Search results for: rutting prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2273

Search results for: rutting prediction

713 Computational Prediction of the Effect of S477N Mutation on the RBD Binding Affinity and Structural Characteristic, A Molecular Dynamics Study

Authors: Mohammad Hossein Modarressi, Mozhgan Mondeali, Khabat Barkhordari, Ali Etemadi

Abstract:

The COVID-19 pandemic, caused by SARS-CoV-2, has led to significant concerns worldwide due to its catastrophic effects on public health. The SARS-CoV-2 infection is initiated with the binding of the receptor-binding domain (RBD) in its spike protein to the ACE2 receptor in the host cell membrane. Due to the error-prone entity of the viral RNA-dependent polymerase complex, the virus genome, including the coding region for the RBD, acquires new mutations, leading to the appearance of multiple variants. These variants can potentially impact transmission, virulence, antigenicity and evasive immune properties. S477N mutation located in the RBD has been observed in the SARS-CoV-2 omicron (B.1.1. 529) variant. In this study, we investigated the consequences of S477N mutation at the molecular level using computational approaches such as molecular dynamics simulation, protein-protein interaction analysis, immunoinformatics and free energy computation. We showed that displacement of Ser with Asn increases the stability of the spike protein and its affinity to ACE2 and thus increases the transmission potential of the virus. This mutation changes the folding and secondary structure of the spike protein. Also, it reduces antibody neutralization, raising concern about re-infection, vaccine breakthrough and therapeutic values.

Keywords: S477N, COVID-19, molecular dynamic, SARS-COV2 mutations

Procedia PDF Downloads 175
712 Organizational Decision to Adopt Digital Forensics: An Empirical Investigation in the Case of Malaysian Law Enforcement Agencies

Authors: Siti N. I. Mat Kamal, Othman Ibrahim, Mehrbakhsh Nilashi, Jafalizan M. Jali

Abstract:

The use of digital forensics (DF) is nowadays essential for law enforcement agencies to identify analysis and interpret the digital information derived from digital sources. In Malaysia, the engagement of Malaysian Law Enforcement Agencies (MLEA) with this new technology is not evenly distributed. To investigate the factors influencing the adoption of DF in Malaysia law enforcement agencies’ operational environment, this study proposed the initial theoretical framework based on the integration of technology organization environment (TOE), institutional theory, and human organization technology (HOT) fit model. A questionnaire survey was conducted on selected law enforcement agencies in Malaysia to verify the validity of the initial integrated framework. Relative advantage, compatibility, coercive pressure, normative pressure, vendor support and perceived technical competence of technical staff were found as the influential factors on digital forensics adoption. In addition to the only moderator of this study (agency size), any significant moderating effect on the perceived technical competence and the decision to adopt digital forensics by Malaysian law enforcement agencies was found insignificant. Thus, these results indicated that the developed integrated framework provides an effective prediction of the digital forensics adoption by Malaysian law enforcement agencies.

Keywords: digital forensics, digital forensics adoption, digital information, law enforcement agency

Procedia PDF Downloads 151
711 Modeling The Deterioration Of Road Bridges At The Provincial Level In Laos

Authors: Hatthaphone Silimanotham, Michael Henry

Abstract:

The effective maintenance of road bridge infrastructure is becoming a widely researched topic in the civil engineering field. Deterioration is one of the main issues in bridge performance, and it is necessary to understand how bridges deteriorate to optimally plan budget allocation for bridge maintenance. In Laos, many bridges are in a deteriorated state, which may affect the performance of the bridge. Due to bridge deterioration, the Ministry of Public Works and Transport is interested in the deterioration model to allocate the budget efficiently and support the bridge maintenance planning. A deterioration model can be used to predict the bridge condition in the future based on the observed behavior in the past. This paper analyzes the available inspection data of road bridges on the road classifications network to build deterioration prediction models for the main bridge type found at the provincial level (concrete slab, concrete girder, and steel truss) using probabilistic deterioration modeling by linear regression method. The analysis targets there has three bridge types in the 18 provinces of Laos and estimates the bridge deterioration rating for evaluating the bridge's remaining life. This research thus considers the relationship between the service period and the bridge condition to represent the probability of bridge condition in the future. The results of the study can be used for a variety of bridge management tasks, including maintenance planning, budgeting, and evaluating bridge assets.

