Search results for: restricted user story modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7087

Search results for: restricted user story modeling

5527 Intelligent Rescheduling Trains for Air Pollution Management

Authors: Kainat Affrin, P. Reshma, G. Narendra Kumar

Abstract:

Optimization of timetable is the need of the day for the rescheduling and routing of trains in real time. Trains are scheduled in parallel with the road transport vehicles to the same destination. As the number of trains is restricted due to single track, customers usually opt for road transport to use frequently. The air pollution increases as the density of vehicles on road transport is increased. Use of an alternate mode of transport like train helps in reducing air-pollution. This paper mainly aims at attracting the passengers to Train transport by proper rescheduling of trains using hybrid of stop-skip algorithm and iterative convex programming algorithm. Rescheduling of train bi-directionally is achieved on a single track with dynamic dual time and varying stops. Introduction of more trains attract customers to use rail transport frequently, thereby decreasing the pollution. The results are simulated using Network Simulator (NS-2).

Keywords: air pollution, AODV, re-scheduling, WSNs

Procedia PDF Downloads 361
5526 Modeling of Single Bay Precast Residential House Using Ruaumoko 2D Program

Authors: N. H. Hamid, N. M. Mohamed, S. A. Anuar

Abstract:

Precast residential houses are normally constructed in Malaysia using precast shear-key wall panel and precast wall panel are designed using BS8110 where there is no provision for earthquake. However, the safety of this house under moderate and strong earthquake is still questionable. Consequently, the full-scale of residential house are designed, constructed, tested and analyzed under in-plane lateral cyclic loading. Hysteresis loops are plotted based on the experimental work and compared with modeling of hysteresis loops using HYSTERES in RUAUMOKO 2D program. Modified Takeda hysteresis model is chosen to behave a similar pattern with experimental work. This program will display the earthquake excitations, spectral displacements, pseudo spectral acceleration, and deformation shape of the structure. It can be concluded that this building is suffering severe cracks and damage under moderate and severe earthquake.

Keywords: precast shear-key, hysteresis loops, spectral displacements, deformation shape

Procedia PDF Downloads 456
5525 Problem Solving in Chilean Higher Education: Figurations Prior in Interpretations of Cartesian Graphs

Authors: Verónica Díaz

Abstract:

A Cartesian graph, as a mathematical object, becomes a tool for configuration of change. Its best comprehension is done through everyday life problem-solving associated with its representation. Despite this, the current educational framework favors general graphs, without consideration of their argumentation. Students are required to find the mathematical function without associating it to the development of graphical language. This research describes the use made by students of configurations made prior to Cartesian graphs with regards to an everyday life problem related to a time and distance variation phenomenon. The theoretical framework describes the function conditions of study and their modeling. This is a qualitative, descriptive study involving six undergraduate case studies that were carried out during the first term in 2016 at University of Los Lagos. The research problem concerned the graphic modeling of a real person’s movement phenomenon, and two levels of analysis were identified. The first level aims to identify local and global graph interpretations; a second level describes the iconicity and referentiality degree of an image. According to the results, students were able to draw no figures before the Cartesian graph, highlighting the need for students to represent the context and the movement of which causes the phenomenon change. From this, they managed Cartesian graphs representing changes in position, therefore, achieved an overall view of the graph. However, the local view only indicates specific events in the problem situation, using graphic and verbal expressions to represent movement. This view does not enable us to identify what happens on the graph when the movement characteristics change based on possible paths in the person’s walking speed.

Keywords: cartesian graphs, higher education, movement modeling, problem solving

Procedia PDF Downloads 218
5524 A Review of Attractor Neural Networks and Their Use in Cognitive Science

Authors: Makenzy Lee Gilbert

Abstract:

This literature review explores the role of attractor neural networks (ANNs) in modeling psychological processes in artificial and biological systems. By synthesizing research from dynamical systems theory, psychology, and computational neuroscience, the review provides an overview of the current understanding of ANN function in memory formation, reinforcement, retrieval, and forgetting. Key mathematical foundations, including dynamical systems theory and energy functions, are discussed to explain the behavior and stability of these networks. The review also examines empirical applications of ANNs in cognitive processes such as semantic memory and episodic recall, as well as highlighting the hippocampus's role in pattern separation and completion. The review addresses challenges like catastrophic forgetting and noise effects on memory retrieval. By identifying gaps between theoretical models and empirical findings, it highlights the interdisciplinary nature of ANN research and suggests future exploration areas.

