Search results for: slug-churn flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4775

Search results for: slug-churn flow

3215 Numerical Analysis of the Effects of Transpiration on Transient/Steady Natural Convection Flow of Reactive Viscous Fluid in a Vertical Channel Formed by Two Vertical Porous Plates

Authors: Ahmad K. Samaila, Basant K. Jha

Abstract:

This study is devoted to investigate the effect of transpiration on transient as well as steady-state natural convection flow of a reactive viscous fluid in a vertical channel formed by two infinite vertical parallel porous plates. The Boussinesq assumption is applied and the nonlinear governing equations of energy and momentum are developed. The problem is solved numerically using implicit finite difference method and analytically for steady-state case using perturbation method. Solutions are presented in graphical form for fluid temperature, velocity, and skin-friction and wall heat transfer rate for various parametric values. It is found that velocity, temperature, rate of heat transfer as well as skin-friction are strongly affected by mass leakage through the porous plates.

Keywords: transpiration, reactive viscous fluid, porous plates, natural convection, suction/injection

Procedia PDF Downloads 374
3214 Optimizing Cell Culture Performance in an Ambr15 Microbioreactor Using Dynamic Flux Balance and Computational Fluid Dynamic Modelling

Authors: William Kelly, Sorelle Veigne, Xianhua Li, Zuyi Huang, Shyamsundar Subramanian, Eugene Schaefer

Abstract:

The ambr15™ bioreactor is a single-use microbioreactor for cell line development and process optimization. The ambr system offers fully automatic liquid handling with the possibility of fed-batch operation and automatic control of pH and oxygen delivery. With operating conditions for large scale biopharmaceutical production properly scaled down, micro bioreactors such as the ambr15™ can potentially be used to predict the effect of process changes such as modified media or different cell lines. In this study, gassing rates and dilution rates were varied for a semi-continuous cell culture system in the ambr15™ bioreactor. The corresponding changes to metabolite production and consumption, as well as cell growth rate and therapeutic protein production were measured. Conditions were identified in the ambr15™ bioreactor that produced metabolic shifts and specific metabolic and protein production rates also seen in the corresponding larger (5 liter) scale perfusion process. A Dynamic Flux Balance model was employed to understand and predict the metabolic changes observed. The DFB model-predicted trends observed experimentally, including lower specific glucose consumption when CO₂ was maintained at higher levels (i.e. 100 mm Hg) in the broth. A Computational Fluid Dynamic (CFD) model of the ambr15™ was also developed, to understand transfer of O₂ and CO₂ to the liquid. This CFD model predicted gas-liquid flow in the bioreactor using the ANSYS software. The two-phase flow equations were solved via an Eulerian method, with population balance equations tracking the size of the gas bubbles resulting from breakage and coalescence. Reasonable results were obtained in that the Carbon Dioxide mass transfer coefficient (kLa) and the air hold up increased with higher gas flow rate. Volume-averaged kLa values at 500 RPM increased as the gas flow rate was doubled and matched experimentally determined values. These results form a solid basis for optimizing the ambr15™, using both CFD and FBA modelling approaches together, for use in microscale simulations of larger scale cell culture processes.

Keywords: cell culture, computational fluid dynamics, dynamic flux balance analysis, microbioreactor

Procedia PDF Downloads 283
3213 Data Integrity between Ministry of Education and Private Schools in the United Arab Emirates

Authors: Rima Shishakly, Mervyn Misajon

Abstract:

Education is similar to other businesses and industries. Achieving data integrity is essential in order to attain a significant supporting for all the stakeholders in the educational sector. Efficient data collect, flow, processing, storing and retrieving are vital in order to deliver successful solutions to the different stakeholders. Ministry of Education (MOE) in United Arab Emirates (UAE) has adopted ‘Education 2020’ a series of five-year plans designed to introduce advanced education management information systems. As part of this program, in 2010 MOE implemented Student Information Systems (SIS) to manage and monitor the students’ data and information flow between MOE and international private schools in UAE. This paper is going to discuss data integrity concerns between MOE, and private schools. The paper will clarify the data integrity issues and will indicate the challenges that face private schools in UAE.

Keywords: education management information systems (EMIS), student information system (SIS), United Arab Emirates (UAE), ministry of education (MOE), (KHDA) the knowledge and human development authority, Abu Dhabi educational counsel (ADEC)

Procedia PDF Downloads 223
3212 Comparison of Agree Method and Shortest Path Method for Determining the Flow Direction in Basin Morphometric Analysis: Case Study of Lower Tapi Basin, Western India

Authors: Jaypalsinh Parmar, Pintu Nakrani, Bhaumik Shah

Abstract:

Digital Elevation Model (DEM) is elevation data of the virtual grid on the ground. DEM can be used in application in GIS such as hydrological modelling, flood forecasting, morphometrical analysis and surveying etc.. For morphometrical analysis the stream flow network plays a very important role. DEM lacks accuracy and cannot match field data as it should for accurate results of morphometrical analysis. The present study focuses on comparing the Agree method and the conventional Shortest path method for finding out morphometric parameters in the flat region of the Lower Tapi Basin which is located in the western India. For the present study, open source SRTM (Shuttle Radar Topography Mission with 1 arc resolution) and toposheets issued by Survey of India (SOI) were used to determine the morphometric linear aspect such as stream order, number of stream, stream length, bifurcation ratio, mean stream length, mean bifurcation ratio, stream length ratio, length of overland flow, constant of channel maintenance and aerial aspect such as drainage density, stream frequency, drainage texture, form factor, circularity ratio, elongation ratio, shape factor and relief aspect such as relief ratio, gradient ratio and basin relief for 53 catchments of Lower Tapi Basin. Stream network was digitized from the available toposheets. Agree DEM was created by using the SRTM and stream network from the toposheets. The results obtained were used to demonstrate a comparison between the two methods in the flat areas.