Keywords: deterioration model, bridge condition, bridge management, probabilistic modeling

Procedia PDF Downloads 158
710 A Detailed Experimental Study and Evaluation of Springback under Stretch Bending Process

Authors: A. Soualem

Abstract:

The design of multi stage deep drawing processes requires the evaluation of many process parameters such as the intermediate die geometry, the blank shape, the sheet thickness, the blank holder force, friction, lubrication etc..These process parameters have to be determined for the optimum forming conditions before the process design. In general sheet metal forming may involve stretching drawing or various combinations of these basic modes of deformation. It is important to determine the influence of the process variables in the design of sheet metal working process. Especially, the punch and die corner for deep drawing will affect the formability. At the same time the prediction of sheet metals springback after deep drawing is an important issue to solve for the control of manufacturing processes. Nowadays, the importance of this problem increases because of the use of steel sheeting with high stress and also aluminum alloys. The aim of this paper is to give a better understanding of the springback and its effect in various sheet metals forming process such as expansion and restraint deep drawing in the cup drawing process, by varying radius die, lubricant for two commercially available materials e.g. galvanized steel and Aluminum sheet. To achieve these goals experiments were carried out and compared with other results. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback.

Keywords: springback, deep drawing, expansion, restricted deep drawing

Procedia PDF Downloads 454
709 Machine Learning for Targeting of Conditional Cash Transfers: Improving the Effectiveness of Proxy Means Tests to Identify Future School Dropouts and the Poor

Authors: Cristian Crespo

Abstract:

Conditional cash transfers (CCTs) have been targeted towards the poor. Thus, their targeting assessments check whether these schemes have been allocated to low-income households or individuals. However, CCTs have more than one goal and target group. An additional goal of CCTs is to increase school enrolment. Hence, students at risk of dropping out of school also are a target group. This paper analyses whether one of the most common targeting mechanisms of CCTs, a proxy means test (PMT), is suitable to identify the poor and future school dropouts. The PMT is compared with alternative approaches that use the outputs of a predictive model of school dropout. This model was built using machine learning algorithms and rich administrative datasets from Chile. The paper shows that using machine learning outputs in conjunction with the PMT increases targeting effectiveness by identifying more students who are either poor or future dropouts. This joint targeting approach increases effectiveness in different scenarios except when the social valuation of the two target groups largely differs. In these cases, the most likely optimal approach is to solely adopt the targeting mechanism designed to find the highly valued group.

Keywords: conditional cash transfers, machine learning, poverty, proxy means tests, school dropout prediction, targeting

Procedia PDF Downloads 204
708 Assessment of Analytical Equations for the Derivation of Young’s Modulus of Bonded Rubber Materials

Authors: Z. N. Haji, S. O. Oyadiji, H. Samami, O. Farrell

Abstract:

The prediction of the vibration response of rubber products by analytical or numerical method depends mainly on the predefined intrinsic material properties such as Young’s modulus, damping factor and Poisson’s ratio. Such intrinsic properties are determined experimentally by subjecting a bonded rubber sample to compression tests. The compression tests on such a sample yield an apparent Young’s modulus which is greater in magnitude than the intrinsic Young’s modulus of the rubber. As a result, many analytical equations have been developed to determine Young’s modulus from an apparent Young’s modulus of bonded rubber materials. In this work, the applicability of some of these analytical equations is assessed via experimental testing. The assessment is based on testing of vulcanized nitrile butadiene rubber (NBR70) samples using tensile test and compression test methods. The analytical equations are used to determine the intrinsic Young’s modulus from the apparent modulus that is derived from the compression test data of the bonded rubber samples. Then, these Young’s moduli are compared with the actual Young’s modulus that is derived from the tensile test data. The results show significant discrepancy between the Young’s modulus derived using the analytical equations and the actual Young’s modulus.

Keywords: bonded rubber, quasi-static test, shape factor, apparent Young’s modulus

Procedia PDF Downloads 173
707 Synthesis, Antibacterial Activities, and Synergistic Effects of Novel Juglone and Naphthazarin Derivatives Against Clinical Methicillin-Resistant Staphylococcus aureus Strains

Authors: Zohra Benfodda, Valentin Duvauchelle, Chaimae Majdi, David Bénimélis, Catherine Dunyach-Remy, Patrick Meffre

Abstract:

New antibiotics are necessary to treat microbial pathogens, especially ESKAPE pathogens that are becoming increasingly resistant to available treatment. Despite the medical need, the number of newly approved drugs continues to decline. The majority of antibiotics under clinical development are natural products or derivatives thereof. 43 juglone/naphthazarin derivatives were synthesized using Minisci-type direct C–H alkylation and evaluated for their antibacterial properties against various clinical and reference Gram-positive MSSA, clinical Gram-positive MRSA. Different compounds of the synthesized series showed promising activity against clinical and reference MSSA (MIC: 1–8 μg/ml) and good efficacy against clinical MRSA (MIC: 2–8 μg/ml) strains. The synergistic effects of active compounds were evaluated with reference antibiotics (vancomycin and cloxacillin), and it was found that the antibiotic combination with those active compounds efficiently enhanced the antimicrobial activity and consequently the MIC values of reference antibiotics were lowered up to 1/16th of the original MIC. These synthesized compounds did not present hemolytic activity on sheep red blood cells. In addition to the in silico prediction of ADME profile parameter which is promising and encouraging for further development.

