Search results for: reduce order aeroelastic model (ROAM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31058

Search results for: reduce order aeroelastic model (ROAM)

29498 Free Fatty Acid Assessment of Crude Palm Oil Using a Non-Destructive Approach

Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim, Rashidah Ghazali, Noramli Abdul Razak

Abstract:

Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of prediction models has facilitated the estimation process in recent years. In this study, 110 crude palm oil (CPO) samples were used to build a free fatty acid (FFA) prediction model. 60% of the collected data were used for training purposes and the remaining 40% used for testing. The visible peaks on the NIR spectrum were at 1725 nm and 1760 nm, indicating the existence of the first overtone of C-H bands. Principal component regression (PCR) was applied to the data in order to build this mathematical prediction model. The optimal number of principal components was 10. The results showed R2=0.7147 for the training set and R2=0.6404 for the testing set.

Keywords: palm oil, fatty acid, NIRS, regression

Procedia PDF Downloads 507
29497 Analytical Solutions for Corotational Maxwell Model Fluid Arising in Wire Coating inside a Canonical Die

Authors: Muhammad Sohail Khan, Rehan Ali Shah

Abstract:

The present paper applies the optimal homotopy perturbation method (OHPM) and the optimal homotopy asymptotic method (OHAM) introduced recently to obtain analytic approximations of the non-linear equations modeling the flow of polymer in case of wire coating of a corotational Maxwell fluid. Expression for the velocity field is obtained in non-dimensional form. Comparison of the results obtained by the two methods at different values of non-dimensional parameter l10, reveal that the OHPM is more effective and easy to use. The OHPM solution can be improved even working in the same order of approximation depends on the choices of the auxiliary functions.

Keywords: corotational Maxwell model, optimal homotopy asymptotic method, optimal homotopy perturbation method, wire coating die

Procedia PDF Downloads 338
29496 Vulnerability Assessment of Healthcare Interdependent Critical Infrastructure Coloured Petri Net Model

Authors: N. Nivedita, S. Durbha

Abstract:

Critical Infrastructure (CI) consists of services and technological networks such as healthcare, transport, water supply, electricity supply, information technology etc. These systems are necessary for the well-being and to maintain effective functioning of society. Critical Infrastructures can be represented as nodes in a network where they are connected through a set of links depicting the logical relationship among them; these nodes are interdependent on each other and interact with each at other at various levels, such that the state of each infrastructure influences or is correlated to the state of another. Disruption in the service of one infrastructure nodes of the network during a disaster would lead to cascading and escalating disruptions across other infrastructures nodes in the network. The operation of Healthcare Infrastructure is one such Critical Infrastructure that depends upon a complex interdependent network of other Critical Infrastructure, and during disasters it is very vital for the Healthcare Infrastructure to be protected, accessible and prepared for a mass casualty. To reduce the consequences of a disaster on the Critical Infrastructure and to ensure a resilient Critical Health Infrastructure network, knowledge, understanding, modeling, and analyzing the inter-dependencies between the infrastructures is required. The paper would present inter-dependencies related to Healthcare Critical Infrastructure based on Hierarchical Coloured Petri Nets modeling approach, given a flood scenario as the disaster which would disrupt the infrastructure nodes. The model properties are being analyzed for the various state changes which occur when there is a disruption or damage to any of the Critical Infrastructure. The failure probabilities for the failure risk of interconnected systems are calculated by deriving a reachability graph, which is later mapped to a Markov chain. By analytically solving and analyzing the Markov chain, the overall vulnerability of the Healthcare CI HCPN model is demonstrated. The entire model would be integrated with Geographic information-based decision support system to visualize the dynamic behavior of the interdependency of the Healthcare and related CI network in a geographically based environment.