Keywords: attractor neural networks, connectionism, computational modeling, cognitive neuroscience

Procedia PDF Downloads 32
5523 Exploration of Various Metrics for Partitioning of Cellular Automata Units for Efficient Reconfiguration of Field Programmable Gate Arrays (FPGAs)

Authors: Peter Tabatt, Christian Siemers

Abstract:

Using FPGA devices to improve the behavior of time-critical parts of embedded systems is a proven concept for years. With reconfigurable FPGA devices, the logical blocks can be partitioned and grouped into static and dynamic parts. The dynamic parts can be reloaded 'on demand' at runtime. This work uses cellular automata, which are constructed through compilation from (partially restricted) ANSI-C sources, to determine the suitability of various metrics for optimal partitioning. Significant metrics, in this case, are for example the area on the FPGA device for the partition, the pass count for loop constructs and communication characteristics to other partitions. With successful partitioning, it is possible to use smaller FPGA devices for the same requirements as with not reconfigurable FPGA devices or – vice versa – to use the same FPGAs for larger programs.

Keywords: reconfigurable FPGA, cellular automata, partitioning, metrics, parallel computing

Procedia PDF Downloads 272
5522 Statistically Accurate Synthetic Data Generation for Enhanced Traffic Predictive Modeling Using Generative Adversarial Networks and Long Short-Term Memory

Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad

Abstract:

Effective traffic management and infrastructure planning are crucial for the development of smart cities and intelligent transportation systems. This study addresses the challenge of data scarcity by generating realistic synthetic traffic data using the PeMS-Bay dataset, improving the accuracy and reliability of predictive modeling. Advanced synthetic data generation techniques, including TimeGAN, GaussianCopula, and PAR Synthesizer, are employed to produce synthetic data that replicates the statistical and structural characteristics of real-world traffic. Future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is planned to capture both spatial and temporal correlations, further improving data quality and realism. The performance of each synthetic data generation model is evaluated against real-world data to identify the best models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are utilized to model and predict complex temporal dependencies within traffic patterns. This comprehensive approach aims to pinpoint areas with low vehicle counts, uncover underlying traffic issues, and inform targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study supports data-driven decision-making that enhances urban mobility, safety, and the overall efficiency of city planning initiatives.

Keywords: GAN, long short-term memory, synthetic data generation, traffic management

Procedia PDF Downloads 29
5521 Ethnobotanical Study of Medicinal Plants Used by Indigenous People of Community Forest User Groups of Parbat District, Nepal

Authors: Gokul Gaudel, Zhang Wen Hui, Dang Quang Hung, Le Thi Hien, Liang Xiao

Abstract:

The community forests of Nepal serve as a major source of medicinal plants for majority of local people who are dependent on traditional health care system. This study aims to explore the ethnobotanical information of the medicinal plants used by five different community forest user groups of Parbat district of Nepal. The research was conducted during different periods of the year 2015, using semi-structured, open-ended questionnaires, formal and informal interviews, and group discussions. In total 145 different plant species within 77 families were documented, the majority of them being herb were found to be used to treat 84 different ailments. In terms of plant parts use: whole plants, barks, fruits, leaves were found to be in top priorities. Oral administration was the dominant route (57%), followed by both oral and dermal route (29%) and dermal only (14%). Females were found to have 24% more ethnobotanical knowledge than male. The knowledge of ethnobotanical medicinal plants was found excellent on age group 65-75. This study showed that community forests of Parbat district are rich in medicinal plants but the new generation was found less interested in using them. Easy access to modern medicines, lack of documentation and knowledge transfer to young generations are the major causes of diminishing utility of traditional medicinal practices.

Keywords: ailments, community forest, ethnobotany, medicinal plants, Parbat

Procedia PDF Downloads 287
5520 Unsupervised Text Mining Approach to Early Warning System

Authors: Ichihan Tai, Bill Olson, Paul Blessner

Abstract:

Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.

Keywords: early warning system, knowledge management, market prediction, topic modeling.

Procedia PDF Downloads 340
5519 An Evaluation Framework for Virtual Reality Learning Environments in Sports Education

Authors: Jonathan J. Foo, Keng Hao Chew

Abstract:

Interest in virtual reality (VR) technologies as virtual learning environments have been on the rise in recent years. With thanks to the aggressively competitive consumer electronics environment, VR technology has been made affordable and accessible to the average person with developments like Google Cardboard and Oculus Go. While the promise of virtual access to unique virtual learning environments with the benefits of experiential learning sounds extremely attractive, there are still concerns over user comfort in the psychomotor, cognitive, and affective domains. Reports of motion sickness and short durations create doubt and have stunted its growth. In this paper, a multidimensional framework is proposed for the evaluation of VR learning environments within the three dimensions: tactual quality, didactic quality, and autodidactic quality. This paper further proposes a mixed-methods experimental research plan that sets out to evaluate a virtual reality training simulator in the context of amateur sports fencing. The study will investigate if an immersive VR learning environment can effectively simulate an authentic learning environment suitable for instruction, practice, and assessment while providing the user comfort in the tactual, didactic, and autodidactic dimensions. The models and recommendations developed for this study are designed in the context of fencing, but the potential impact is a guide for the future design and evaluation of all VR developments across sports and technical classroom education.