Keywords: juglone, naphthazarin, antibacterial, clinical MRSA, synergistic studies, MIC determination

Procedia PDF Downloads 126
706 A Theoretical Study of and Phase Change Material Layered Roofs under Specific Climatic Regions in Turkey and the United Kingdom

Authors: Tugba Gurler, Irfan Kurtbas

Abstract:

Roof influences considerably energy demand of buildings. In order to reduce this energy demand, various solutions have been proposed, such as roofs with variable thermal insulation, cool roofs, green roofs, heat exchangers and ventilated roofs, and phase change material (PCM) layered roofs. PCMs suffer from relatively low thermal conductivity despite of their promise of the energy-efficiency initiatives for thermal energy storage (TES). This study not only presents the thermal performance of the concrete roof with PCM layers but also evaluates the products with different design configurations and thicknesses under Central Anatolia Region, Turkey and Nottinghamshire, UK weather conditions. System design limitations and proposed prediction models are discussed in this study. A two-dimensional numerical model has been developed, and governing equations have been solved at each time step. Upper surfaces of the roofs have been modelled with heat flux conditions, while lower surfaces of the roofs with boundary conditions. In addition, suitable roofs have been modeled under symmetry boundary conditions. The results of the designed concrete roofs with PCM layers have been compared with common concrete roofs in Turkey. The UK and the numerical modeling results have been validated with the data given in the literature.

Keywords: phase change material, regional energy demand, roof layers, thermal energy storage

Procedia PDF Downloads 102
705 Prediction of Boundary Shear Stress with Flood Plains Enlargements

Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua

Abstract:

The river is our main source of water which is a form of open channel flow and the flow in the open channel provides with many complex phenomena of sciences that need to be tackled such as the critical flow conditions, boundary shear stress, and depth-averaged velocity. The development of society, more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between the main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of the main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, CES software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel, and the results are compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented.

Keywords: depth average velocity, non prismatic compound channel, relative flow depth, velocity distribution

Procedia PDF Downloads 176
704 Time Series Forecasting (TSF) Using Various Deep Learning Models

Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan

Abstract:

Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed-length window in the past as an explicit input. In this paper, we study how the performance of predictive models changes as a function of different look-back window sizes and different amounts of time to predict the future. We also consider the performance of the recent attention-based Transformer models, which have had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (RNN, LSTM, GRU, and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the UCI website, which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Average Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.

Keywords: air quality prediction, deep learning algorithms, time series forecasting, look-back window

Procedia PDF Downloads 153
703 Gaze Patterns of Skilled and Unskilled Sight Readers Focusing on the Cognitive Processes Involved in Reading Key and Time Signatures

Authors: J. F. Viljoen, Catherine Foxcroft

Abstract:

Expert sight readers rely on their ability to recognize patterns in scores, their inner hearing and prediction skills in order to perform complex sight reading exercises. They also have the ability to observe deviations from expected patterns in musical scores. This increases the “Eye-hand span” (reading ahead of the point of playing) in order to process the elements in the score. The study aims to investigate the gaze patterns of expert and non-expert sight readers focusing on key and time signatures. 20 musicians were tasked with playing 12 sight reading examples composed for one hand and five examples composed for two hands to be performed on a piano keyboard. These examples were composed in different keys and time signatures and included accidentals and changes of time signature to test this theory. Results showed that the experts fixate more and for longer on key and time signatures as well as deviations in examples for two hands than the non-expert group. The inverse was true for the examples for one hand, where expert sight readers showed fewer and shorter fixations on key and time signatures as well as deviations. This seems to suggest that experts focus more on the key and time signatures as well as deviations in complex scores to facilitate sight reading. The examples written for one appeared to be too easy for the expert sight readers, compromising gaze patterns.