Keywords: critical infrastructure interdependency, hierarchical coloured petrinet, healthcare critical infrastructure, Petri Nets, Markov chain

Procedia PDF Downloads 530
29495 The Agri-Environmental Instruments in Agricultural Policy to Reduce Nitrogen Pollution

Authors: Flavio Gazzani

Abstract:

Nitrogen is an important agricultural input that is critical for the production. However, the introduction of large amounts of nitrogen into the environment has a number of undesirable impacts such as: the loss of biodiversity, eutrophication of waters and soils, drinking water pollution, acidification, greenhouse gas emissions, human health risks. It is a challenge to sustain or increase food production and at the same time reduce losses of reactive nitrogen to the environment, but there are many potential benefits associated with improving nitrogen use efficiency. Reducing nutrient losses from agriculture is crucial to the successful implementation of agricultural policy. Traditional regulatory instruments applied to implement environmental policies to reduce environmental impacts from nitrogen fertilizers, despite some successes, failed to address many environmental challenges and imposed high costs on the society to achieve environmental quality objectives. As a result, economic instruments started to be recognized for their flexibility and cost-effectiveness. The objective of the research project is to analyze the potential for increased use of market-based instruments in nitrogen control policy. The report reviews existing knowledge, bringing different studies together to assess the global nitrogen situation and the most relevant environmental management policy that aims to reduce pollution in a sustainable way without affect negatively agriculture production and food price. This analysis provides some guidance on how different market based instruments might be orchestrated in an overall policy framework to the development and assessment of sustainable nitrogen management from the economics, environmental and food security point of view.

Keywords: nitrogen emissions, chemical fertilizers, eutrophication, non-point of source pollution, dairy farm

Procedia PDF Downloads 330
29494 A Simulated Evaluation of Model Predictive Control

Authors: Ahmed AlNouss, Salim Ahmed

Abstract:

Process control refers to the techniques to control the variables in a process in order to maintain them at their desired values. Advanced process control (APC) is a broad term within the domain of control where it refers to different kinds of process control and control related tools, for example, model predictive control (MPC), statistical process control (SPC), fault detection and classification (FDC) and performance assessment. APC is often used for solving multivariable control problems and model predictive control (MPC) is one of only a few advanced control methods used successfully in industrial control applications. Advanced control is expected to bring many benefits to the plant operation; however, the extent of the benefits is plant specific and the application needs a large investment. This requires an analysis of the expected benefits before the implementation of the control. In a real plant simulation studies are carried out along with some experimentation to determine the improvement in the performance of the plant due to advanced control. In this research, such an exercise is undertaken to realize the needs of APC application. The main objectives of the paper are as follows: (1) To apply MPC to a number of simulations set up to realize the need of MPC by comparing its performance with that of proportional integral derivatives (PID) controllers. (2) To study the effect of controller parameters on control performance. (3) To develop appropriate performance index (PI) to compare the performance of different controller and develop novel idea to present tuning map of a controller. These objectives were achieved by applying PID controller and a special type of MPC which is dynamic matrix control (DMC) on the multi-tanks process simulated in loop-pro. Then the controller performance has been evaluated by changing the controller parameters. This performance was based on special indices related to the difference between set point and process variable in order to compare the both controllers. The same principle was applied for continuous stirred tank heater (CSTH) and continuous stirred tank reactor (CSTR) processes simulated in Matlab. However, in these processes some developed programs were written to evaluate the performance of the PID and MPC controllers. Finally these performance indices along with their controller parameters were plotted using special program called Sigmaplot. As a result, the improvement in the performance of the control loops was quantified using relevant indices to justify the need and importance of advanced process control. Also, it has been approved that, by using appropriate indices, predictive controller can improve the performance of the control loop significantly.

Keywords: advanced process control (APC), control loop, model predictive control (MPC), proportional integral derivatives (PID), performance indices (PI)

Procedia PDF Downloads 407
29493 A Strategy of Direct Power Control for PWM Rectifier Reducing Ripple in Instantaneous Power

Authors: T. Mohammed Chikouche, K. Hartani

Abstract:

In order to solve the instantaneous power ripple and achieve better performance of direct power control (DPC) for a three-phase PWM rectifier, a control method is proposed in this paper. This control method is applied to overcome the instantaneous power ripple, to eliminate line current harmonics and therefore reduce the total harmonic distortion and to improve the power factor. A switching table is based on the analysis on the change of instantaneous active and reactive power, to select the optimum switching state of the three-phase PWM rectifier. The simulation result shows feasibility of this control method.