Keywords: autodidactic quality, didactic quality, tactual quality, virtual reality

Procedia PDF Downloads 135
5518 Analysis of Ecological Footprint of Residents for Urban Spatial Restructuring

Authors: Taehyun Kim, Hyunjoo Park, Taehyun Kim

Abstract:

Since the rapid economic development, Korea has recently entered a period of low growth due to population decline and aging. Due to the urbanization around the metropolitan area and the hollowing of local cities, the ecological capacity of a city is decreasing while ecological footprints are increasing, requiring a compact space plan for maintaining urban functions. The purpose of this study is to analyze the relationship between urban spatial structure and residents' ecological footprints for sustainable spatial planning. To do this, we try to analyze the relationship between intra-urban spatial structure, such as net/gross density and service accessibility, and resident ecological footprints of food, housing, transportation, goods and services through survey and structural equation modeling. The results of the study will be useful in establishing an implementation plan for sustainable development goals (SDGs), especially for sustainable cities and communities (SDG 11) and responsible consumption and production (SDG 12) in the future.

Keywords: ecological footprint, structural equation modeling, survey, sustainability, urban spatial structure

Procedia PDF Downloads 266
5517 Predicting Bridge Pier Scour Depth with SVM

Authors: Arun Goel

Abstract:

Prediction of maximum local scour is necessary for the safety and economical design of the bridges. A number of equations have been developed over the years to predict local scour depth using laboratory data and a few pier equations have also been proposed using field data. Most of these equations are empirical in nature as indicated by the past publications. In this paper, attempts have been made to compute local depth of scour around bridge pier in dimensional and non-dimensional form by using linear regression, simple regression and SVM (Poly and Rbf) techniques along with few conventional empirical equations. The outcome of this study suggests that the SVM (Poly and Rbf) based modeling can be employed as an alternate to linear regression, simple regression and the conventional empirical equations in predicting scour depth of bridge piers. The results of present study on the basis of non-dimensional form of bridge pier scour indicates the improvement in the performance of SVM (Poly and Rbf) in comparison to dimensional form of scour.

Keywords: modeling, pier scour, regression, prediction, SVM (Poly and Rbf kernels)

Procedia PDF Downloads 452
5516 On-Ice Force-Velocity Modeling Technical Considerations

Authors: Dan Geneau, Mary Claire Geneau, Seth Lenetsky, Ming -Chang Tsai, Marc Klimstra

Abstract:

Introduction— Horizontal force-velocity profiling (HFVP) involves modeling an athletes linear sprint kinematics to estimate valuable maximum force and velocity metrics. This approach to performance modeling has been used in field-based team sports and has recently been introduced to ice-hockey as a forward skating performance assessment. While preliminary data has been collected on ice, distance constraints of the on-ice test restrict the ability of the athletes to reach their maximal velocity which result in limits of the model to effectively estimate athlete performance. This is especially true of more elite athletes. This report explores whether athletes on-ice are able to reach a velocity plateau similar to what has been seen in overground trials. Fourteen male Major Junior ice-hockey players (BW= 83.87 +/- 7.30 kg, height = 188 ± 3.4cm cm, age = 18 ± 1.2 years n = 14) were recruited. For on-ice sprints, participants completed a standardized warm-up consisting of skating and dynamic stretching and a progression of three skating efforts from 50% to 95%. Following the warm-up, participants completed three on ice 45m sprints, with three minutes of rest in between each trial. For overground sprints, participants completed a similar dynamic warm-up to that of on-ice trials. Following the warm-up participants completed three 40m overground sprint trials. For each trial (on-ice and overground), radar was used to collect instantaneous velocity (Stalker ATS II, Texas, USA) aimed at the participant’s waist. Sprint velocities were modelled using custom Python (version 3.2) script using a mono-exponential function, similar to previous work. To determine if on-ice tirals were achieving a maximum velocity (plateau), minimum acceleration values of the modeled data at the end of the sprint were compared (using paired t-test) between on-ice and overground trials. Significant differences (P<0.001) between overground and on-ice minimum accelerations were observed. It was found that on-ice trials consistently reported higher final acceleration values, indicating a maximum maintained velocity (plateau) had not been reached. Based on these preliminary findings, it is suggested that reliable HFVP metrics cannot yet be collected from all ice-hockey populations using current methods. Elite male populations were not able to achieve a velocity plateau similar to what has been seen in overground trials, indicating the absence of a maximum velocity measure. With current velocity and acceleration modeling techniques, including a dependency of a velocity plateau, these results indicate the potential for error in on-ice HFVP measures. Therefore, these findings suggest that a greater on-ice sprint distance may be required or the need for other velocity modeling techniques, where maximal velocity is not required for a complete profile.   

