high activity against a wide variety of bacteria, mainly against Gram-positive ones. To date, few synthetic quinoxaline scaffolds were synthesized, displaying antibacterial potential against a broad scale of pathogenic bacteria. QNOs (Quinoxaline N-oxides) are known to target DNA and instigate reactive oxygen species (ROS) production in bacteria, thereby exhibiting antibacterial properties. The divergent role of Quinoxaline small molecules in medicinal research qualifies them for the evaluation of their antimicrobial properties as a potential candidate. The previous study from our lab has given new insights on a 6-nitroquinoxaline derivative 1d as an intercalator of DNA, which induces conformational changes in DNA upon binding.7 The binding event observed was dependent on the presence of a crucial benzyl substituent on the quinoxaline moiety. This was associated with a large induced CD (ICD) appearing in a sigmoidal pattern upon the interaction of 1d with dsDNA. The induction of DNA superstructures by 1d at high Drug:DNA ratios was observed that ultimately led to DNA condensation. Eviction of invitro-assembled nucleosome upon treatment with a high dose of 1d was also observed. In this work, monoquinoxaline derivatives of 1d were synthesized by various modifications of the 1d scaffold. The set of synthesized 6-nitroquinoxaline derivatives along with 1d were all subjected to antibacterial evaluation across five different bacteria species. Among the compound set, 3a displayed potent antibacterial activity against Staphylococcus aureus bacteria. 3a was further subjected to various biophysical studies to check whether the DNA structural alteration potential was still intact. The biological response of S. aureus cells upon treatment with 3a was studied using various cell biology processes, which led to the conclusion that 3d can initiate DNA damage in the S. aureus cells. Finally, the potential of 3a in disrupting preformed S.aureus and S.epidermidis biofilms was also studied.Keywords: DNA structural change, antibacterial, intercalator, DNA superstructures, biofilms
Procedia PDF Downloads 16827475 Computation and Validation of the Stress Distribution around a Circular Hole in a Slab Undergoing Plastic Deformation
Authors: Sherif D. El Wakil, John Rice
Abstract:
The aim of the current work was to employ the finite element method to model a slab, with a small hole across its width, undergoing plastic plane strain deformation. The computational model had, however, to be validated by comparing its results with those obtained experimentally. Since they were in good agreement, the finite element method can therefore be considered a reliable tool that can help gain better understanding of the mechanism of ductile failure in structural members having stress raisers. The finite element software used was ANSYS, and the PLANE183 element was utilized. It is a higher order 2-D, 8-node or 6-node element with quadratic displacement behavior. A bilinear stress-strain relationship was used to define the material properties, with constants similar to those of the material used in the experimental study. The model was run for several tensile loads in order to observe the progression of the plastic deformation region, and the stress concentration factor was determined in each case. The experimental study involved employing the visioplasticity technique, where a circular mesh (each circle was 0.5 mm in diameter, with 0.05 mm line thickness) was initially printed on the side of an aluminum slab having a small hole across its width. Tensile loading was then applied to produce a small increment of plastic deformation. Circles in the plastic region became ellipses, where the directions of the principal strains and stresses coincided with the major and minor axes of the ellipses. Next, we were able to determine the directions of the maximum and minimum shear stresses at the center of each ellipse, and the slip-line field was then constructed. We were then able to determine the stress at any point in the plastic deformation zone, and hence the stress concentration factor. The experimental results were found to be in good agreement with the analytical ones.Keywords: finite element method to model a slab, slab undergoing plastic deformation, stress distribution around a circular hole, visioplasticity
Procedia PDF Downloads 31827474 General Network with Four Nodes and Four Activities with Triangular Fuzzy Number as Activity Times
Authors: Rashmi Tamhankar, Madhav Bapat
Abstract:
In many projects, we have to use human judgment for determining the duration of the activities which may vary from person to person. Hence, there is vagueness about the time duration for activities in network planning. Fuzzy sets can handle such vague or imprecise concepts and has an application to such network. The vague activity times can be represented by triangular fuzzy numbers. In this paper, a general network with fuzzy activity times is considered and conditions for the critical path are obtained also we compute total float time of each activity. Several numerical examples are discussed.Keywords: PERT, CPM, triangular fuzzy numbers, fuzzy activity times
Procedia PDF Downloads 47227473 The Influence of Cognitive Load in the Acquisition of Words through Sentence or Essay Writing
Authors: Breno Barrreto Silva, Agnieszka Otwinowska, Katarzyna Kutylowska
Abstract:
Research comparing lexical learning following the writing of sentences and longer texts with keywords is limited and contradictory. One possibility is that the recursivity of writing may enhance processing and increase lexical learning; another possibility is that the higher cognitive load of complex-text writing (e.g., essays), at least when timed, may hinder the learning of words. In our study, we selected 2 sets of 10 academic keywords matched for part of speech, length (number of characters), frequency (SUBTLEXus), and concreteness, and we asked 90 L1-Polish advanced-level English majors to use the keywords when writing sentences, timed (60 minutes) or untimed essays. First, all participants wrote a timed Control essay (60 minutes) without keywords. Then different groups produced Timed essays (60 minutes; n=33), Untimed essays (n=24), or Sentences (n=33) using the two sets of glossed keywords (counterbalanced). The comparability of the participants in the three groups was ensured by matching them for proficiency in English (LexTALE), and for few measures derived from the control essay: VocD (assessing productive lexical diversity), normed errors (assessing productive accuracy), words per minute (assessing productive written fluency), and holistic scores (assessing overall quality of production). We measured lexical learning (depth and breadth) via an adapted Vocabulary Knowledge Scale (VKS) and a free association test. Cognitive load was measured in the three essays (Control, Timed, Untimed) using normed number of errors and holistic scores (TOEFL criteria). The number of errors and essay scores were obtained from two raters (interrater reliability Pearson’s r=.78-91). Generalized linear mixed models showed no difference in the breadth and depth of keyword knowledge after writing Sentences, Timed essays, and Untimed essays. The task-based measurements found that Control and Timed essays had similar holistic scores, but that Untimed essay had better quality than Timed essay. Also, Untimed essay was the most accurate, and Timed essay the most error prone. Concluding, using keywords in Timed, but not Untimed, essays increased cognitive load, leading to more errors and lower quality. Still, writing sentences and essays yielded similar lexical learning, and differences in the cognitive load between Timed and Untimed essays did not affect lexical acquisition.Keywords: learning academic words, writing essays, cognitive load, english as an L2
Procedia PDF Downloads 7227472 In Search of High Growth: Mapping out Academic Spin-Off´s Performance in Catalonia
Abstract:
This exploratory study gives an overview of the evolution of the main financial and performance indicators of the Academic Spin-Off’s and High Growth Academic Spin-Off’s in year 3 and year 6 after its creation in the region of Catalonia in Spain. The study compares and evaluates results of these different measures of performance and the degree of success of these companies for each University. We found that the average Catalonian Academic Spin-Off is small and have not achieved the sustainability stage at year 6. On the contrary, a small group of High Growth Academic Spin-Off’s exhibit robust performance with high profits in year 6. Our results support the need to increase selectivity and support for these companies especially near year 3, because are the ones that will bring wealth and employment. University role as an investor has rigid norms and habits that impede an efficient economic return from their ASO investment. Universities with high performance on sales and employment in year 3 not always could sustain this growth in year 6 because their ASO’s are not profitable. On the contrary, profitable ASO exhibit superior performance in all measurement indicators in year 6. We advocate the need of a balanced growth (with profits) as a way to obtain subsequent continuous growth.Keywords: Academic Spin-Off (ASO), university entrepreneurship, entrepreneurial university, high growth, New Technology Based Companies (NTBC), University Spin-Off
Procedia PDF Downloads 45727471 Factors Affecting Employee Decision Making in an AI Environment
Authors: Yogesh C. Sharma, A. Seetharaman
Abstract:
The decision-making process in humans is a complicated system influenced by a variety of intrinsic and extrinsic factors. Human decisions have a ripple effect on subsequent decisions. In this study, the scope of human decision making is limited to employees. In an organisation, a person makes a variety of decisions from the time they are hired to the time they retire. The goal of this research is to identify various elements that influence decision-making. In addition, the environment in which a decision is made is a significant aspect of the decision-making process. Employees in today's workplace use artificial intelligence (AI) systems for automation and decision augmentation. The impact of AI systems on the decision-making process is examined in this study. This research is designed based on a systematic literature review. Based on gaps in the literature, limitations and the scope of future research have been identified. Based on these findings, a research framework has been designed to identify various factors affecting employee decision making. Employee decision making is influenced by technological advancement, data-driven culture, human trust, decision automation-augmentation, and workplace motivation. Hybrid human-AI systems require the development of new skill sets and organisational design. Employee psychological safety and supportive leadership influences overall job satisfaction.Keywords: employee decision making, artificial intelligence (AI) environment, human trust, technology innovation, psychological safety
Procedia PDF Downloads 10727470 Analysis of the Content of Sugars, Vitamin C, Preservatives, Synthetic Dyes, Sweeteners, Sodium and Potassium and Microbiological Purity in Selected Products Made From Fruit and Vegetables in Small Regional Factories and in Large Food Corporations
Authors: Katarzyna Miśkiewicz, Magdalena Lasoń-Rydel, Małgorzata Krępska, Katarzyna Sieczyńska, Iwona Masłowska-Lipowicz, Katarzyna Ławińska
Abstract:
The aim of the study was to analyse a selection of 12 pasteurised products made from fruit and vegetables, such as fruit juices, fruit drinks, jams, marmalades and jam produced by small regional factories as well as large food corporations. The research was carried out as part of the project "Innovative system of healthy and regional food distribution", funded by the Ministry of Education and Science (Poland), which aims to create an economically and organisationally strong agri-food industry in Poland through effective cooperation between scientific and socio-economic actors. The main activities of the project include support for the creation of new distribution channels for regional food products and their easy access to a wide group of potential customers while maintaining the highest quality standards. One of the key areas of the project is food quality analyses conducted to indicate the competitive advantage of regional products. Presented here are studies on the content of sugars, vitamin C, preservatives, synthetic colours, sweeteners, sodium and potassium, as well as studies on the microbiological purity of selected products made from fruit and vegetables. The composition of products made from fruit and vegetables varies greatly and depends on both the type of raw material and the way it is processed. Of the samples tested, fruit drinks contained the least amount of sugars, and jam and marmalade made by large producers and bought in large chain stores contained the most. However, the low sugar content of some fruit drinks is due to the presence of the sweetener sucralose in their composition. The vitamin C content of the samples varied, being higher in products where it was added during production. All products made in small local factories were free of food additives such as preservatives, sweeteners and synthetic colours, indicating their superiority over products made by large producers. Products made in small local factories were characterised by a relatively high potassium content. The microbiological purity of commercial products was confirmed - no Salmonella spp. were detected, and the number of mesophilic bacteria, moulds, yeasts, and β-glucuronidase-positive E. coli was below the limit of quantification.Keywords: fruit and vegetable products, sugars, food additives, HPLC, ICP-OES
Procedia PDF Downloads 9127469 Factors Influencing the Adoption of Interpersonal Communication Media to Maximize Business Competitiveness among Small and Medium Enterprises in Hong Kong: Industry Types and Entrepreneur Characteristics
Authors: Olivine Lo
Abstract:
Small- and Medium-Sized Enterprises (SMEs) consist of a broad variety of businesses, ranging from small grocery shops to manufacturing concerns. Some are dynamic and innovative, while others are more traditional. The definition of SMEs varies by country but is most determined by the number of employees, though business assets and sales revenues are alternative measures. There are eight main types of SME industries in Hong Kong: garment, electronics, plastics, metal and machinery, trading and logistics, building, manufacturing, and service industries. Information exchange is a key goal of human communication, and communicators have used a variety of media to maintain relationships through traditional face-to-face interactions and written forms like letters and faxes. With the advancement of mediated-interpersonal communication media from telephone to synchronic online tools like email, instant messaging, voice messaging, and video conferencing for sustaining relationships, particularly enabling geographically distanced relationships. Although these synchronous tools are gaining popularity, they are facilitating relationship maintenance in everyday life and complementing rather than replacing the more conventional face-to-face interactions. This study will test if there are any variances in effects by industry type among Hong Kong SMEs. The competitiveness of the business environment refers to the competition faced by a business within its particular industry. The more intense the competition in a given sector, the greater the potential for strategic uses of specific needs in a business. Both internal organization characteristics and external environments may affect firm performance and financial resources. The level of competitiveness within an industry will be a more reliable indicator to show how Hong Kong SMEs are striving to achieve their business goals using different techniques in their communication media preferences, rather than mere classification by industry type. This study thus divides the competitiveness of the business environment into internal and external: (1) the internal environment competition is the inherent competitiveness of the products or services provided by the SMEs, whereas (2) the external environment competition includes the economic and political realities and competitors joining the market. This study will test various organizational characteristics and competitiveness of the business environment to predict entrepreneurs’ communication media preferences.Keywords: competitiveness of business environment, small- and medium-sized enterprises, organizational characteristics, communication media preference
Procedia PDF Downloads 2927468 Social Enterprise Strategies for Financial Sustainability in the Economic Literature
Authors: Adam Bereczk
Abstract:
Due to persistent socioeconomic problems regarding sustainability and labour market equilibrium in Europe, the subjects of social economy gained considerable academic attention recently. At the meantime, social enterprises pursuing the double bottom line criteria, struggling to find the proper management philosophies and strategies to make their social purpose business financially sustainable. Despite the strategic management literature was developed mainly on the bases of large corporations, in the past years, the interpretation of strategy concepts became a frequent topic in scientific discussions in the case of small and medium-sized enterprises also. The topic of strategic orientations is a good example of the trend. However, less is known about the case of social enterprises, despite the fact, the majority of them are small businesses engaged in real business activities. The main purpose of this work is to give a comprehensive summary of different perspectives regarding the interpretations of strategic orientations of social enterprises. The novelty of this work is it shows the previous outcomes and models of scholars from various fields of economic science who tried to intertwine the two spheres in different forms, methodize the findings and draw attention to the shortcomings.Keywords: social enterprises, business sustainability, strategic orientations, literature review
Procedia PDF Downloads 27827467 Pro Grow Business Partnerships: Unlocking the Potential of SMEs Indonesia With Resource Advantage Theory of Competition Approach
Authors: Kesi Widjajanti
Abstract:
To develop the growth of small and medium enterprises (SMEs), it is important to unlock potential resources that can improve their performance. Business Partnerships (BP) are currently an interesting topic of strategy to use to expand markets and maximize financial and marketing performance. However, many business partnerships have not quite a role among small and medium companies in the creative industry in the Batik Craft sector in Indonesia. This study is rooted in the Resource Advantage Theory of Competition ( RAToC), which emphasizes that the advantage of company resources can be sourced from organizational and relational resources. With the basis of this theory, SMEs can optimize the allocation of relational resources and organizational goals, improve operational efficiency, and gain a strategic advantage in the market. Companies that are able to actualize organizational and relational resources better than other market players can be used for the process of increasing their superior performance. This study explores key elements from the RAToC perspective and shows how Business Partnerships have the potential to drive SMEs' growth. By aligning visions, and organizational resources, sharing knowledge and leveraging complementary relational resources, SMEs can increase their competitiveness, enter new markets, and achieve superior performance. The theoretical contribution of RAToC in small companies is due to the role of Pro-Grow Business Partnership strength as an important antecedent for improving SMEs' performance. The benefits (scenarios) of a Business Partnership to grow together are directed at optimizing resources that can create additional value for customers so that they can outperform competitors. Furthermore, managerial implications for SMEs who wish to unlock their resource potential can encourage the role of Pro-Grow Business Partnerships, which have specific characteristics, can absorb experience/knowledge capacity and utilize this knowledge for the development of "together" business ventures.Keywords: pro grow business partnership, performance, SMEs, resources advantage theory of competition, industry kreatif batik handycraft indonesia
Procedia PDF Downloads 7427466 Data Quality as a Pillar of Data-Driven Organizations: Exploring the Benefits of Data Mesh
Authors: Marc Bachelet, Abhijit Kumar Chatterjee, José Manuel Avila
Abstract:
Data quality is a key component of any data-driven organization. Without data quality, organizations cannot effectively make data-driven decisions, which often leads to poor business performance. Therefore, it is important for an organization to ensure that the data they use is of high quality. This is where the concept of data mesh comes in. Data mesh is an organizational and architectural decentralized approach to data management that can help organizations improve the quality of data. The concept of data mesh was first introduced in 2020. Its purpose is to decentralize data ownership, making it easier for domain experts to manage the data. This can help organizations improve data quality by reducing the reliance on centralized data teams and allowing domain experts to take charge of their data. This paper intends to discuss how a set of elements, including data mesh, are tools capable of increasing data quality. One of the key benefits of data mesh is improved metadata management. In a traditional data architecture, metadata management is typically centralized, which can lead to data silos and poor data quality. With data mesh, metadata is managed in a decentralized manner, ensuring accurate and up-to-date metadata, thereby improving data quality. Another benefit of data mesh is the clarification of roles and responsibilities. In a traditional data architecture, data teams are responsible for managing all aspects of data, which can lead to confusion and ambiguity in responsibilities. With data mesh, domain experts are responsible for managing their own data, which can help provide clarity in roles and responsibilities and improve data quality. Additionally, data mesh can also contribute to a new form of organization that is more agile and adaptable. By decentralizing data ownership, organizations can respond more quickly to changes in their business environment, which in turn can help improve overall performance by allowing better insights into business as an effect of better reports and visualization tools. Monitoring and analytics are also important aspects of data quality. With data mesh, monitoring, and analytics are decentralized, allowing domain experts to monitor and analyze their own data. This will help in identifying and addressing data quality problems in quick time, leading to improved data quality. Data culture is another major aspect of data quality. With data mesh, domain