Keywords: power quality, direct power control, power ripple, switching table, unity power factor

Procedia PDF Downloads 324
29492 Preliminary WRF SFIRE Simulations over Croatia during the Split Wildfire in July 2017

Authors: Ivana Čavlina Tomašević, Višnjica Vučetić, Maja Telišman Prtenjak, Barbara Malečić

Abstract:

The Split wildfire on the mid-Adriatic Coast in July 2017 is one of the most severe wildfires in Croatian history, given the size and unexpected fire behavior, and it is used in this research as a case study to run the Weather Research and Forecasting Spread Fire (WRF SFIRE) model. This coupled fire-atmosphere model was successfully run for the first time ever for one Croatian wildfire case. Verification of coupled simulations was possible by using the detailed reconstruction of the Split wildfire. Specifically, precise information on ignition time and location, together with mapped fire progressions and spotting within the first 30 hours of the wildfire, was used for both – to initialize simulations and to evaluate the model’s ability to simulate fire’s propagation and final fire scar. The preliminary simulations were obtained using high-resolution vegetation and topography data for the fire area, additionally interpolated to fire grid spacing at 33.3 m. The results demonstrated that the WRF SFIRE model has the ability to work with real data from Croatia and produce adequate results for forecasting fire spread. As the model in its setup has the ability to include and exclude the energy fluxes between the fire and the atmosphere, this was used to investigate possible fire-atmosphere interactions during the Split wildfire. Finally, successfully coupled simulations provided the first numerical evidence that a wildfire from the Adriatic coast region can modify the dynamical structure of the surrounding atmosphere, which agrees with observations from fire grounds. This study has demonstrated that the WRF SFIRE model has the potential for operational application in Croatia with more accurate fire predictions in the future, which could be accomplished by inserting the higher-resolution input data into the model without interpolation. Possible uses for fire management in Croatia include prediction of fire spread and intensity that may vary under changing weather conditions, available fuels and topography, planning effective and safe deployment of ground and aerial firefighting forces, preventing wildland-urban interface fires, effective planning of evacuation routes etc. In addition, the WRF SFIRE model results from this research demonstrated that the model is important for fire weather research and education purposes in order to better understand this hazardous phenomenon that occurs in Croatia.

Keywords: meteorology, agrometeorology, fire weather, wildfires, couple fire-atmosphere model

Procedia PDF Downloads 92
29491 Chitosan Coated Liposome Incorporated Cyanobacterial Pigment for Nasal Administration in the Brain Stroke

Authors: Kyou Hee Shim, Hwa Sung Shin

Abstract:

When a thrombolysis agent is administered to treat ischemic stroke, excessive reactive oxygen species are generated due to a sudden provision of oxygen and occurs secondary damage cell necrosis. Thus, it is necessary to administrate adjuvant as well as thrombolysis agent to protect and reduce damaged tissue. As cerebral blood vessels have specific structure called blood-brain barrier (BBB), it is not easy to transfer substances from blood to tissue. Therefore, development of a drug carrier is required to increase drug delivery efficiency to brain tissue. In this study, cyanobacterial pigment from the blue-green algae known for having neuroprotective effect as well as antioxidant effect was nasally administrated for bypassing BBB. In order to deliver cyanobacterial pigment efficiently, the nano-sized liposome was used as a carrier. Liposomes were coated with a positive charge of chitosan since negative residues are present at the nasal mucosa the first gateway of nasal administration. Characteristics of liposome including morphology, size and zeta potential were analyzed by transmission electron microscope (TEM) and zeta analyzer. As a result of cytotoxic test, the liposomes were not harmful. Also, being administered a drug to the ischemic stroke animal model, we could confirm that the pharmacological effect of the pigment delivered by chitosan coated liposome was enhanced compared to that of non-coated liposome. Consequently, chitosan coated liposome could be considered as an optimized drug delivery system for the treatment of acute ischemic stroke.