Keywords: ice-hockey, sprint, skating, power

Procedia PDF Downloads 101
5515 An AI-Based Dynamical Resource Allocation Calculation Algorithm for Unmanned Aerial Vehicle

Authors: Zhou Luchen, Wu Yubing, Burra Venkata Durga Kumar

Abstract:

As the scale of the network becomes larger and more complex than before, the density of user devices is also increasing. The development of Unmanned Aerial Vehicle (UAV) networks is able to collect and transform data in an efficient way by using software-defined networks (SDN) technology. This paper proposed a three-layer distributed and dynamic cluster architecture to manage UAVs by using an AI-based resource allocation calculation algorithm to address the overloading network problem. Through separating services of each UAV, the UAV hierarchical cluster system performs the main function of reducing the network load and transferring user requests, with three sub-tasks including data collection, communication channel organization, and data relaying. In this cluster, a head node and a vice head node UAV are selected considering the Central Processing Unit (CPU), operational (RAM), and permanent (ROM) memory of devices, battery charge, and capacity. The vice head node acts as a backup that stores all the data in the head node. The k-means clustering algorithm is used in order to detect high load regions and form the UAV layered clusters. The whole process of detecting high load areas, forming and selecting UAV clusters, and moving the selected UAV cluster to that area is proposed as offloading traffic algorithm.

Keywords: k-means, resource allocation, SDN, UAV network, unmanned aerial vehicles

Procedia PDF Downloads 113
5514 Estimation of the Upper Tail Dependence Coefficient for Insurance Loss Data Using an Empirical Copula-Based Approach

Authors: Adrian O'Hagan, Robert McLoughlin

Abstract:

Considerable focus in the world of insurance risk quantification is placed on modeling loss values from lines of business (LOBs) that possess upper tail dependence. Copulas such as the Joe, Gumbel and Student-t copula may be used for this purpose. The copula structure imparts a desired level of tail dependence on the joint distribution of claims from the different LOBs. Alternatively, practitioners may possess historical or simulated data that already exhibit upper tail dependence, through the impact of catastrophe events such as hurricanes or earthquakes. In these circumstances, it is not desirable to induce additional upper tail dependence when modeling the joint distribution of the loss values from the individual LOBs. Instead, it is of interest to accurately assess the degree of tail dependence already present in the data. The empirical copula and its associated upper tail dependence coefficient are presented in this paper as robust, efficient means of achieving this goal.

Keywords: empirical copula, extreme events, insurance loss reserving, upper tail dependence coefficient

Procedia PDF Downloads 284
5513 Intensive Use of Software in Teaching and Learning Calculus

Authors: Nodelman V.

Abstract:

Despite serious difficulties in the assimilation of the conceptual system of Calculus, software in the educational process is used only occasionally, and even then, mainly for illustration purposes. The following are a few reasons: The non-trivial nature of the studied material, Lack of skills in working with software, Fear of losing time working with software, The variety of the software itself, the corresponding interface, syntax, and the methods of working with the software, The need to find suitable models, and familiarize yourself with working with them, Incomplete compatibility of the found models with the content and teaching methods of the studied material. This paper proposes an active use of the developed non-commercial software VusuMatica, which allows removing these restrictions through Broad support for the studied mathematical material (and not only Calculus). As a result - no need to select the right software, Emphasizing the unity of mathematics, its intrasubject and interdisciplinary relations, User-friendly interface, Absence of special syntax in defining mathematical objects, Ease of building models of the studied material and manipulating them, Unlimited flexibility of models thanks to the ability to redefine objects, which allows exploring objects characteristics, and considering examples and counterexamples of the concepts under study. The construction of models is based on an original approach to the analysis of the structure of the studied concepts. Thanks to the ease of construction, students are able not only to use ready-made models but also to create them on their own and explore the material studied with their help. The presentation includes examples of using VusuMatica in studying the concepts of limit and continuity of a function, its derivative, and integral.

Keywords: counterexamples, limitations and requirements, software, teaching and learning calculus, user-friendly interface and syntax

Procedia PDF Downloads 83
5512 A Machine Learning-Based Analysis of Autism Prevalence Rates across US States against Multiple Potential Explanatory Variables

Authors: Ronit Chakraborty, Sugata Banerji

Abstract:

There has been a marked increase in the reported prevalence of Autism Spectrum Disorder (ASD) among children in the US over the past two decades. This research has analyzed the growth in state-level ASD prevalence against 45 different potentially explanatory factors, including socio-economic, demographic, healthcare, public policy, and political factors. The goal was to understand if these factors have adequate predictive power in modeling the differential growth in ASD prevalence across various states and if they do, which factors are the most influential. The key findings of this study include (1) the confirmation that the chosen feature set has considerable power in predicting the growth in ASD prevalence, (2) the identification of the most influential predictive factors, (3) given the nature of the most influential predictive variables, an indication that a considerable portion of the reported ASD prevalence differentials across states could be attributable to over and under diagnosis, and (4) identification of Florida as a key outlier state pointing to a potential under-diagnosis of ASD there.