experts are encouraged to take ownership of their data, which can help create a data-driven culture within the organization. This can lead to improved data quality and better business outcomes. Finally, the paper explores the contribution of AI in the coming years. AI can help enhance data quality by automating many data-related tasks, like data cleaning and data validation. By integrating AI into data mesh, organizations can further enhance the quality of their data. The concepts mentioned above are illustrated by AEKIDEN experience feedback. AEKIDEN is an international data-driven consultancy that has successfully implemented a data mesh approach. By sharing their experience, AEKIDEN can help other organizations understand the benefits and challenges of implementing data mesh and improving data quality.Keywords: data culture, data-driven organization, data mesh, data quality for business success
Procedia PDF Downloads 13327465 Adaptive Beamforming with Steering Error and Mutual Coupling between Antenna Sensors
Authors: Ju-Hong Lee, Ching-Wei Liao
Abstract:
Owing to close antenna spacing between antenna sensors within a compact space, a part of data in one antenna sensor would outflow to other antenna sensors when the antenna sensors in an antenna array operate simultaneously. This phenomenon is called mutual coupling effect (MCE). It has been shown that the performance of antenna array systems can be degraded when the antenna sensors are in close proximity. Especially, in a systems equipped with massive antenna sensors, the degradation of beamforming performance due to the MCE is significantly inevitable. Moreover, it has been shown that even a small angle error between the true direction angle of the desired signal and the steering angle deteriorates the effectiveness of an array beamforming system. However, the true direction vector of the desired signal may not be exactly known in some applications, e.g., the application in land mobile-cellular wireless systems. Therefore, it is worth developing robust techniques to deal with the problem due to the MCE and steering angle error for array beamforming systems. In this paper, we present an efficient technique for performing adaptive beamforming with robust capabilities against the MCE and the steering angle error. Only the data vector received by an antenna array is required by the proposed technique. By using the received array data vector, a correlation matrix is constructed to replace the original correlation matrix associated with the received array data vector. Then, the mutual coupling matrix due to the MCE on the antenna array is estimated through a recursive algorithm. An appropriate estimate of the direction angle of the desired signal can also be obtained during the recursive process. Based on the estimated mutual coupling matrix, the estimated direction angle, and the reconstructed correlation matrix, the proposed technique can effectively cure the performance degradation due to steering angle error and MCE. The novelty of the proposed technique is that the implementation procedure is very simple and the resulting adaptive beamforming performance is satisfactory. Simulation results show that the proposed technique provides much better beamforming performance without requiring complicated complexity as compared with the existing robust techniques.Keywords: adaptive beamforming, mutual coupling effect, recursive algorithm, steering angle error
Procedia PDF Downloads 32027464 Poultry in Motion: Text Mining Social Media Data for Avian Influenza Surveillance in the UK
Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves
Abstract:
Background: Avian influenza, more commonly known as Bird flu, is a viral zoonotic respiratory disease stemming from various species of poultry, including pets and migratory birds. Researchers have purported that the accessibility of health information online, in addition to the low-cost data collection methods the internet provides, has revolutionized the methods in which epidemiological and disease surveillance data is utilized. This paper examines the feasibility of using internet data sources, such as Twitter and livestock forums, for the early detection of the avian flu outbreak, through the use of text mining algorithms and social network analysis. Methods: Social media mining was conducted on Twitter between the period of 01/01/2021 to 31/12/2021 via the Twitter API in Python. The results were filtered firstly by hashtags (#avianflu, #birdflu), word occurrences (avian flu, bird flu, H5N1), and then refined further by location to include only those results from within the UK. Analysis was conducted on this text in a time-series manner to determine keyword frequencies and topic modeling to uncover insights in the text prior to a confirmed outbreak. Further analysis was performed by examining clinical signs (e.g., swollen head, blue comb, dullness) within the time series prior to the confirmed avian flu outbreak by the Animal and Plant Health Agency (APHA). Results: The increased search results in Google and avian flu-related tweets showed a correlation in time with the confirmed cases. Topic modeling uncovered clusters of word occurrences relating to livestock biosecurity, disposal of dead birds, and prevention measures. Conclusions: Text mining social media data can prove to be useful in relation to analysing discussed topics for epidemiological surveillance purposes, especially given the lack of applied research in the veterinary domain. The small sample size of tweets for certain weekly time periods makes it difficult to provide statistically plausible results, in addition to a great amount of textual noise in the data.Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, avian influenza, social media
Procedia PDF Downloads 10427463 Improving Taint Analysis of Android Applications Using Finite State Machines