Keywords: agree method, morphometric analysis, lower Tapi basin, shortest path method

Procedia PDF Downloads 239
3211 Characteristics of Bio-hybrid Hydrogel Materials with Prolonged Release of the Model Active Substance as Potential Wound Dressings

Authors: Katarzyna Bialik-Wąs, Klaudia Pluta, Dagmara Malina, Małgorzata Miastkowska

Abstract:

In recent years, biocompatible hydrogels have been used more and more in medical applications, especially as modern dressings and drug delivery systems. The main goal of this research was the characteristics of bio-hybrid hydrogel materials incorporated with the nanocarrier-drug system, which enable the release in a gradual and prolonged manner, up to 7 days. Therefore, the use of such a combination will provide protection against mechanical damage and adequate hydration. The proposed bio-hybrid hydrogels are characterized by: transparency, biocompatibility, good mechanical strength, and the dual release system, which allows for gradual delivery of the active substance, even up to 7 days. Bio-hybrid hydrogels based on sodium alginate (SA), poly(vinyl alcohol) (PVA), glycerine, and Aloe vera solution (AV) were obtained through the chemical crosslinking method using poly(ethylene glycol) diacrylate as a crosslinking agent. Additionally, a nanocarrier-drug system was incorporated into SA/PVA/AV hydrogel matrix. Here, studies were focused on the release profiles of active substances from bio-hybrid hydrogels using the USP4 method (DZF II Flow-Through System, Erweka GmbH, Langen, Germany). The equipment incorporated seven in-line flow-through diffusion cells. The membrane was placed over support with an orifice of 1,5 cm in diameter (diffusional area, 1.766 cm²). All the cells were placed in a cell warmer connected with the Erweka heater DH 2000i and the Erweka piston pump HKP 720. The piston pump transports the receptor fluid via seven channels to the flow-through cells and automatically adapts the setting of the flow rate. All volumes were measured by gravimetric methods by filling the chambers with Milli-Q water and assuming a density of 1 g/ml. All the determinations were made in triplicate for each cell. The release study of the model active substance was carried out using a regenerated cellulose membrane Spectra/Por®Dialysis Membrane MWCO 6-8,000 Carl Roth® Company. These tests were conducted in buffer solutions – PBS at pH 7.4. A flow rate of receptor fluid of about 4 ml /1 min was selected. The experiments were carried out for 7 days at a temperature of 37°C. The released concentration of the model drug in the receptor solution was analyzed using UV-Vis spectroscopy (Perkin Elmer Company). Additionally, the following properties of the modified materials were studied: physicochemical, structural (FT-IR analysis), morphological (SEM analysis). Finally, the cytotoxicity tests using in vitro method were conducted. The obtained results exhibited that the dual release system allows for the gradual and prolonged delivery of the active substances, even up to 7 days.

Keywords: wound dressings, SA/PVA hydrogels, nanocarrier-drug system, USP4 method

Procedia PDF Downloads 149
3210 Viscoelastic Separation and Concentration of Candida Using a Low Aspect Ratio Microchannel

Authors: Seonggil Kim, Jeonghun Nam, Chae Seung Lim

Abstract:

Rapid diagnosis of fungal infections is critical for rapid antifungal therapy. However, it is difficult to detect extremely low concentration fungi in blood sample. To address the limitation, separation and concentration of fungi in blood sample are required to enhance the sensitivity of PCR analysis. In this study, we demonstrated a sheathless separation and concentration of fungi, candida cells using a viscoelastic fluid. To validate the performance of the device, microparticle mixture (2 and 13 μm) was used, and those particles were successfully separated based on the size difference at high flow rate of 100 μl/min. For the final application, successful separation of the Candida cells from the white blood cells (WBCs) was achieved. Based on the viscoelastic lateral migration toward the equilibrium position, Candida cells were separated and concentrated by center focusing, while WBCs were removed by patterning into two streams between the channel center and the sidewalls. By flow cytometric analysis, the separation efficiency and the purity were evaluated as ~99% and ~ 97%, respectively. From the results, the device can be the powerful tool for detecting extremely rare disease-related cells.

Keywords: candida cells, concentration, separation, viscoelastic fluid

Procedia PDF Downloads 198
3209 A Stokes Optimal Control Model of Determining Cellular Interaction Forces during Gastrulation

Authors: Yuanhao Gao, Ping Lin, Kees Weijer

Abstract:

An optimal control system model is proposed for the cell flow in the process of chick embryo gastrulation in this paper. The target is to determine the cellular interaction forces which are hard to measure. This paper will take an approach to investigate the forces with the idea of the inverse problem. By choosing the forces as the control variable and regarding the cell flow as Stokes fluid, an objective functional will be established to match the numerical result of cell velocity with the experimental data. So that the forces could be determined by minimizing the objective functional. The Lagrange multiplier method is utilized to derive the state and adjoint equations consisting the optimal control system, which specifies the first-order necessary conditions. Finite element method is used to discretize and approximate equations. A conjugate gradient algorithm is given for solving the minimum solution of the system and determine the forces.

Keywords: optimal control model, Stokes equation, conjugate gradient method, finite element method, chick embryo gastrulation

Procedia PDF Downloads 260
3208 A Physical Treatment Method as a Prevention Method for Barium Sulfate Scaling

Authors: M. A. Salman, G. Al-Nuwaibit, M. Safar, M. Rughaibi, A. Al-Mesri

Abstract:

Barium sulfate (BaSO₄) is a hard scaling usually precipitates on the surface of equipment in many industrial systems, as oil and gas production, desalination and cooling and boiler operation. It is a scale that extremely resistance to both chemical and mechanical cleaning. So, BaSO₄ is a problematic and expensive scaling. Although barium ions are present in most natural waters at a very low concentration as low as 0.008 mg/l, it could result of scaling problems in the presence of high concentration of sulfate ion or when mixing with incompatible waters as in oil produced water. The scaling potential of BaSO₄ using seawater at the intake of seven desalination plants in Kuwait, brine water and Kuwait oil produced water was calculated and compared then the best location in regards of barium sulfate scaling was reported. Finally, a physical treatment method (magnetic treatment method) and chemical treatment method were used to control BaSO₄ scaling using saturated solutions at different operating temperatures, flow velocities, feed pHs and different magnetic strengths. The results of the two methods were discussed, and the more economical one with the reasonable performance was recommended, which is the physical treatment method.