Keywords: cognition, eye tracking, musical notation, sight reading

Procedia PDF Downloads 138
702 Influence of the Granular Mixture Properties on the Rheological Properties of Concrete: Yield Stress Determination Using Modified Chateau et al. Model

Authors: Rachid Zentar, Mokrane Bala, Pascal Boustingorry

Abstract:

The prediction of the rheological behavior of concrete is at the center of current concerns of the concrete industry for different reasons. The shortage of good quality standard materials combined with variable properties of available materials imposes to improve existing models to take into account these variations at the design stage of concrete. The main reasons for improving the predictive models are, of course, saving time and cost at the design stage as well as to optimize concrete performances. In this study, we will highlight the different properties of the granular mixtures that affect the rheological properties of concrete. Our objective is to identify the intrinsic parameters of the aggregates which make it possible to predict the yield stress of concrete. The work was done using two typologies of grains: crushed and rolled aggregates. The experimental results have shown that the rheology of concrete is improved by increasing the packing density of the granular mixture using rolled aggregates. The experimental program realized allowed to model the yield stress of concrete by a modified model of Chateau et al. through a dimensionless parameter following Krieger-Dougherty law. The modelling confirms that the yield stress of concrete depends not only on the properties of cement paste but also on the packing density of the granular skeleton and the shape of grains.

Keywords: crushed aggregates, intrinsic viscosity, packing density, rolled aggregates, slump, yield stress of concrete

Procedia PDF Downloads 127
701 Genetic Variations of CYP2C9 in Thai Patients Taking Medical Cannabis

Authors: Naso Isaiah Thanavisuth

Abstract:

Medical cannabis can be used for treatment including pain, multiple sclerosis, Parkinson's disease, and cancer. However, medical cannabis leads to adverse effects (AEs), which is delta-9-tetrahydrocannabinol (THC). In previous studies, the major of THC metabolism enzymes are CYP2C9. Especially, the variation of CYP2C9 gene consist of CYP2C9*2 on exon 3 and CYP2C9*3 on exon 7 to decrease enzyme activity. Notwithstanding, there is no data describing whether the variant of CYP2C9 genes are apharmacogenetics marker for the prediction of THC-induced AEs in Thai patients. We want to investigate the association between CYP2C9 gene and THC-induced AEs in Thai patients. We enrolled 39 Thai patients with medical cannabis treatment who were classified by clinical data. The CYP2C9*2 and *3 genotyping were conducted using the TaqMan real time PCR assay. All Thai patients who received the medical cannabis consist of twenty-four (61.54%) patients were female, and fifteen (38.46%) were male, with age range 27- 87 years. Moreover, the most AEs in Thai patients who were treated with medical cannabis between cases and controls were tachycardia, arrhythmia, dry mouth, and nausea. Particularly, thirteen (72.22%) medical cannabis-induced AEs were female and age range 33 – 69 years. In this study, none of the medical cannabis groups carried CYP2C9*2 variants in Thai patients. The CYP2C9*3 variants (*1/*3, intermediate metabolizer, IM) and (*3/*3, poor metabolizer, PM) were found, three of thirty-nine (7.69%) and one of thirty-nine (2.56%), respectively. Although, our results indicate that there is no found the CYP2C9*2. However, the variation of CYP2C9 allele might serve as a pharmacogenetics marker for screening before initiating the therapy with medical cannabis for the prevention of medical cannabis-induced AEs.

Keywords: CYP2C9, medical cannabis, adverse effects, THC, P450

Procedia PDF Downloads 119
700 Conformation Prediction of Human Plasmin and Docking on Gold Nanoparticle

Authors: Wen-Shyong Tzou, Chih-Ching Huang, Chin-Hwa Hu, Ying-Tsang Lo, Tun-Wen Pai, Chia-Yin Chiang, Chung-Hao Li, Hong-Jyuan Jian

Abstract:

Plasmin plays an important role in the human circulatory system owing to its catalytic ability of fibrinolysis. The immediate injection of plasmin in patients of strokes has intrigued many scientists to design vectors that can transport plasmin to the desired location in human body. Here we predict the structure of human plasmin and investigate the interaction of plasmin with the gold-nanoparticle. Because the crystal structure of plasminogen has been solved, we deleted N-terminal domain (Pan-apple domain) of plasminogen and generate a mimic of the active form of this enzyme (plasmin). We conducted a simulated annealing process on plasmin and discovered a very large conformation occurs. Kringle domains 1, 4 and 5 had been observed to leave its original location relative to the main body of the enzyme and the original doughnut shape of this enzyme has been transformed to a V-shaped by opening its two arms. This observation of conformational change is consistent with the experimental results of neutron scattering and centrifugation. We subsequently docked the plasmin on the simulated gold surface to predict their interaction. The V-shaped plasmin could utilize its Kringle domain and catalytic domain to contact the gold surface. Our findings not only reveal the flexibility of plasmin structure but also provide a guide for the design of a plasmin-gold nanoparticle.