Authors: Assad Maalouf, Lunjin Lu, James Lynott
Abstract:
We present a taint analysis that can automatically detect when string operations result in a string that is free of taints, where all the tainted patterns have been removed. This is an improvement on the conservative behavior of previous taint analyzers, where a string operation on a tainted string always leads to a tainted string unless the operation is manually marked as a sanitizer. The taint analysis is built on top of a string analysis that uses finite state automata to approximate the sets of values that string variables can take during the execution of a program. The proposed approach has been implemented as an extension of FlowDroid and experimental results show that the resulting taint analyzer is much more precise than the original FlowDroid.Keywords: android, static analysis, string analysis, taint analysis
Procedia PDF Downloads 17727462 A Fractional Derivative Model to Quantify Non-Darcy Flow in Porous and Fractured Media
Authors: Golden J. Zhang, Dongbao Zhou
Abstract:
Darcy’s law is the fundamental theory in fluid dynamics and engineering applications. Although Darcy linearity was found to be valid for slow, viscous flow, non-linear and non-Darcian flow has been well documented under both small and large velocity fluid flow. Various classical models were proposed and used widely to quantify non-Darcian flow, including the well-known Forchheimer, Izbash, and Swartzendruber models. Applications, however, revealed limitations of these models. Here we propose a general model built upon the Caputo fractional derivative to quantify non-Darcian flow for various flows (laminar to turbulence).Real-world applications and model comparisons showed that the new fractional-derivative model, which extends the fractional model proposed recently by Zhou and Yang (2018), can capture the non-Darcian flow in the relatively small velocity in low-permeability deposits and the relatively high velocity in high-permeability sand. A scale effect was also identified for non-Darcian flow in fractured rocks. Therefore, fractional calculus may provide an efficient tool to improve classical models to quantify fluid dynamics in aquatic environments.Keywords: fractional derivative, darcy’s law, non-darcian flow, fluid dynamics
Procedia PDF Downloads 12427461 Linkages between Innovation Policies and SMEs' Innovation Activities: Empirical Evidence from 15 Transition Countries
Authors: Anita Richter
Abstract:
Innovation is one of the key foundations of competitive advantage, generating growth and welfare worldwide. Consequently, all firms should innovate to bring new ideas to the market. Innovation is a vital growth driver, particularly for transition countries to move towards knowledge-based, high-income economies. However, numerous barriers, such as financial, regulatory or infrastructural constraints prevent, in particular, new and small firms in transition countries from innovating. Thus SMEs’ innovation output may benefit substantially from government support. This research paper aims to assess the effect of government interventions on innovation activities in SMEs in emerging countries. Until now academic research related to the innovation policies focused either on single country and/or high-income countries assessments and less on cross-country and/or low and middle-income countries. Therefore the paper seeks to close the research gap by providing empirical evidence from 8,500 firms in 15 transition countries (Eastern Europe, South Caucasus, South East Europe, Middle East and North Africa). Using firm-level data from the Business Environment and Enterprise Performance Survey of the World Bank and EBRD and policy data from the SME Policy Index of the OECD, the paper investigates how government interventions affect SME’s likelihood of investing in any technological and non-technological innovation. Using the Standard Linear Regression, the impact of government interventions on SMEs’ innovation output and R&D activities is measured. The empirical analysis suggests that a firm’s decision to invest into innovative activities is sensitive to government interventions. A firm’s likelihood to invest into innovative activities increases by 3% to 8%, if the innovation eco-system noticeably improves (measured by an increase of 1 level in the SME Policy Index). At the same time, a better eco-system encourages SMEs to invest more in R&D. Government reforms in establishing a dedicated policy framework (IP legislation), institutional infrastructure (science and technology parks, incubators) and financial support (public R&D grants, innovation vouchers) are particularly relevant to stimulate innovation performance in SMEs. Particular segments of the SME population, namely micro and manufacturing firms, are more likely to benefit from an increased innovation framework conditions. The marginal effects are particularly strong on product innovation, process innovation, and marketing innovation, but less on management innovation. In conclusion, government interventions supporting innovation will likely lead to higher innovation performance of SMEs. They increase productivity at both firm and country level, which is a vital step in transitioning towards knowledge-based market economies.Keywords: innovation, research and development, government interventions, economic development, small and medium-sized enterprises, transition countries
Procedia PDF Downloads 32427460 Big Data Analysis with RHadoop
Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim
Abstract:
It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop
Procedia PDF Downloads 43627459 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: data augmentation, mutex task generation, meta-learning, text classification.