Keywords: magnetic field strength, flow velocity, retention time, barium sulfate

Procedia PDF Downloads 268
3207 A Prospective Evaluation of Thermal Radiation Effects on Magneto-Hydrodynamic Transport of a Nanofluid Traversing a Spongy Medium

Authors: Azad Hussain, Shoaib Ali, M. Y. Malik, Saba Nazir, Sarmad Jamal

Abstract:

This article reports a fundamental numerical investigation to analyze the impact of thermal radiations on MHD flow of differential type nanofluid past a porous plate. Here, viscosity is taken as function of temperature. Energy equation is deliberated in the existence of viscous dissipation. The mathematical terminologies of nano concentration, velocity and temperature are first cast into dimensionless expressions via suitable conversions and then solved by using Shooting technique to obtain the numerical solutions. Graphs has been plotted to check the convergence of constructed solutions. At the end, the influence of effective parameters on nanoparticle concentration, velocity and temperature fields are also deliberated in a comprehensive way. Moreover, the physical measures of engineering importance such as the Sherwood number, Skin friction and Nusselt number are also calculated. It is perceived that the thermal radiation enhances the temperature for both Vogel's and Reynolds' models but the normal stress parameter causes a reduction in temperature profile.

Keywords: MHD flow, differential type nanofluid, Porous medium, variable viscosity, thermal radiation

Procedia PDF Downloads 243
3206 Sildenafil Citrate (Viagra) Suppositories Are Promising Approach for Treatment of Unexplained Infertility

Authors: Shahinaz El-Shourbagy El-Shourbagy, Ahmed M. E Ossman Ossman, Ashraf El-Mohamady El-Mohamady

Abstract:

Objective: To investigate if there is a role of sildenafil citrate (Viagra) in the treatment of infertile couples for idiopathic cause. Design: An observational study. Setting: Infertility outpatient clinic of Tanta University Hospital Egypt. Patient(s): 50 unexplained infertility women {endometrial thickness (EM) and the mean resistance index (RI)} compared to 50 fertile control group attended for check-up in the same period and receiving no treatment. Intervention(s): unexplained infertility women were given 25 mg of sildenafil citrate suppositories four times per day for seven days starting from the 5th day of the menstrual cycle for three cycles. Main Outcome Measures: EM and RI of endometrial spiral artery were assessed by transvaginal color-pulsed Doppler ultrasound in unexplained infertility women before and after sildenafil citrate treatment and compared with control. The conception rate and pregnancy outcome were recorded in the two groups. Result(s): Women with unexplained infertility had significantly thinner endometrium and a higher spiral artery resistance index, meaning lower peri-implantation blood flow than the fertile controls. Sildenafil citrate treated women showed a statistically significant increase in endometrial thickness (p < 0.001) and a significant decrease in the mean spiral artery resistance index (p < 0.001) giving a better conception rate. Conclusion: Sildenafil citrate suppositories treatment enhance the endometrial blood flow through decreasing spiral artery resistance index 'RI' and consequently improve endometrial growth and receptivity in cases of unexplained infertility thus giving a better conception rate.

Keywords: Unexplained infertility, endometrial blood flow, endome¬trial receptivity, color-pulsed Doppler ultrasound; RI (resis¬tance index, Sildenafil citrate (Viagra)

Procedia PDF Downloads 218
3205 Calibrations and Effect of Different Operating Conditions on the Performance of a Fluid Power Control System with Servo Solenoid Valve

Authors: Tahany W. Sadak, Fouly, A. Anwer, M. Rizk

Abstract:

The current investigation presents a study on the hydraulic performance of an electro-hydraulic servo solenoid valve controlled linear piston used in hydraulic systems. Advanced methods have been used to measure and record laboratory experiments, to ensure accurate analysis and evaluation. Experiments have been conducted under different values of temperature (28, 40 and 50 °C), supply pressure (10, 20, 30, 40 and 50 bar), system stiffness (32 N/mm), and load (0.0 & 5560 N). It is concluded that increasing temperature of hydraulic oil increases the quantity of flow rate, so it achieves an increase of the quantity of flow by 5.75 % up to 48.8 % depending on operating conditions. The values of pressure decay at low temperature are less than the values at high temperature. The frequency increases with the increase of the temperature. When we connect the springs to the system, it decreases system frequency. These results are very useful in the process of packing and manufacturing of fluid products, where the properties are not affected by 50 °C, so energy and time are saved.