Keywords: ischemic stroke, cyanobacterial pigment, liposome, chitosan, nasal administration

Procedia PDF Downloads 227
29490 Closed Form Exact Solution for Second Order Linear Differential Equations

Authors: Saeed Otarod

Abstract:

In a different simple and straight forward analysis a closed-form integral solution is found for nonhomogeneous second order linear ordinary differential equations, in terms of a particular solution of their corresponding homogeneous part. To find the particular solution of the homogeneous part, the equation is transformed into a simple Riccati equation from which the general solution of non-homogeneouecond order differential equation, in the form of a closed integral equation is inferred. The method works well in manyimportant cases, such as Schrödinger equation for hydrogen-like atoms. A non-homogenous second order linear differential equation has been solved as an extra example

Keywords: explicit, linear, differential, closed form

Procedia PDF Downloads 65
29489 The Survival of Bifidobacterium longum in Frozen Yoghurt Ice Cream and Its Properties Affected by Prebiotics (Galacto-Oligosaccharides and Fructo-Oligosaccharides) and Fat Content

Authors: S. Thaiudom, W. Toommuangpak

Abstract:

Yoghurt ice cream (YIC) containing prebiotics and probiotics seems to be much more recognized among consumers who concern for their health. Not only can it be a benefit on consumers’ health but also its taste and freshness provide people easily accept. However, the survival of such probiotic especially Bifidobacterium longum, found in human gastrointestinal tract and to be benefit to human gut, was still needed to study in the severe condition as whipping and freezing in ice cream process. Low and full-fat yoghurt ice cream containing 2 and 10% (w/w) fat content (LYIC and FYIC), respectively was produced by mixing 20% yoghurt containing B. longum into milk ice cream mix. Fructo-oligosaccharides (FOS) or galacto-oligosaccharides (GOS) at 0, 1, and 2% (w/w) were separately used as prebiotic in order to improve the survival of B. longum. Survival of this bacteria as a function of ice cream storage time and ice cream properties were investigated. The results showed that prebiotic; especially FOS could improve viable count of B. longum. The more concentration of prebiotic used, the more is the survival of B. Longum. These prebiotics could prolong the survival of B. longum up to 60 days, and the amount of survival number was still in the recommended level (106 cfu per gram). Fat content and prebiotic did not significantly affect the total acidity and the overrun of all samples, but an increase of fat content significantly increased the fat particle size which might be because of partial coalescence found in FYIC rather than in LYIC. However, addition of GOS or FOS could reduce the fat particle size, especially in FYIC. GOS seemed to reduce the hardness of YIC rather than FOS. High fat content (10% fat) significantly influenced on lowering the melting rate of YIC better than 2% fat content due to the 3-dimension networks of fat partial coalescence theoretically occurring more in FYIC than in LYIC. However, FOS seemed to retard the melting rate of ice cream better than GOS. In conclusion, GOS and FOS in YIC with different fat content can enhance the survival of B. longum and affect physical and chemical properties of such yoghurt ice cream.

Keywords: Bifidobacterium longum, prebiotic, survival, yoghurt ice cream

Procedia PDF Downloads 163
29488 Consumers’ Perceptions of Non-Communicable Diseases and Perceived Product Value Impacts on Healthy Food Purchasing Decisions

Authors: Khatesiree Sripoothon, Usanee Sengpanich, Rattana Sittioum

Abstract:

The objective of this study is to examine the factors influencing consumer purchasing decisions about healthy food. This model consists of two latent variables: Consumer Perception relating to NCDs and Consumer Perceived Product Value. The study was conducted in the northern provinces of Thailand, which are popular with tourists and have received support from the government for health tourism. A survey was used as the data collection method, and the questionnaire was applied to 385 tourists. An accidental sampling method was used to identify the sample. The statistics of frequency, percentage, mean, and structural equation model were used to analyze the data obtained. Additionally, all factors had a significant positive influence on healthy food purchasing decisions (p<0.01) and were predictive of healthy food purchasing decisions at 46.20 (R2=0.462). Also, these findings seem to underline a supposition that consumer perceptions of NCDs and perceived product value are key variables that strengthens the competitive effects of a healthy-friendly business entrepreneur. Moreover, reduce the country's public health costs for treating patients with the disease of NCDs in Thailand.