Procedia PDF Downloads 9127458 Demonstration Operation of Distributed Power Generation System Based on Carbonized Biomass Gasification
Authors: Kunio Yoshikawa, Ding Lu
Abstract:
Small-scale, distributed and low-cost biomass power generation technologies are highly required in the modern society. There are big needs for these technologies in the disaster areas of developed countries and un-electrified rural areas of developing countries. This work aims to present a technical feasibility of the portable ultra-small power generation system based on the gasification of carbonized wood pellets/briquettes. Our project is designed for enabling independent energy production from various kinds of biomass resources in the open-field. The whole process mainly consists of two processes: biomass and waste pretreatment; gasification and power generation. The first process includes carbonization, densification (briquetting or pelletization), and the second includes updraft fixed bed gasification of carbonized pellets/briquettes, syngas purification, and power generation employing an internal combustion gas engine. A combined pretreatment processes including carbonization without external energy and densification were adopted to deal with various biomass. Carbonized pellets showed a better gasification performance than carbonized briquettes and their mixture. The 100-hour continuous operation results indicated that pelletization/briquetting of carbonized fuel realized the stable operation of an updraft gasifier if there were no blocking issues caused by the accumulation of tar. The cold gas efficiency and the carbon conversion during carbonized wood pellets gasification was about 49.2% and 70.5% with the air equivalence ratio value of around 0.32, and the corresponding overall efficiency of the gas engine was 20.3% during the stable stage. Moreover, the maximum output power was 21 kW at the air flow rate of 40 Nm³·h⁻¹. Therefore, the comprehensive system covering biomass carbonization, densification, gasification, syngas purification, and engine system is feasible for portable, ultra-small power generation. This work has been supported by Innovative Science and Technology Initiative for Security (Ministry of Defence, Japan).Keywords: biomass carbonization, densification, distributed power generation, gasification
Procedia PDF Downloads 15427457 Application of Costing System in the Small and Medium Sized Enterprises (SME) in Turkey
Authors: Hamide Özyürek, Metin Yılmaz
Abstract:
Standard processes, similar and limited production lines, the production of high direct costs will be more accurate than the use of parts of the traditional cost systems in the literature. However, direct costs, overhead expenses, in turn, decreases the burden of increasingly sophisticated production facilities, a situation that led the researchers to look for the cost of traditional systems of alternative techniques. Variety cost management approaches for example Total quality management (TQM), just-in-time (JIT), benchmarking, kaizen costing, targeting cost, life cycle costs (LLC), activity-based costing (ABC) value engineering have been introduced. Management and cost applications have changed over the past decade and will continue to change. Modern cost systems can provide relevant and accurate cost information. These methods provide the decisions about customer, product and process improvement. The aim of study is to describe and explain the adoption and application of costing systems in SME. This purpose reports on a survey conducted during 2014 small and medium sized enterprises (SME) in Ankara. The survey results were evaluated using SPSS package program.Keywords: modern costing systems, managerial accounting, cost accounting, costing
Procedia PDF Downloads 56527456 Spirituality, Sense of Community and Economic Welfare: A Case of Mawlynnong Village, India
Authors: Ricky A. J. Syngkon, Santi Gopal Maji
Abstract:
Decent work and inclusive economic growth, social development, environmental protection, eradication of poverty and hunger as well as clean water and sanitation are the rudiments of 2030 agenda of sustainable development goals of the United Nations. On the other hand, spirituality is deeply entwined in the fabric of daily lives that helps in shaping attitudes, opinions, and behaviors of common people and ensuring quality of lives and overall sustainable development through protection of environment and natural resources. Mawlynnong, a small village in North-Eastern part of India, is a vivid example of how spirituality influences the development of sense of community leading to upliftment of the economic conditions of the people. Mawlynnong as a small hamlet has been in existence