Keywords: electro-hydraulic servo valve, fluid power control system, system stiffness, static and dynamic performance

Procedia PDF Downloads 156
3204 Reduced General Dispersion Model in Cylindrical Coordinates and Isotope Transient Kinetic Analysis in Laminar Flow

Authors: Masood Otarod, Ronald M. Supkowski

Abstract:

This abstract discusses a method that reduces the general dispersion model in cylindrical coordinates to a second order linear ordinary differential equation with constant coefficients so that it can be utilized to conduct kinetic studies in packed bed tubular catalytic reactors at a broad range of Reynolds numbers. The model was tested by 13CO isotope transient tracing of the CO adsorption of Boudouard reaction in a differential reactor at an average Reynolds number of 0.2 over Pd-Al2O3 catalyst. Detailed experimental results have provided evidence for the validity of the theoretical framing of the model and the estimated parameters are consistent with the literature. The solution of the general dispersion model requires the knowledge of the radial distribution of axial velocity. This is not always known. Hence, up until now, the implementation of the dispersion model has been largely restricted to the plug-flow regime. But, ideal plug-flow is impossible to achieve and flow regimes approximating plug-flow leave much room for debate as to the validity of the results. The reduction of the general dispersion model transpires as a result of the application of a factorization theorem. Factorization theorem is derived from the observation that a cross section of a catalytic bed consists of a solid phase across which the reaction takes place and a void or porous phase across which no significant measure of reaction occurs. The disparity in flow and the heterogeneity of the catalytic bed cause the concentration of reacting compounds to fluctuate radially. These variabilities signify the existence of radial positions at which the radial gradient of concentration is zero. Succinctly, factorization theorem states that a concentration function of axial and radial coordinates in a catalytic bed is factorable as the product of the mean radial cup-mixing function and a contingent dimensionless function. The concentration of adsorbed compounds are also factorable since they are piecewise continuous functions and suffer the same variability but in the reverse order of the concentration of mobile phase compounds. Factorability is a property of packed beds which transforms the general dispersion model to an equation in terms of the measurable mean radial cup-mixing concentration of the mobile phase compounds and mean cross-sectional concentration of adsorbed species. The reduced model does not require the knowledge of the radial distribution of the axial velocity. Instead, it is characterized by new transport parameters so denoted by Ωc, Ωa, Ωc, and which are respectively denominated convection coefficient cofactor, axial dispersion coefficient cofactor, and radial dispersion coefficient cofactor. These cofactors adjust the dispersion equation as compensation for the unavailability of the radial distribution of the axial velocity. Together with the rest of the kinetic parameters they can be determined from experimental data via an optimization procedure. Our data showed that the estimated parameters Ωc, Ωa Ωr, are monotonically correlated with the Reynolds number. This is expected to be the case based on the theoretical construct of the model. Computer generated simulations of methanation reaction on nickel provide additional support for the utility of the newly conceptualized dispersion model.

Keywords: factorization, general dispersion model, isotope transient kinetic, partial differential equations

Procedia PDF Downloads 269
3203 Reaction Rate Behavior of a Methane-Air Mixture over a Platinum Catalyst in a Single Channel Catalytic Reactor

Authors: Doo Ki Lee, Kumaresh Selvakumar, Man Young Kim

Abstract:

Catalytic combustion is an environmentally friendly technique to combust fuels in gas turbines. In this paper, the behavior of surface reaction rate on catalytic combustion is studied with respect to the heterogeneous oxidation of methane-air mixture in a catalytic reactor. Plug flow reactor (PFR), the simplified single catalytic channel assists in investigating the catalytic combustion phenomenon over the Pt catalyst by promoting the desired chemical reactions. The numerical simulation with multi-step elementary surface reactions is governed by the availability of free surface sites onto the catalytic surface and thereby, the catalytic combustion characteristics are demonstrated by examining the rate of the reaction for lean fuel mixture. Further, two different surface reaction mechanisms are adopted and compared for surface reaction rates to indicate the controlling heterogeneous reaction for better fuel conversion. The performance of platinum catalyst under heterogeneous reaction is analyzed under the same temperature condition, where the catalyst with the higher kinetic rate of reaction would have a maximum catalytic activity for enhanced methane catalytic combustion.

Keywords: catalytic combustion, heterogeneous reaction, plug flow reactor, surface reaction rate

Procedia PDF Downloads 273
3202 A Mathematical Model of Blood Perfusion Dependent Temperature Distribution in Transient Case in Human Dermal Region

Authors: Yogesh Shukla

Abstract:

Many attempts have been made to study temperature distribution problem in human tissues under normal environmental and physiological conditions at constant arterial blood temperature. But very few attempts have been made to investigate temperature distribution in human tissues under different arterial blood temperature. In view of above, a finite element model has been developed to unsteady temperature distribution in dermal region in human body. The model has been developed for one dimension unsteady state case. The variation in parameters like thermal conductivity, blood mass flow and metabolic activity with respect to position and time has been incorporated in the model. Appropriate boundary conditions have been framed. The central difference approach has been used in space variable and trapezoidal rule has been employed a long time variable. Numerical results have been obtained to study relationship among temperature and time.

Keywords: rate of metabolism, blood mass flow rate, thermal conductivity, heat generation, finite element method

Procedia PDF Downloads 355
3201 Experimental Study of Near Wake of Wind Turbines

Authors: Ramin Rezaei, Terry Ng, Abdollah Afjeh

Abstract:

Near wake development of a wind turbine affects the aerodynamic loads on the tower and the wind turbine. Design considerations of both isolated wind turbines and wind farms must include unsteady wake flow conditions under which the turbines must operate. The consequent aerodynamic loads could lead to over design of wind turbines and adversely affect the cost of wind turbines and, in turn, the cost of energy produced by wind turbines. Reducing the weight of turbine rotors is particularly desirable since larger wind turbine rotors can be utilized without significantly increasing the cost of the supporting structure. Larger rotor diameters produce larger swept areas and consequently greater energy production from the wind thereby reducing the levelized cost of wind energy. To understand the development and structure of the near tower wake of a wind turbine, an experimental study was conducted to describe the flow field of the near wake for both upwind and downwind turbines. The study was conducted under controlled environment of a wind tunnel using a scaled model of a turbine. The NREL 5 MW reference wind turbine was used as a baseline design and was modified as necessary to design and build upwind and downwind scaled wind turbine models. This paper presents the results of the wind tunnel study using turbine models to quantify the near wake of upwind and downwind wind turbine configurations for various lengths of tower-to-turbine spacing. The variations of mean velocity and turbulence are measured using a computer-controlled, traversing hot wire probe. Additionally, smoke flow visualizations were conducted to qualitatively study the wake. The results show a more rapid dissipation of the near wake for an upwind configuration. The results can readily be incorporated into low fidelity system level turbine simulation tools to more accurately account for the wake on the aerodynamic loads of a upwind and downwind turbines.