Keywords: autism spectrum disorder, clustering, machine learning, predictive modeling

Procedia PDF Downloads 105
5511 Study of the Relationship between the Roughness Configuration of Channel Bottom and the Creation of Vortices at the Rough Area: Numerical Modelling

Authors: Youb Said, Fourar Ali

Abstract:

To describe the influence of bottom roughness on the free surface flows by numerical modeling, a two-dimensional model was developed. The equations of continuity and momentum (Naviers Stokes equations) are solved by the finite volume method. We considered a turbulent flow in an open channel with a bottom roughness. For our simulations, the K-ε model was used. After setting the initial and boundary conditions and solve the equations set, we were able to achieve the following results: vortex forming in the hollow causing substantial energy dissipation in the obstacle areas that form the bottom roughness. The comparison of our results with experimental ones shows a good agreement in terms of the results in the rough area. However, in other areas, differences were more or less important. These differences are in areas far from the bottom, especially the free surface area just after the bottom. These disagreements are probably due to experimental constants used by the k-ε model.

Keywords: modeling, free surface flow, turbulence, bottom roughness, finite volume, K-ε model, energy dissipation

Procedia PDF Downloads 382
5510 Safety Analysis and Accident Modeling of Transportation in Srinagar City

Authors: Adinarayana Badveeti, Mohammad Shafi Mir

Abstract:

In Srinagar city, in India, road safety is an important aspect that creates ecological balance and social well being. A road accident creates a situation that leaves behind distress, sorrow, and sufferings. Therefore identification of causes of road accidents becomes highly essential for adopting necessary preventive measures against a critical event. The damage created by road accidents to large extent is unrepairable and therefore needs attention to eradicate this continuously increasing trend of awful 'epidemic'. Road accident in India is among the highest in the world, with at least approximately 142.000 people killed each year on the road. Kashmir region is an ecologically sensitive place but lacks necessary facilities and infrastructure regarding road transportation, ultimately resulting in the critical event-road accidents creating a major problem for common people in the region. The objective of this project is to study the safety aspect of Srinagar City and also model the accidents with different aspect that causes accidents and also to suggest the possible remedies for lessening/eliminating the road accidents.

Keywords: road safety, road accident, road infrastructure, accident modeling

Procedia PDF Downloads 258
5509 Evaluation of Impact on Traffic Conditions Due to Electronic Toll Collection System Design in Thailand

Authors: Kankrong Suangka

Abstract:

This research explored behaviors of toll way users that impact their decision to use the Electronic Toll Collection System (ETC). It also went on to explore and evaluated the efficiency of toll plaza in terms of number of ETC booths in toll plaza and its lane location. The two main parameters selected for the scenarios analyzed were (1) the varying ration of ETC enabled users (2) the varying locations of the dedicated ETC lane. There were a total of 42 scenarios analyzed. Researched data indicated that in A.D.2013, the percentage of ETC user from the total toll user is 22%. It was found that the delay at the payment booth was reduced by increasing the ETC booth by 1 more lane under the condition that the volume of ETC users passing through the plaza less than 1,200 vehicles/hour. Meanwhile, increasing the ETC lanes by 2 lanes can accommodate an increased traffic volume to around 1,200 to 1,800 vehicles/hour. Other than that, in terms of the location of ETC lane, it was found that if for one ETC lane-plazas, installing the ETC lane at the far right are the best alternative. For toll plazas with 2 ETC lanes, the best layout is to have 1 lane in the middle and 1 lane at the far right. This layout shows the least delay when compared to other layouts. Furthermore, the results from this research showed that micro-simulator traffic models have potential for further applications and use in designing toll plaza lanes. Other than that, the results can also be used to analyze the system of the nearby area with similar traffic volume and can be used for further design improvements.