for a couple of centuries and it was acknowledged as the cleanest village of Asia in 2004 by BBC and National Geographic and subsequently endorsed by UNESCO in 2006. Consequently, it has attracted large number of tourists over the years from India and other parts of the world. This paper tries to explore how spirituality leads to a sense of community and the economic benefits for the people. Further, this paper also tries to find out the answer whether such an informal collective effort is sustainable or not for achieving solidarity economy. The study is based on both primary and secondary data collected from the local people and the State Government records. The findings of the study indicate that over the last one and a half decade the tourist footfall has increased to a great extent in Mawlynnong and this has brought about a paradigm shift in the occupational structure of its inhabitants from plantation to service sector particularly tourism and tourism related activities. As a result, from the economic standpoint, it is observed that life is much better off now as compared to before. But from the socio-cultural standpoint, the study finds a drift in terms of the cohesiveness and community bonding which was the hallmark of this village. This drift puts a question mark about the sustainability of such practices and consequently the development of solidarity economy.Keywords: spirituality, sense of community, economic welfare, solidarity economy, Mawlynnong village
Procedia PDF Downloads 14027455 Efficient Positioning of Data Aggregation Point for Wireless Sensor Network
Authors: Sifat Rahman Ahona, Rifat Tasnim, Naima Hassan
Abstract:
Data aggregation is a helpful technique for reducing the data communication overhead in wireless sensor network. One of the important tasks of data aggregation is positioning of the aggregator points. There are a lot of works done on data aggregation. But, efficient positioning of the aggregators points is not focused so much. In this paper, authors are focusing on the positioning or the placement of the aggregation points in wireless sensor network. Authors proposed an algorithm to select the aggregators positions for a scenario where aggregator nodes are more powerful than sensor nodes.Keywords: aggregation point, data communication, data aggregation, wireless sensor network
Procedia PDF Downloads 15527454 Spatial Econometric Approaches for Count Data: An Overview and New Directions
Authors: Paula Simões, Isabel Natário
Abstract:
This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.Keywords: spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data
Procedia PDF Downloads 59227453 A NoSQL Based Approach for Real-Time Managing of Robotics's Data
Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir
Abstract:
This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.Keywords: NoSQL databases, database management systems, robotics, big data
Procedia PDF Downloads 35227452 Experiences of Students with SLD at University: A Case Study
Authors: Lorna Martha Dreyer
Abstract:
Consistent with the changing paradigm on the rights of people with disabilities and in pursuit of social justice, there is internationally an increase in students with disabilities enrolling at Higher Education Institutions (HEIs). This trend challenges HEI’s to transform and attain Education for All (EFA) as a global imperative. However, while physical and sensory disabilities are observable, students with specific learning disabilities (SLD) do not present with any visible indications and are often referred to as “hidden” or “invisible” disabilities. This qualitative case study aimed to illuminate the experiences of students with SLDs at a South African university. The research was, therefore, guided by Vygotsky’s social-cultural theory (SCT). This research was conducted within a basic qualitative research methodology embedded in an interpretive paradigm. Data was collected through an online background survey and semi-structured interviews. Thematic qualitative content analysis was used to analyse the collected data systematically. From a social justice perspective, the major findings suggest that there are several factors that impede equal education for students with SLDs at university. Most participants in this small-scale study experienced a lack of acknowledgment and support from lecturers. They reported valuing the support of family and friends more than that of lecturers. It is concluded that lecturers need to be reflective of their pedagogical practices if authentic inclusion is to be realised.Keywords: higher education, inclusive education, pedagogy, social-cultural theory, specific learning disabilities
Procedia PDF Downloads 146