Keywords: hot wire anemometry, near wake, upwind and downwind turbine. Hot wire anemometry, near wake, upwind and downwind turbine

Procedia PDF Downloads 667
3200 Numerical Investigation into Capture Efficiency of Fibrous Filters

Authors: Jayotpaul Chaudhuri, Lutz Goedeke, Torsten Hallenga, Peter Ehrhard

Abstract:

Purification of gases from aerosols or airborne particles via filters is widely applied in the industry and in our daily lives. This separation especially in the micron and submicron size range is a necessary step to protect the environment and human health. Fibrous filters are often employed due to their low cost and high efficiency. For designing any filter the two most important performance parameters are capture efficiency and pressure drop. Since the capture efficiency is directly proportional to the pressure drop which leads to higher operating costs, a detailed investigation of the separation mechanism is required to optimize the filter designing, i.e., to have a high capture efficiency with a lower pressure drop. Therefore a two-dimensional flow simulation around a single fiber using Ansys CFX and Matlab is used to get insight into the separation process. Instead of simulating a solid fiber, the present Ansys CFX model uses a fictitious domain approach for the fiber by implementing a momentum loss model. This approach has been chosen to avoid creating a new mesh for different fiber sizes, thereby saving time and effort for re-meshing. In a first step, only the flow of the continuous fluid around the fiber is simulated in Ansys CFX and the flow field data is extracted and imported into Matlab and the particle trajectory is calculated in a Matlab routine. This calculation is a Lagrangian, one way coupled approach for particles with all relevant forces acting on it. The key parameters for the simulation in both Ansys CFX and Matlab are the porosity ε, the diameter ratio of particle and fiber D, the fluid Reynolds number Re, the Reynolds particle number Rep, the Stokes number St, the Froude number Fr and the density ratio of fluid and particle ρf/ρp. The simulation results were then compared to the single fiber theory from the literature.

Keywords: BBO-equation, capture efficiency, CFX, Matlab, fibrous filter, particle trajectory

Procedia PDF Downloads 208
3199 Effect of Internal Heat Generation on Free Convective Power Law Variable Temperature Past Vertical Plate Considering Exponential Variable Viscosity and Thermal Diffusivity

Authors: Tania Sharmin Khaleque, Mohammad Ferdows

Abstract:

The flow and heat transfer characteristics of a convection with temperature-dependent viscosity and thermal diffusivity along a vertical plate with internal heat generation effect have been studied. The plate temperature is assumed to follow a power law of the distance from the leading edge. The resulting governing two-dimensional equations are transformed using suitable transformations and then solved numerically by using fifth order Runge-Kutta-Fehlberg scheme with a modified version of the Newton-Raphson shooting method. The effects of the various parameters such as variable viscosity parameter β_1, the thermal diffusivity parameter β_2, heat generation parameter c and the Prandtl number Pr on the velocity and temperature profiles, as well as the local skin- friction coefficient and the local Nusselt number are presented in tabular form. Our results suggested that the presence of internal heat generation leads to increase flow than that of without exponentially decaying heat generation term.

Keywords: free convection, heat generation, thermal diffusivity, variable viscosity

Procedia PDF Downloads 353
3198 Phylogenetic Relationships between the Whole Sets of Individual Flow Sorted U, M, S and C Chromosomes of Aegilops and Wheat as Revealed by COS Markers

Authors: András Farkas, István Molnár, Jan Vrána, Veronika Burešová, Petr Cápal, András Cseh, Márta Molnár-Láng, Jaroslav Doležel

Abstract:

Species of Aegilops played a central role in the evolution of wheat and are sources of traits related to yield quality and tolerance against biotic and abiotic stresses. These wild genes and alleles are desirable to use in crop improvement programs via introgressive hybridization. However, the success of chromosome mediated gene transfer to wheat are hampered by the pour knowledge on the genome structure of Aegilops relative to wheat and by the low number of cost-effective molecular markers specific for Aegilops chromosomes. The COS markers specific for genes conserved throughout evolution in both sequence and copy number between Triticeae/Aegilops taxa and define orthologous regions, thus enabling the comparison of regions on the chromosomes of related species. The present study compared individual chromosomes of Aegilops umbellulata (UU), Ae. comosa (MM), Ae. speltoides (SS) and Ae. caudata (CC) purified by flourescent labelling with oligonucleotid SSR repeats and biparametric flow cytometry with wheat by identifying orthologous chromosomal regions by COS markers. The linear order of bin-mapped COS markers along the wheat D chromosomes was identified by the use of chromosome-specific sequence data and virtual gene order. Syntenic regions of wheat identifying genome rearrangements differentiating the U, M, S or C genomes from the D genome of wheat were detected. The conserved orthologous set markers assigned to Aegilops chromosomes promise to accelerate gene introgression by facilitating the identification of alien chromatin. The syntenic relationships between the Aegilops species and wheat will facilitate the targeted development of new markers specific for U, M, S and C genomic regions and will contribute to the understanding of molecular processes related to the evolution of Aegilops.