Keywords: healthy food, perceived product value, perception of non-communicable diseases, purchasing decisions

Procedia PDF Downloads 162
29487 Capacity for Care: A Management Model for Increasing Animal Live Release Rates, Reducing Animal Intake and Euthanasia Rates in an Australian Open Admission Animal Shelter

Authors: Ann Enright

Abstract:

More than ever, animal shelters need to identify ways to reduce the number of animals entering shelter facilities and the incidence of euthanasia. Managing animal overpopulation using euthanasia can have detrimental health and emotional consequences for the shelter staff involved. There are also community expectations with moral and financial implications to consider. To achieve the goals of reducing animal intake and the incidence of euthanasia, shelter best practice involves combining programs, procedures and partnerships to increase live release rates (LRR), reduce the incidence of disease, length of stay (LOS) and shelter intake whilst overall remaining financially viable. Analysing daily processes, tracking outcomes and implementing simple strategies enabled shelter staff to more effectively focus their efforts and achieve amazing results. The objective of this retrospective study was to assess the effect of implementing the capacity for care (C4C) management model. Data focusing on the average daily number of animals on site for a two year period (2016 – 2017) was exported from a shelter management system, Customer Logic (CL) Vet to Excel for manipulation and comparison. Following the implementation of C4C practices the average daily number of animals on site was reduced by >50%, (2016 average 103 compared to 2017 average 49), average LOS reduced by 50% from 8 weeks to 4 weeks and incidence of disease reduced from ≥ 70% to less than 2% of the cats on site at the completion of the study. The total number of stray cats entering the shelter due to council contracts reduced by 50% (486 to 248). Improved cat outcomes were attributed to strategies that increased adoptions and reduced euthanasia of poorly socialized cats, including foster programs. To continue to achieve improvements in LRR and LOS, strategies to decrease intake further would be beneficial, for example, targeted sterilisation programs. In conclusion, the study highlighted the benefits of using C4C as a management tool, delivering a significant reduction in animal intake and euthanasia with positive emotional, financial and community outcomes.

Keywords: animal welfare, capacity for care, cat, euthanasia, length of stay, managed intake, shelter

Procedia PDF Downloads 144
29486 Application of Wavelet Based Approximation for the Solution of Partial Integro-Differential Equation Arising from Viscoelasticity

Authors: Somveer Singh, Vineet Kumar Singh

Abstract:

This work contributes a numerical method based on Legendre wavelet approximation for the treatment of partial integro-differential equation (PIDE). Operational matrices of Legendre wavelets reduce the solution of PIDE into the system of algebraic equations. Some useful results concerning the computational order of convergence and error estimates associated to the suggested scheme are presented. Illustrative examples are provided to show the effectiveness and accuracy of proposed numerical method.

Keywords: legendre wavelets, operational matrices, partial integro-differential equation, viscoelasticity

Procedia PDF Downloads 451
29485 Non-Linear Dynamic Analyses of Grouted Pile-Sleeve Connection

Authors: Mogens Saberi

Abstract:

The focus of this article is to present the experience gained from the design of a grouted pile-sleeve connection and to present simple design expressions which can be used in the preliminary design phase of such connections. The grout pile-sleeve connection serves as a connection between an offshore jacket foundation and pre-installed piles located in the seabed. The jacket foundation supports a wind turbine generator resulting in significant dynamic loads on the connection. The connection is designed with shear keys in order to optimize the overall design but little experience is currently available in the use of shear keys in such connections. It is found that the consequence of introducing shear keys in the design is a very complex stress distribution which requires special attention due to significant fatigue loads. An optimal geometrical shape of the shear keys is introduced in order to avoid large stress concentration factors and a relatively easy fabrication. The connection is analysed in ANSYS Mechanical where the grout is modelled by a non-linear material model which allows for cracking of the grout material and captures the elastic-plastic behaviour of the grout material. Special types of finite elements are used in the interface between the pile sleeve and the grout material to model the slip surface between the grout material and the steel. Based on the performed finite element modelling simple design expressions are introduced.