Keywords: docking, gold nanoparticle, molecular simulation, plasmin

Procedia PDF Downloads 472
699 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 109
698 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition

Authors: J. K. Adedeji, S. T. Ijatuyi

Abstract:

The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.

Keywords: gravitational resistance, neural network, non-linear, pattern recognition

Procedia PDF Downloads 212
697 Data Mining Approach: Classification Model Evaluation

Authors: Lubabatu Sada Sodangi

Abstract:

The rapid growth in exchange and accessibility of information via the internet makes many organisations acquire data on their own operation. The aim of data mining is to analyse the different behaviour of a dataset using observation. Although, the subset of the dataset being analysed may not display all the behaviours and relationships of the entire data and, therefore, may not represent other parts that exist in the dataset. There is a range of techniques used in data mining to determine the hidden or unknown information in datasets. In this paper, the performance of two algorithms Chi-Square Automatic Interaction Detection (CHAID) and multilayer perceptron (MLP) would be matched using an Adult dataset to find out the percentage of an/the adults that earn > 50k and those that earn <= 50k per year. The two algorithms were studied and compared using IBM SPSS statistics software. The result for CHAID shows that the most important predictors are relationship and education. The algorithm shows that those are married (husband) and have qualification: Bachelor, Masters, Doctorate or Prof-school whose their age is > 41<57 earn > 50k. Also, multilayer perceptron displays marital status and capital gain as the most important predictors of the income. It also shows that individuals that their capital gain is less than 6,849 and are single, separated or widow, earn <= 50K, whereas individuals with their capital gain is > 6,849, work > 35 hrs/wk, and > 27yrs their income will be > 50k. By comparing the two algorithms, it is observed that both algorithms are reliable but there is strong reliability in CHAID which clearly shows that relation and education contribute to the prediction as displayed in the data visualisation.

Keywords: data mining, CHAID, multi-layer perceptron, SPSS, Adult dataset

Procedia PDF Downloads 378
696 Describing the Fine Electronic Structure and Predicting Properties of Materials with ATOMIC MATTERS Computation System

Authors: Rafal Michalski, Jakub Zygadlo

Abstract:

We present the concept and scientific methods and algorithms of our computation system called ATOMIC MATTERS. This is the first presentation of the new computer package, that allows its user to describe physical properties of atomic localized electron systems subject to electromagnetic interactions. Our solution applies to situations where an unclosed electron 2p/3p/3d/4d/5d/4f/5f subshell interacts with an electrostatic potential of definable symmetry and external magnetic field. Our methods are based on Crystal Electric Field (CEF) approach, which takes into consideration the electrostatic ligands field as well as the magnetic Zeeman effect. The application allowed us to predict macroscopic properties of materials such as: Magnetic, spectral and calorimetric as a result of physical properties of their fine electronic structure. We emphasize the importance of symmetry of charge surroundings of atom/ion, spin-orbit interactions (spin-orbit coupling) and the use of complex number matrices in the definition of the Hamiltonian. Calculation methods, algorithms and convention recalculation tools collected in ATOMIC MATTERS were chosen to permit the prediction of magnetic and spectral properties of materials in isostructural series.

Keywords: atomic matters, crystal electric field (CEF) spin-orbit coupling, localized states, electron subshell, fine electronic structure

Procedia PDF Downloads 319
695 Applicability of Cameriere’s Age Estimation Method in a Sample of Turkish Adults

Authors: Hatice Boyacioglu, Nursel Akkaya, Humeyra Ozge Yilanci, Hilmi Kansu, Nihal Avcu

Abstract:

The strong relationship between the reduction in the size of the pulp cavity and increasing age has been reported in the literature. This relationship can be utilized to estimate the age of an individual by measuring the pulp cavity size using dental radiographs as a non-destructive method. The purpose of this study is to develop a population specific regression model for age estimation in a sample of Turkish adults by applying Cameriere’s method on panoramic radiographs. The sample consisted of 100 panoramic radiographs of Turkish patients (40 men, 60 women) aged between 20 and 70 years. Pulp and tooth area ratios (AR) of the maxilla¬¬ry canines were measured by two maxillofacial radiologists and then the results were subjected to regression analysis. There were no statistically significant intra-observer and inter-observer differences. The correlation coefficient between age and the AR of the maxillary canines was -0.71 and the following regression equation was derived: Estimated Age = 77,365 – ( 351,193 × AR ). The mean prediction error was 4 years which is within acceptable errors limits for age estimation. This shows that the pulp/tooth area ratio is a useful variable for assessing age with reasonable accuracy. Based on the results of this research, it was concluded that Cameriere’s method is suitable for dental age estimation and it can be used for forensic procedures in Turkish adults. These instructions give you guidelines for preparing papers for conferences or journals.