Keywords: Aegilops, cos-markers, flow-sorting, wheat

Procedia PDF Downloads 502
3197 Flood Susceptibility Assessment of Mandaluyong City Using Analytic Hierarchy Process

Authors: Keigh D. Guinto, Ma. Romina M. Santos

Abstract:

One of the most catastrophic natural disasters in the Philippines is floods. Twelve (12) million people reside in Metro Manila, National Capital Region (NCR), prone to flooding. A flood can cause widespread devastation resulting in damaged properties and infrastructures and loss of life. By using the analytical hierarchy process, six (6) parameters were selected, namely elevation, slope, lithology, distance from the river, river network density, and flow accumulation. Ranking of these parameters demonstrates that distance from the river with 25.31% and river density with 17.30% ranked the highest causative factor to flooding. This is followed by flow accumulation with 16.72%, elevation with 15.33%, slope with 13.53%, and the least flood causative factor is lithology with 11.8%. The generated flood susceptibility map of Mandaluyong has three (3) classes: high susceptibility, moderate susceptibility, and low susceptibility. The flood susceptibility map generated in this study can be used as an aid for planning flood mitigation, land use planning, and general public awareness. This study can also be used for emergency management and can be applied in the disaster risk management of Mandaluyong.

Keywords: analytical hierarchy process, assessment, flood, geographic information system

Procedia PDF Downloads 206
3196 Flow Behavior of a ScCO₂-Stimulated Geothermal Reservoir under in-situ Stress and Temperature Conditions

Authors: B. L. Avanthi Isaka, P. G. Ranjith

Abstract:

The development of technically-sound enhanced geothermal systems (EGSs) is identified as a viable solution for world growing energy demand with immense potential, low carbon dioxide emission and importantly, as an environmentally friendly option for renewable energy production. The use of supercritical carbon dioxide (ScCO₂) as the working fluid in EGSs by replacing traditional water-based method is promising due to multiple advantages prevail in ScCO₂-injection for underground reservoir stimulation. The evolution of reservoir stimulation using ScCO₂ and the understanding of the flow behavior of a ScCO₂-stimulated geothermal reservoir is vital in applying ScCO₂-EGSs as a replacement for water-based EGSs. The study is therefore aimed to investigate the flow behavior of a ScCO₂-fractured rock medium at in-situ stress and temperature conditions. A series of permeability tests were conducted for ScCO₂ fractured Harcourt granite rock specimens at 90ºC, under varying confining pressures from 5–60 MPa using the high-pressure and high-temperature tri-axial set up which can simulate deep geological conditions. The permeability of the ScCO₂-fractured rock specimens was compared with that of water-fractured rock specimens. The results show that the permeability of the ScCO₂-fractured rock specimens is one order higher than that of water-fractured rock specimens and the permeability exhibits a non-linear reduction with increasing confining pressure due to the stress-induced fracture closure. Further, the enhanced permeability of the ScCO₂-induced fracture with multiple secondary branches was explained by exploring the CT images of the rock specimens. However, a single plain fracture was induced under water-based fracturing.

Keywords: supercritical carbon dioxide, fracture permeability, granite, enhanced geothermal systems

Procedia PDF Downloads 147
3195 Numerical Study of a Ventilation Principle Based on Flow Pulsations

Authors: Amir Sattari, Mac Panah, Naeim Rashidfarokhi

Abstract:

To enhance the mixing of fluid in a rectangular enclosure with a circular inlet and outlet, an energy-efficient approach is further investigated through computational fluid dynamics (CFD). Particle image velocimetry (PIV) measurements help confirm that the pulsation of the inflow velocity improves the mixing performance inside the enclosure considerably without increasing energy consumption. In this study, multiple CFD simulations with different turbulent models were performed. The results obtained were compared with experimental PIV results. This study investigates small-scale representations of flow patterns in a ventilated rectangular room. The objective is to validate the concept of an energy-efficient ventilation strategy with improved thermal comfort and reduction of stagnant air inside the room. Experimental and simulated results confirm that through pulsation of the inflow velocity, strong secondary vortices are generated downstream of the entrance wall-jet. The pulsatile inflow profile promotes a periodic generation of vortices with stronger eddies despite a relatively low inlet velocity, which leads to a larger boundary layer with increased kinetic energy in the occupied zone. A real-scale study was not conducted; however, it can be concluded that a constant velocity inflow profile can be replaced with a lower pulsated flow rate profile while preserving the mixing efficiency. Among the turbulent CFD models demonstrated in this study, SST-kω is most advantageous, exhibiting a similar global airflow pattern as in the experiments. The detailed near-wall velocity profile is utilized to identify the wall-jet instabilities that consist of mixing and boundary layers. The SAS method was later applied to predict the turbulent parameters in the center of the domain. In both cases, the predictions are in good agreement with the measured results.

Keywords: CFD, PIV, pulsatile inflow, ventilation, wall-jet

Procedia PDF Downloads 174
3194 Highway Capacity and Level of Service

Authors: Kidist Mesfin Nguse

Abstract:

Ethiopia is the second most densely populated nation in Africa, and about 121 million people as the 2022 Ethiopia population live report recorded. In recent years, the Ethiopian government (GOE) has been gradually growing its road network. With 138,127 kilometers (85,825 miles) of all-weather roads as of the end of 2018–19, Ethiopia possessed just 39% of the nation's necessary road network and lacked a well-organized system. The Ethiopian urban population report recorded that about 21% of the population lives in urban areas, and the high population, coupled with growth in various infrastructures, has led to the migration of the workforce from rural areas to cities across the country. In main roads, the heterogeneous traffic flow with various operational features makes it more unfavorable, causing frequent congestion in the stretch of road. The Level of Service (LOS), a qualitative measure of traffic, is categorized based on the operating conditions in the traffic stream. Determining the capacity and LOS for this city is very crucial as this affects the planning and design of traffic systems and their operation, and the allocation of route selection for infrastructure building projects to provide for a considerably good level of service.