Keywords: fatigue design, non-linear finite element modelling, structural dynamics, simple design expressions

Procedia PDF Downloads 386
29484 Methods for Mitigating Corrosion Caused by Biogenic Sulfuric Acid in Sewerage Systems: State of the Art Review

Authors: M. Cortés, E. Vera, M. Avella

Abstract:

Corrosion is an imminent process in nature, which affects all types of materials. In sewerage systems, the corrosion process caused by microorganisms, also known as biogenic sulfuric acid attack, has been studied. This affects the structural integrity of the concrete drainage pipes and the sewage treatment plants. This article is a review of research which focuses on the study of how to reduce the production of hydrogen sulfide, how to improve the resistance of concrete through the use of additives and the implementation of antimicrobial techniques to reduce bacterial growth.

Keywords: bactericides, biogenic sulfuric acid, corrosion, concrete, hydrogen sulphide, nano materials, zeolites

Procedia PDF Downloads 445
29483 Convergence Analysis of Reactive Power Based Schemes Used in Sensorless Control of Induction Motors

Authors: N. Ben Si Ali, N. Benalia, N. Zerzouri

Abstract:

Many electronic drivers for the induction motor control are based on sensorless technologies. Speed and torque control is usually attained by application of a speed or position sensor which requires the additional mounting space, reduce the reliability and increase the cost. This paper seeks to analyze dynamical performances and sensitivity to motor parameter changes of reactive power based technique used in sensorless control of induction motors. Validity of theoretical results is verified by simulation.

Keywords: adaptive observers, model reference adaptive system, RP-based estimator, sensorless control, stability analysis

Procedia PDF Downloads 547
29482 A Cohort and Empirical Based Multivariate Mortality Model

Authors: Jeffrey Tzu-Hao Tsai, Yi-Shan Wong

Abstract:

This article proposes a cohort-age-period (CAP) model to characterize multi-population mortality processes using cohort, age, and period variables. Distinct from the factor-based Lee-Carter-type decomposition mortality model, this approach is empirically based and includes the age, period, and cohort variables into the equation system. The model not only provides a fruitful intuition for explaining multivariate mortality change rates but also has a better performance in forecasting future patterns. Using the US and the UK mortality data and performing ten-year out-of-sample tests, our approach shows smaller mean square errors in both countries compared to the models in the literature.

Keywords: longevity risk, stochastic mortality model, multivariate mortality rate, risk management

Procedia PDF Downloads 56
29481 Development of Internet of Things (IoT) with Mobile Voice Picking and Cargo Tracing Systems in Warehouse Operations of Third-Party Logistics

Authors: Eugene Y. C. Wong

Abstract:

The increased market competition, customer expectation, and warehouse operating cost in third-party logistics have motivated the continuous exploration in improving operation efficiency in warehouse logistics. Cargo tracing in ordering picking process consumes excessive time for warehouse operators when handling enormous quantities of goods flowing through the warehouse each day. Internet of Things (IoT) with mobile cargo tracing apps and database management systems are developed this research to facilitate and reduce the cargo tracing time in order picking process of a third-party logistics firm. An operation review is carried out in the firm with opportunities for improvement being identified, including inaccurate inventory record in warehouse management system, excessive tracing time on stored products, and product misdelivery. The facility layout has been improved by modifying the designated locations of various types of products. The relationship among the pick and pack processing time, cargo tracing time, delivery accuracy, inventory turnover, and inventory count operation time in the warehouse are evaluated. The correlation of the factors affecting the overall cycle time is analysed. A mobile app is developed with the use of MIT App Inventor and the Access management database to facilitate cargo tracking anytime anywhere. The information flow framework from warehouse database system to cloud computing document-sharing, and further to the mobile app device is developed. The improved performance on cargo tracing in the order processing cycle time of warehouse operators have been collected and evaluated. The developed mobile voice picking and tracking systems brings significant benefit to the third-party logistics firm, including eliminating unnecessary cargo tracing time in order picking process and reducing warehouse operators overtime cost. The mobile tracking device is further planned to enhance the picking time and cycle count of warehouse operators with voice picking system in the developed mobile apps as future development.