Keywords: age estimation by teeth, forensic dentistry, panoramic radiograph, Cameriere's method

Procedia PDF Downloads 450
694 Severity Index Level in Effectively Managing Medium Voltage Underground Power Cable

Authors: Mohd Azraei Pangah Pa'at, Mohd Ruzlin Mohd Mokhtar, Norhidayu Rameli, Tashia Marie Anthony, Huzainie Shafi Abd Halim

Abstract:

Partial Discharge (PD) diagnostic mapping testing is one of the main diagnostic testing techniques that are widely used in the field or onsite testing for underground power cable in medium voltage level. The existence of PD activities is an early indication of insulation weakness hence early detection of PD activities can be determined and provides an initial prediction on the condition of the cable. To effectively manage the results of PD Mapping test, it is important to have acceptable criteria to facilitate prioritization of mitigation action. Tenaga Nasional Berhad (TNB) through Distribution Network (DN) division have developed PD severity model name Severity Index (SI) for offline PD mapping test since 2007 based on onsite test experience. However, this severity index recommendation action had never been revised since its establishment. At presence, PD measurements data have been extensively increased, hence the severity level indication and the effectiveness of the recommendation actions can be analyzed and verified again. Based on the new revision, the recommended action to be taken will be able to reflect the actual defect condition. Hence, will be accurately prioritizing preventive action plan and minimizing maintenance expenditure.

Keywords: partial discharge, severity index, diagnostic testing, medium voltage, power cable

Procedia PDF Downloads 186
693 Assessing Level of Pregnancy Rate and Milk Yield in Indian Murrah Buffaloes

Authors: V. Jamuna, A. K. Chakravarty, C. S. Patil, Vijay Kumar, M. A. Mir, Rakesh Kumar

Abstract:

Intense selection of buffaloes for milk production at organized herds of the country without giving due attention to fertility traits viz. pregnancy rate has lead to deterioration in their performances. Aim of study is to develop an optimum model for predicting pregnancy rate and to assess the level of pregnancy rate with respect to milk production Murrah buffaloes. Data pertaining to 1224 lactation records of Murrah buffaloes spread over a period 21 years were analyzed and it was observed that pregnancy rate depicted negative phenotypic association with lactation milk yield (-0.08 ± 0.04). For developing optimum model for pregnancy rate in Murrah buffaloes seven simple and multiple regression models were developed. Among the seven models, model II having only Service period as an independent reproduction variable, was found to be the best prediction model, based on the four statistical criterions (high coefficient of determination (R 2), low mean sum of squares due to error (MSSe), conceptual predictive (CP) value, and Bayesian information criterion (BIC). For standardizing the level of fertility with milk production, pregnancy rate was classified into seven classes with the increment of 10% in all parities, life time and their corresponding average pregnancy rate in relation to the average lactation milk yield (MY).It was observed that to achieve around 2000 kg MY which can be considered optimum for Indian Murrah buffaloes, level of pregnancy rate should be in between 30-50%.

Keywords: life time, pregnancy rate, production, service period, standardization

Procedia PDF Downloads 635
692 Dynamic Fault Diagnosis for Semi-Batch Reactor Under Closed-Loop Control via Independent RBFNN

Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm

Abstract:

In this paper, a new robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics and using the weighted sum-squared prediction error as the residual. The recursive orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. The several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.

Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control

Procedia PDF Downloads 497
691 Effect of Tensile Strain on Microstructure of Irradiated Core Internal Material

Authors: Hygreeva Kiran Namburi, Anna Hojna, Edita Lecianova, Fencl Zdenek

Abstract:

Irradiation Assisted Stress Corrosion Cracking [IASCC] is one of the most significant environmental degradation in the internal components made from Austenitic stainless steel. This mechanism is still not fully understood and there are no suitable criteria for prediction of the damage during operation. In this work, core basket material 08Ch18N10T austenitic stainless steel acquired from decommissioned NPP Nord / Greifswald Unit 1, VVER 440-230 type, operated for 15 years and irradiated at 5.2 dpa is studied. This material was tensile tested at two different test temperatures and strain rates in air and at the elevated temperature under the water environment. SEM observations of the fracture surface documented ductile fracture of the samples tested in air, but areas of IASCC tested in water. This paper emphasizes on the microscopic examination results from the mechanically tested samples to determine the underlying IASCC physical damage process. TEM observations of thin foils made from the gauge sections that are closer to the fractured surface of the specimen aimed to find variances in interaction of dislocations and grain boundaries owing to different test conditions.