Keywords: capacity, level of service, traffic volume, free flow speed

Procedia PDF Downloads 51
3193 CFD Study on the Effect of Primary Air on Combustion of Simulated MSW Process in the Fixed Bed

Authors: Rui Sun, Tamer M. Ismail, Xiaohan Ren, M. Abd El-Salam

Abstract:

Incineration of municipal solid waste (MSW) is one of the key scopes in the global clean energy strategy. A computational fluid dynamics (CFD) model was established. In order to reveal these features of the combustion process in a fixed porous bed of MSW. Transporting equations and process rate equations of the waste bed were modeled and set up to describe the incineration process, according to the local thermal conditions and waste property characters. Gas phase turbulence was modeled using k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The heterogeneous reaction rates were determined using Arrhenius eddy dissipation and the Arrhenius-diffusion reaction rates. The effects of primary air flow rate and temperature in the burning process of simulated MSW are investigated experimentally and numerically. The simulation results in bed are accordant with experimental data well. The model provides detailed information on burning processes in the fixed bed, which is otherwise very difficult to obtain by conventional experimental techniques.

Keywords: computational fluid dynamics (CFD) model, waste incineration, municipal solid waste (MSW), fixed bed, primary air

Procedia PDF Downloads 403
3192 The Impact and Performances of Controlled Ventilation Strategy on Thermal Comfort and Indoor Atmosphere in Building

Authors: Selma Bouasria, Mahi Abdelkader, Abbès Azzi, Herouz Keltoum

Abstract:

Ventilation in buildings is a key element to provide high indoor air quality. Its efficiency appears as one of the most important factors in maintaining thermal comfort for occupants of buildings. Personal displacement ventilation is a new ventilation concept that combines the positive features of displacement ventilation with those of task conditioning or personalized ventilation. This work aims to study numerically the supply air flow in a room to optimize a comfortable microclimate for an occupant. The room is heated, and a dummy is designed to simulate the occupant. Two types of configurations were studied. The first consist of a room without windows; and the second one is a local equipped with a window. The influence of the blowing speed and the solar radiation coming from the window on the thermal comfort of the occupant is studied. To conduct this study we used the turbulence models, namely the high Reynolds k-e, the RNG and the SST models. The numerical tool used is based on the finite volume method. The numerical simulation of the supply air flow in a room can predict and provide a significant information about indoor comfort.

Keywords: local, comfort, thermique, ventilation, internal environment

Procedia PDF Downloads 413
3191 A Constructed Wetland as a Reliable Method for Grey Wastewater Treatment in Rwanda

Authors: Hussein Bizimana, Osman Sönmez

Abstract:

Constructed wetlands are current the most widely recognized waste water treatment option, especially in developing countries where they have the potential for improving water quality and creating valuable wildlife habitat in ecosystem with treatment requirement relatively simple for operation and maintenance cost. Lack of grey waste water treatment facilities in Kigali İnstitute of Science and Technology in Rwanda, causes pollution in the surrounding localities of Rugunga sector, where already a problem of poor sanitation is found. In order to treat grey water produced at Kigali İnstitute of Science and Technology, with high BOD concentration, high nutrients concentration and high alkalinity; a Horizontal Sub-surface Flow pilot-scale constructed wetland was designed and can operate in Kigali İnstitute of Science and Technology. The study was carried out in a sedimentation tank of 5.5 m x 1.42 m x 1.2 m deep and a Horizontal Sub-surface constructed wetland of 4.5 m x 2.5 m x 1.42 m deep. The grey waste water flow rate of 2.5 m3/d flew through vegetated wetland and sandy pilot plant. The filter media consisted of 0.6 to 2 mm of coarse sand, 0.00003472 m/s of hydraulic conductivity and cattails (Typha latifolia spp) were used as plants species. The effluent flow rate of the plant is designed to be 1.5 m3/ day and the retention time will be 24 hrs. 72% to 79% of BOD, COD, and TSS removals are estimated to be achieved, while the nutrients (Nitrogen and Phosphate) removal is estimated to be in the range of 34% to 53%. Every effluent characteristic will meet exactly the Rwanda Utility Regulatory Agency guidelines primarily because the retention time allowed is enough to make the reduction of contaminants within effluent raw waste water. Treated water reuse system was developed where water will be used in the campus irrigation system again.

Keywords: constructed wetlands, hydraulic conductivity, grey waste water, cattails

Procedia PDF Downloads 610
3190 Heat Transfer Characteristics of Aluminum Foam Heat Sinks Subject to an Impinging Jet

Authors: So-Ra Jeon, Chan Byon

Abstract:

This study investigates the heat transfer characteristics of aluminum foam heat sink and pin fin heat sink subjected to an impinging air jet under a fixed pumping power condition as well as fixed flow rate condition. The effects of dimensionless pumping power or the Reynolds number and the impinging distance ratio on the Nusselt number are considered. The result shows that the effect of the impinging distance on the Nusselt number is negligible under a fixed pumping power condition, while the Nusselt number increases with decreasing the impinging distance under a fixed pumping power condition. A correlation for the pressure drop is obtained as a function of the flow rate and the impinging distance ratio. And correlations for the stagnation Nusselt number of the impinging jet are developed as a function of the pumping power. The aluminum foam heat sinks did not show higher thermal performance compared to a conventional pin fin heat sink under a fixed pumping power condition.

Keywords: aluminum foam, heat sinks, impinging jet, pumping power

Procedia PDF Downloads 306
3189 Experimental Field for the Study of Soil-Atmosphere Interaction in Soft Soils

Authors: Andres Mejia-Ortiz, Catalina Lozada, German R. Santos, Rafael Angulo-Jaramillo, Bernardo Caicedo

Abstract:

The interaction between atmospheric variables and soil properties is a determining factor when evaluating the flow of water through the soil. This interaction situation directly determines the behavior of the soil and greatly influences the changes that occur in it. The atmospheric variations such as changes in the relative humidity, air temperature, wind velocity and precipitation, are the external variables that reflect a greater incidence in the changes that are generated in the subsoil, as a consequence of the water flow in descending and ascending conditions. These environmental variations have a major importance in the study of the soil because the conditions of humidity and temperature in the soil surface depend on them. In addition, these variations control the thickness of the unsaturated zone and the position of the water table with respect to the surface. However, understanding the relationship between the atmosphere and the soil is a somewhat complex aspect. This is mainly due to the difficulty involved in estimating the changes that occur in the soil from climate changes; since this is a coupled process where act processes of mass transfer and heat. In this research, an experimental field was implemented to study in-situ the interaction between the atmosphere and the soft soils of the city of Bogota, Colombia. The soil under study consists of a 60 cm layer composed of two silts of similar characteristics at the surface and a deep soft clay deposit located under the silky material. It should be noted that the vegetal layer and organic matter were removed to avoid the evapotranspiration phenomenon. Instrumentation was carried on in situ through a field disposal of many measuring devices such as soil moisture sensors, thermocouples, relative humidity sensors, wind velocity sensor, among others; which allow registering the variations of both the atmospheric variables and the properties of the soil. With the information collected through field monitoring, the water balances were made using the Hydrus-1D software to determine the flow conditions that developed in the soil during the study. Also, the moisture profile for different periods and time intervals was determined by the balance supplied by Hydrus 1D; this profile was validated by experimental measurements. As a boundary condition, the actual evaporation rate was included using the semi-empirical equations proposed by different authors. In this study, it was obtained for the rainy periods a descending flow that was governed by the infiltration capacity of the soil. On the other hand, during dry periods. An increase in the actual evaporation of the soil induces an upward flow of water, increasing suction due to the decrease in moisture content. Also, cracks were developed accelerating the evaporation process. This work concerns to the study of soil-atmosphere interaction through the experimental field and it is a very useful tool since it allows considering all the factors and parameters of the soil in its natural state and real values of the different environmental conditions.

Keywords: field monitoring, soil-atmosphere, soft soils, soil-water balance

Procedia PDF Downloads 137
3188 Optimization Studies on Biosorption of Ni(II) and Cd(II) from Wastewater Using Pseudomonas putida in a Packed Bed Bioreactor

Authors: K.Narasimhulu, Y. Pydi Setty

Abstract:

The objective of this present study is the optimization of process parameters in biosorption of Ni(II) and Cd(II) ions by Pseudomonas putida using Response Surface Methodology in a Packed bed bioreactor. The experimental data were also tested with theoretical models to find the best fit model. The present paper elucidates RSM as an efficient approach for predictive model building and optimization of Ni(II) and Cd(II) ions using Pseudomonas putida. In packed bed biosorption studies, comparison of the breakthrough curves of Ni(II) and Cd(II) for Agar immobilized and PAA immobilized Pseudomonas putida at optimum conditions of flow rate of 300 mL/h, initial metal ion concentration of 100 mg/L and bed height of 20 cm with weight of biosorbent of 12 g, it was found that the Agar immobilized Pseudomonas putida showed maximum percent biosorption and bed saturation occurred at 20 minutes. Optimization results of Ni(II) and Cd(II) by Pseudomonas putida from the Design Expert software were obtained as bed height of 19.93 cm, initial metal ion concentration of 103.85 mg/L, and flow rate of 310.57 mL/h. The percent biosorption of Ni(II) and Cd(II) is 87.2% and 88.2% respectively. The predicted optimized parameters are in agreement with the experimental results.

Keywords: packed bed bioreactor, response surface mthodology, pseudomonas putida, biosorption, waste water

Procedia PDF Downloads 453
3187 CFD Simulation and Experimental Validation of the Bubble-Induced Flow during Electrochemical Water Splitting

Authors: Gabriel Wosiak, Jeyse da Silva, Sthefany S. Sena, Renato N. de Andrade, Ernesto Pereira

Abstract:

The bubble formation during hydrogen production by electrolysis and several electrochemical processes is an inherent phenomenon and can impact the energy consumption of the processes. In this work, it was reported both experimental and computational results describe the effect of bubble displacement, which, under the cases investigated, leads to the formation of a convective flow in the solution. The process is self-sustained, and a solution vortex is formed, which modifies the bubble growth and covering at the electrode surface. Using the experimental data, we have built a model to simulate it, which, with high accuracy, describes the phenomena. Then, it simulated many different experimental conditions and evaluated the effects of the boundary conditions on the bubble surface covering the surface. We have observed a position-dependent bubble covering the surface, which has an effect on the water-splitting efficiency. It was shown that the bubble covering is not uniform at the electrode surface, and using statistical analysis; it was possible to evaluate the influence of the gas type (H2 and O2), current density, and the bubble size (and cross-effects) on the covering fraction and the asymmetric behavior over the electrode surface.

Keywords: water splitting, bubble, electrolysis, hydrogen production

Procedia PDF Downloads 100
3186 Effect of Mineral Admixture on Self-Healing Performance in Concrete

Authors: Young-Cheol Choi, Sung-Won Yoo, Bong Chun Lee, Byoungsun Park, Sang-Hwa Jung

Abstract:

Cracks in concrete commonly provide the passages of ingresses of aggressive and harmful ions into concrete inside and thus reduce the durability of concrete members. In order to solve this problem, self-healing concrete based on mineral admixture has become a major issue. Self-healing materials are those which have the ability of autonomously repairing some damages or small cracks in concrete structures. Concrete has an inherent healing potential, called natural healing, which can take place in ordinary concrete elements but its power is limited and is not predictable. The main mechanism of self-healing in cracked concrete is the continued hydration of unreacted binder and the crystallization of calcium carbonate. Some mineral admixtures have been found to promote the self-healing of cementitious materials. The aim of this study is to investigate the effect of mineral admixture on the self-healing performances of high strength concrete. The potential capability of self-healing of cementitious materials was evaluated using isothermal conduction calorimeter. The self-healing efficiencies were studied by means of water flow tests on cracked concrete specimens. The results show a different healing behaviour depending on presence of the crystalline admixture.

Keywords: mineral admixture, self-healing, water flow test, crystallization

Procedia PDF Downloads 368