Keywords: the electronic toll collection system, average queuing delay, toll plaza configuration, bioinformatics, biomedicine

Procedia PDF Downloads 239
5508 Studying the Theoretical and Laboratory Design of a Concrete Frame and Optimizing Its Design for Impact and Earthquake Resistance

Authors: Mehrdad Azimzadeh, Seyed Mohammadreza Jabbari, Mohammadreza Hosseinzadeh Alherd

Abstract:

This paper includes experimental results and analytical studies about increasing resistance of single-span reinforced concreted frames against impact factor and their modeling according to optimization methods and optimizing the behavior of these frames under impact loads. During this study, about 30 designs for different frames were modeled and made using specialized software like ANSYS and Sap and their behavior were examined under variable impacts. Then suitable strategies were offered for frames in terms of concrete mixing in order to optimize frame modeling. To reduce the weight of the frames, we had to use fine-grained stones. After designing about eight types of frames for each type of frames, three samples were designed with the aim of controlling the impact strength parameters, and a good shape of the frame was created for the impact resistance, which was a solid frame with muscular legs, and as a bond away from each other as much as possible with a 3 degree gradient in the upper part of the beam.

Keywords: optimization, reinforced concrete, optimization methods, impact load, earthquake

Procedia PDF Downloads 184
5507 Information Retrieval for Kafficho Language

Authors: Mareye Zeleke Mekonen

Abstract:

The Kafficho language has distinct issues in information retrieval because of its restricted resources and dearth of standardized methods. In this endeavor, with the cooperation and support of linguists and native speakers, we investigate the creation of information retrieval systems specifically designed for the Kafficho language. The Kafficho information retrieval system allows Kafficho speakers to access information easily in an efficient and effective way. Our objective is to conduct an information retrieval experiment using 220 Kafficho text files, including fifteen sample questions. Tokenization, normalization, stop word removal, stemming, and other data pre-processing chores, together with additional tasks like term weighting, were prerequisites for the vector space model to represent each page and a particular query. The three well-known measurement metrics we used for our word were Precision, Recall, and and F-measure, with values of 87%, 28%, and 35%, respectively. This demonstrates how well the Kaffiho information retrieval system performed well while utilizing the vector space paradigm.

Keywords: Kafficho, information retrieval, stemming, vector space

Procedia PDF Downloads 58
5506 Comparison of Solar Radiation Models

Authors: O. Behar, A. Khellaf, K. Mohammedi, S. Ait Kaci

Abstract:

Up to now, most validation studies have been based on the MBE and RMSE, and therefore, focused only on long and short terms performance to test and classify solar radiation models. This traditional analysis does not take into account the quality of modeling and linearity. In our analysis we have tested 22 solar radiation models that are capable to provide instantaneous direct and global radiation at any given location Worldwide. We introduce a new indicator, which we named Global Accuracy Indicator (GAI) to examine the linear relationship between the measured and predicted values and the quality of modeling in addition to long and short terms performance. Note that the quality of model has been represented by the T-Statistical test, the model linearity has been given by the correlation coefficient and the long and short term performance have been respectively known by the MBE and RMSE. An important founding of this research is that the use GAI allows avoiding default validation when using traditional methodology that might results in erroneous prediction of solar power conversion systems performances.

Keywords: solar radiation model, parametric model, performance analysis, Global Accuracy Indicator (GAI)

Procedia PDF Downloads 352
5505 The Effect of Pre-Cracks on Structural Strength of the Nextel Fibers: A Multiscale Modeling Approach

Authors: Seyed Mohammad Mahdi Zamani, Kamran Behdinan

Abstract:

In this study, a multiscale framework is performed to model the strength of Nextel fibers in presence of an atomistic scale pre-crack at finite temperatures. The bridging cell method (BCM) is the multiscale technique applied in this study, which decomposes the system into the atomistic, bridging and continuum domains; solves the whole system in a finite element framework; and incorporates temperature dependent calculations. Since Nextel is known to be structurally stable and retain 70% of its initial strength up to 1100°C; simulations are conducted at both of the room temperatures, 25°C, and fire temperatures, 1200°C. Two cases are modeled for a pre-crack present in either phases of alumina or mullite of the Nextel structure. The materials’ response is studied with respect to deformation behavior and ultimate tensile strength. Results show different crack growth trends for the two cases, and as the temperature increases, the crack growth resistance and material’s strength decrease.

Keywords: Nextel fibers, multiscale modeling, pre-crack, ultimate tensile strength

Procedia PDF Downloads 420
5504 Bilingual Books in British Sign Language and English: The Development of E-Book

Authors: Katherine O'Grady-Bray

Abstract:

For some deaf children, reading books can be a challenge. Frank Barnes School (FBS) provides guided reading time with Teachers of the Deaf, in which they read books with deaf children using a bilingual approach. The vocabulary and context of the story is explained to deaf children in BSL so they develop skills bridging English and BSL languages. However, the success of this practice is only achieved if the person is fluent in both languages. FBS piloted a scheme to convert an Oxford Reading Tree (ORT) book into an e-book that can be read using tablets. Deaf readers at FBS have access to both languages (BSL and English) during lessons and outside the classroom. The pupils receive guided reading sessions with a Teacher of the Deaf every morning, these one to one sessions give pupils the opportunity to learn how to bridge both languages e.g. how to translate English to BSL and vice versa. Generally, due to our pupils’ lack of access to incidental learning, gaining new information about the world around them is limited. This highlights the importance of quality time to scaffold their language development. In some cases, there is a shortfall of parental support at home due to poor communication skills or an unawareness of how to interact with deaf children. Some families have a limited knowledge of sign language or simply don’t have the required learning environment and strategies needed for language development with deaf children. As the majority of our pupils’ preferred language is BSL we use that to teach reading and writing English. If this is not mirrored at home, there is limited opportunity for joint reading sessions. Development of the e-Book required planning and technical development. The overall production took time as video footage needed to be shot and then edited individually for each page. There were various technical considerations such as having an appropriate background colour so not to draw attention away from the signer. Appointing a signer with the required high level of BSL was essential. The language and pace of the sign language was an important consideration as it was required to match the age and reading level of the book. When translating English text to BSL, careful consideration was given to the nonlinear nature of BSL and the differences in language structure and syntax. The e-book was produced using Apple’s ‘iBook Author’ software which allowed video footage of the signer to be embedded on pages opposite the text and illustration. This enabled BSL translation of the content of the text and inferences of the story. An interpreter was used to directly ‘voice over’ the signer rather than the actual text. The aim behind the structure and layout of the e-book is to allow parents to ‘read’ with their deaf child which helps to develop both languages. From observations, the use of e-books has given pupils confidence and motivation with their reading, developing skills bridging both BSL and English languages and more effective reading time with parents.

Keywords: bilingual book, e-book, BSL and English, bilingual e-book

Procedia PDF Downloads 170
5503 Business-Intelligence Mining of Large Decentralized Multimedia Datasets with a Distributed Multi-Agent System

Authors: Karima Qayumi, Alex Norta

Abstract:

The rapid generation of high volume and a broad variety of data from the application of new technologies pose challenges for the generation of business-intelligence. Most organizations and business owners need to extract data from multiple sources and apply analytical methods for the purposes of developing their business. Therefore, the recently decentralized data management environment is relying on a distributed computing paradigm. While data are stored in highly distributed systems, the implementation of distributed data-mining techniques is a challenge. The aim of this technique is to gather knowledge from every domain and all the datasets stemming from distributed resources. As agent technologies offer significant contributions for managing the complexity of distributed systems, we consider this for next-generation data-mining processes. To demonstrate agent-based business intelligence operations, we use agent-oriented modeling techniques to develop a new artifact for mining massive datasets.

Keywords: agent-oriented modeling (AOM), business intelligence model (BIM), distributed data mining (DDM), multi-agent system (MAS)

Procedia PDF Downloads 433
5502 An Activity Based Trajectory Search Approach

Authors: Mohamed Mahmoud Hasan, Hoda M. O. Mokhtar

Abstract:

With the gigantic increment in portable applications use and the spread of positioning and location-aware technologies that we are seeing today, new procedures and methodologies for location-based strategies are required. Location recommendation is one of the highly demanded location-aware applications uniquely with the wide accessibility of social network applications that are location-aware including Facebook check-ins, Foursquare, and others. In this paper, we aim to present a new methodology for location recommendation. The proposed approach coordinates customary spatial traits alongside other essential components including shortest distance, and user interests. We also present another idea namely, "activity trajectory" that represents trajectory that fulfills the set of activities that the user is intrigued to do. The approach dispatched acquaints the related distance value to select trajectory(ies) with minimum cost value (distance) and spatial-area to prune unneeded directions. The proposed calculation utilizes the idea of movement direction to prescribe most comparable N-trajectory(ies) that matches the client's required action design with least voyaging separation. To upgrade the execution of the proposed approach, parallel handling is applied through the employment of a MapReduce based approach. Experiments taking into account genuine information sets were built up and tested for assessing the proposed approach. The exhibited tests indicate how the proposed approach beets different strategies giving better precision and run time.

Keywords: location based recommendation, map-reduce, recommendation system, trajectory search

Procedia PDF Downloads 223
5501 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field

Authors: Yana Snegireva

Abstract:

Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.

Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model

Procedia PDF Downloads 76
5500 Material Chemistry Level Deformation and Failure in Cementitious Materials

Authors: Ram V. Mohan, John Rivas-Murillo, Ahmed Mohamed, Wayne D. Hodo

Abstract:

Cementitious materials, an excellent example of highly complex, heterogeneous material systems, are cement-based systems that include cement paste, mortar, and concrete that are heavily used in civil infrastructure; though commonly used are one of the most complex in terms of the material morphology and structure than most materials, for example, crystalline metals. Processes and features occurring at the nanometer sized morphological structures affect the performance, deformation/failure behavior at larger length scales. In addition, cementitious materials undergo chemical and morphological changes gaining strength during the transient hydration process. Hydration in cement is a very complex process creating complex microstructures and the associated molecular structures that vary with hydration. A fundamental understanding can be gained through multi-scale level modeling for the behavior and properties of cementitious materials starting from the material chemistry level atomistic scale to further explore their role and the manifested effects at larger length and engineering scales. This predictive modeling enables the understanding, and studying the influence of material chemistry level changes and nanomaterial additives on the expected resultant material characteristics and deformation behavior. Atomistic-molecular dynamic level modeling is required to couple material science to engineering mechanics. Starting at the molecular level a comprehensive description of the material’s chemistry is required to understand the fundamental properties that govern behavior occurring across each relevant length scale. Material chemistry level models and molecular dynamics modeling and simulations are employed in our work to describe the molecular-level chemistry features of calcium-silicate-hydrate (CSH), one of the key hydrated constituents of cement paste, their associated deformation and failure. The molecular level atomic structure for CSH can be represented by Jennite mineral structure. Jennite has been widely accepted by researchers and is typically used to represent the molecular structure of the CSH gel formed during the hydration of cement clinkers. This paper will focus on our recent work on the shear and compressive deformation and failure behavior of CSH represented by Jennite mineral structure that has been widely accepted by researchers and is typically used to represent the molecular structure of CSH formed during the hydration of cement clinkers. The deformation and failure behavior under shear and compression loading deformation in traditional hydrated CSH; effect of material chemistry changes on the predicted stress-strain behavior, transition from linear to non-linear behavior and identify the on-set of failure based on material chemistry structures of CSH Jennite and changes in its chemistry structure will be discussed.

Keywords: cementitious materials, deformation, failure, material chemistry modeling

Procedia PDF Downloads 287
5499 A Methodology to Integrate Data in the Company Based on the Semantic Standard in the Context of Industry 4.0

Authors: Chang Qin, Daham Mustafa, Abderrahmane Khiat, Pierre Bienert, Paulo Zanini

Abstract:

Nowadays, companies are facing lots of challenges in the process of digital transformation, which can be a complex and costly undertaking. Digital transformation involves the collection and analysis of large amounts of data, which can create challenges around data management and governance. Furthermore, it is also challenged to integrate data from multiple systems and technologies. Although with these pains, companies are still pursuing digitalization because by embracing advanced technologies, companies can improve efficiency, quality, decision-making, and customer experience while also creating different business models and revenue streams. In this paper, the issue that data is stored in data silos with different schema and structures is focused. The conventional approaches to addressing this issue involve utilizing data warehousing, data integration tools, data standardization, and business intelligence tools. However, these approaches primarily focus on the grammar and structure of the data and neglect the importance of semantic modeling and semantic standardization, which are essential for achieving data interoperability. In this session, the challenge of data silos in Industry 4.0 is addressed by developing a semantic modeling approach compliant with Asset Administration Shell (AAS) models as an efficient standard for communication in Industry 4.0. The paper highlights how our approach can facilitate the data mapping process and semantic lifting according to existing industry standards such as ECLASS and other industrial dictionaries. It also incorporates the Asset Administration Shell technology to model and map the company’s data and utilize a knowledge graph for data storage and exploration.

Keywords: data interoperability in industry 4.0, digital integration, industrial dictionary, semantic modeling

Procedia PDF Downloads 94
5498 Real-Time Gesture Recognition System Using Microsoft Kinect

Authors: Ankita Wadhawan, Parteek Kumar, Umesh Kumar

Abstract:

Gesture is any body movement that expresses some attitude or any sentiment. Gestures as a sign language are used by deaf people for conveying messages which helps in eliminating the communication barrier between deaf people and normal persons. Nowadays, everybody is using mobile phone and computer as a very important gadget in their life. But there are some physically challenged people who are blind/deaf and the use of mobile phone or computer like device is very difficult for them. So, there is an immense need of a system which works on body gesture or sign language as input. In this research, Microsoft Kinect Sensor, SDK V2 and Hidden Markov Toolkit (HTK) are used to recognize the object, motion of object and human body joints through Touch less NUI (Natural User Interface) in real-time. The depth data collected from Microsoft Kinect has been used to recognize gestures of Indian Sign Language (ISL). The recorded clips are analyzed using depth, IR and skeletal data at different angles and positions. The proposed system has an average accuracy of 85%. The developed Touch less NUI provides an interface to recognize gestures and controls the cursor and click operation in computer just by waving hand gesture. This research will help deaf people to make use of mobile phones, computers and socialize among other persons in the society.

Keywords: gesture recognition, Indian sign language, Microsoft Kinect, natural user interface, sign language

Procedia PDF Downloads 306