Keywords: irradiation assisted stress corrosion cracking, core basket material, SEM observations of the fracture surface, microscopic examination results

Procedia PDF Downloads 349
690 Experimental Modeling and Simulation of Zero-Surface Temperature of Controlled Water Jet Impingement Cooling System for Hot-Rolled Steel Plates

Authors: Thomas Okechukwu Onah, Onyekachi Marcel Egwuagu

Abstract:

Zero-surface temperature, which controlled the cooling profile, was modeled and used to investigate the effect of process parameters on the hot-rolled steel plates. The parameters include impingement gaps of 40mm to 70mm; pipe diameters of 20mm to 45mm feeding jet nozzle with 30 holes of 8mm diameters each; and flow rates within 2.896x10-⁶m³/s and 3.13x10-⁵m³/s. The developed simulation model of the Zero-Surface Temperature, upon validation, showed 99% prediction accuracy with dimensional homogeneity established. The evaluated Zero-Surface temperature of Controlled Water Jet Impingement Steel plates showed a high cooling rate of 36.31 Celsius degree/sec at an optimal cooling nozzle diameter of 20mm, impingement gap of 70mm and a flow rate of 1.77x10-⁵m³/s resulting in Reynold's number 2758.586, in the turbulent regime was obtained. It was also deduced that as the nozzle diameter was increasing, the impingement gap was reducing. This achieved a faster rate of cooling to an optimum temperature of 300oC irrespective of the starting surface cooling temperature. The results additionally showed that with a tested-plate initial temperature of 550oC, a controlled cooling temperature of about 160oC produced a film and nucleated boiling heat extraction that was particularly beneficial at the end of controlled cooling and influenced the microstructural properties of the test plates.

Keywords: temperature, mechanistic-model, plates, impingements, dimensionless-numbers

Procedia PDF Downloads 46
689 Modeling and Simulation of Pad Surface Topography by Diamond Dressing in Chemical-Mechanical Polishing Process

Authors: A.Chen Chao-Chang, Phong Pham-Quoc

Abstract:

Chemical-mechanical polishing (CMP) process has been widely applied on fabricating integrated circuits (IC) with a soft polishing pad combined with slurry composed of micron or nano-scaled abrasives for generating chemical reaction to remove substrate or film materials from wafer. During CMP process, pad uniformity usually works as a datum surface of wafer planarization and pad asperities can dominate the microscopic pad-slurry-wafer interaction. However, pad topography can be changed by related mechanism factors of CMP and it needs to be re-conditioned or dressed by a diamond dresser of well-distributed diamond grits on a disc surface. It is still very complicated to analyze and understand kinematic of diamond dressing process under the effects of input variables including oscillatory of diamond dresser and rotation speed ratio between the pad and the diamond dresser. This paper has developed a generic geometric model to clarify the kinematic modeling of diamond dressing processes such as dresser/pad motion, pad cutting locus, the relative velocity of the diamond abrasive grits on pad surface, and overlap of cutting for prediction of pad surface topography. Simulation results focus on comparing and analysis kinematics of the diamond dressing on certain CMP tools. Results have shown the significant parameters for diamond dressing process and also discussed. Future study can apply on diamond dresser design and experimental verification of pad dressing process.

Keywords: kinematic modeling, diamond dresser, pad cutting locus, CMP

Procedia PDF Downloads 255
688 Statistical Analysis Approach for the e-Glassy Mortar And Radiation Shielding Behaviors Using Anova

Authors: Abadou Yacine, Faid Hayette

Abstract:

Significant investigations were performed on the use and impact on physical properties along with the mechanical strength of the recycled and reused E-glass waste powder. However, it has been modelled how recycled display e-waste glass may affect the characteristics and qualities of dune sand mortar. To be involved in this field, an investigation has been done with the substitution of dune sand for recycled E-glass waste and constant water-cement ratios. The linear relationship between the dune sand mortar and E-glass mortar mix % contributes to the model's reliability. The experimental data was exposed to regression analysis using JMP Statistics software. The regression model with one predictor presented the general form of the equation for the prediction of the five properties' characteristics of dune sand mortar from the substitution ratio of E-waste glass and curing age. The results illustrate that curing a long-term process produced an E-glass waste mortar specimen with the highest compressive strength of 68 MPa in the laboratory environment. Anova analysis indicated that the curing at long-term has the utmost importance on the sorptivity level and ultrasonic pulse velocity loss. Furthermore, the E-glass waste powder percentage has the utmost importance on the compressive strength and improvement in dynamic elasticity modulus. Besides, a significant enhancement of radiation-shielding applications.

Keywords: ANOVA analysis, E-glass waste, durability and sustainability, radiation-shielding

Procedia PDF Downloads 59
687 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator

Procedia PDF Downloads 250
686 Climate Change Impact on Water Resources above the Territory of Georgia

Authors: T. Davitashvili

Abstract:

At present impact of global climate change on the territory of Georgia is evident at least on the background of the Caucasus glaciers melting which during the last century have decreased to half their size. Glaciers are early indicators of ongoing global and regional climate change. Knowledge of the Caucasus glaciers fluctuation (melting) is an extremely necessary tool for planning hydro-electric stations and water reservoir, for development tourism and agriculture, for provision of population with drinking water and for prediction of water supplies in more arid regions of Georgia. Otherwise, the activity of anthropogenic factors has resulted in decreasing of the mowing, arable, unused lands, water resources, shrubs and forests, owing to increasing the production and building. Transformation of one type structural unit into another one has resulted in local climate change and its directly or indirectly impacts on different components of water resources on the territory of Georgia. In the present paper, some hydrological specifications of Georgian water resources and its potential pollutants on the background of regional climate change are presented. Some results of Georgian’s glaciers pollution and its melting process are given. The possibility of surface and subsurface water pollution owing to accidents at oil pipelines or railway routes are discussed. The specific properties of regional climate warming process in the eastern Georgia are studied by statistical methods. The effect of the eastern Georgian climate change upon water resources is investigated.

Keywords: climate, droughts, pollution, water resources

Procedia PDF Downloads 480
685 Artificially Intelligent Context Aware Personal Computer Assistant (ACPCA)

Authors: Abdul Mannan Akhtar

Abstract:

In this paper a novel concept of a self learning smart personalized computer assistant (ACPCA) is established which is a context aware system. Based on user habits, moods, and other routines/situational reactions the system will manage various services and suggestions at appropriate times including what schedule to follow, what to watch, what software to be used, what should be deleted etc. This system will utilize a hybrid fuzzyNeural model to predict what the user will do next and support his actions. This will be done by establishing fuzzy sets of user activities, choices, preferences etc. and utilizing their combinations to predict his moods and immediate preferences. Various application of context aware systems exist separately e.g. on certain websites for music or multimedia suggestions but a personalized autonomous system that could adapt to user’s personality does not exist at present. Due to the novelty and massiveness of this concept, this paper will primarily focus on the problem establishment, product features and its functionality; however a small mini case is also implemented on MATLAB to demonstrate some of the aspects of ACPCA. The mini case involves prediction of user moods, activity, routine and food preference using a hybrid fuzzy-Neural soft computing technique.

Keywords: context aware systems, APCPCA, soft computing techniques, artificial intelligence, fuzzy logic, neural network, mood detection, face detection, activity detection

Procedia PDF Downloads 464
684 Using Computational Fluid Dynamics (CFD) Modeling to Predict the Impact of Nuclear Reactor Mixed Tank Flows Using the Momentum Equation

Authors: Joseph Amponsah

Abstract:

This research proposes an equation to predict and determine the momentum source equation term after factoring in the radial friction between the fluid and the blades and the impeller's propulsive power. This research aims to look at how CFD software can be used to predict the effect of flows in nuclear reactor stirred tanks through a momentum source equation and the concentration distribution of tracers that have been introduced in reactor tanks. The estimated findings, including the dimensionless concentration curves, power, and pumping numbers, dimensionless velocity profiles, and mixing times 4, were contrasted with results from tests in stirred containers. The investigation was carried out in Part I for vessels that were agitated by one impeller on a central shaft. The two types of impellers employed were an ordinary Rushton turbine and a 6-bladed 45° pitched blade turbine. The simulations made use of numerous reference frame techniques and the common k-e turbulence model. The impact of the grid type was also examined; unstructured, structured, and unique user-defined grids were looked at. The CFD model was used to simulate the flow field within the Rushton turbine nuclear reactor stirred tank. This method was validated using experimental data that were available close to the impeller tip and in the bulk area. Additionally, analyses of the computational efficiency and time using MRF and SM were done.

Keywords: Ansys fluent, momentum equation, CFD, prediction

Procedia PDF Downloads 79