Keywords: warehouse, order picking process, cargo tracing, mobile app, third-party logistics

Procedia PDF Downloads 375
29480 Effect of Model Dimension in Numerical Simulation on Assessment of Water Inflow to Tunnel in Discontinues Rock

Authors: Hadi Farhadian, Homayoon Katibeh

Abstract:

Groundwater inflow to the tunnels is one of the most important problems in tunneling operation. The objective of this study is the investigation of model dimension effects on tunnel inflow assessment in discontinuous rock masses using numerical modeling. In the numerical simulation, the model dimension has an important role in prediction of water inflow rate. When the model dimension is very small, due to low distance to the tunnel border, the model boundary conditions affect the estimated amount of groundwater flow into the tunnel and results show a very high inflow to tunnel. Hence, in this study, the two-dimensional universal distinct element code (UDEC) used and the impact of different model parameters, such as tunnel radius, joint spacing, horizontal and vertical model domain extent has been evaluated. Results show that the model domain extent is a function of the most significant parameters, which are tunnel radius and joint spacing.

Keywords: water inflow, tunnel, discontinues rock, numerical simulation

Procedia PDF Downloads 524
29479 A Structuring and Classification Method for Assigning Application Areas to Suitable Digital Factory Models

Authors: R. Hellmuth

Abstract:

The method of factory planning has changed a lot, especially when it is about planning the factory building itself. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity and Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Furthermore, digital building models are increasingly being used in factories to support facility management and manufacturing processes. The main research question of this paper is, therefore: What kind of digital factory model is suitable for the different areas of application during the operation of a factory? First, different types of digital factory models are investigated, and their properties and usabilities for use cases are analysed. Within the scope of investigation are point cloud models, building information models, photogrammetry models, and these enriched with sensor data are examined. It is investigated which digital models allow a simple integration of sensor data and where the differences are. Subsequently, possible application areas of digital factory models are determined by means of a survey and the respective digital factory models are assigned to the application areas. Finally, an application case from maintenance is selected and implemented with the help of the appropriate digital factory model. It is shown how a completely digitalized maintenance process can be supported by a digital factory model by providing information. Among other purposes, the digital factory model is used for indoor navigation, information provision, and display of sensor data. In summary, the paper shows a structuring of digital factory models that concentrates on the geometric representation of a factory building and its technical facilities. A practical application case is shown and implemented. Thus, the systematic selection of digital factory models with the corresponding application cases is evaluated.

Keywords: building information modeling, digital factory model, factory planning, maintenance

Procedia PDF Downloads 110
29478 A Calibration Method of Portable Coordinate Measuring Arm Using Bar Gauge with Cone Holes

Authors: Rim Chang Hyon, Song Hak Jin, Song Kwang Hyok, Jong Ki Hun

Abstract:

The calibration of the articulated arm coordinate measuring machine (AACMM) is key to improving calibration accuracy and saving calibration time. To reduce the time consumed for calibration, we should choose the proper calibration gauges and develop a reasonable calibration method. In addition, we should get the exact optimal solution by accurately removing the rough errors within the experimental data. In this paper, we present a calibration method of the portable coordinate measuring arm (PCMA) using the 1.2m long bar guage with cone-holes. First, we determine the locations of the bar gauge and establish an optimal objective function for identifying the structural parameter errors. Next, we make a mathematical model of the calibration algorithm and present a new mathematical method to remove the rough errors within calibration data. Finally, we find the optimal solution to identify the kinematic parameter errors by using Levenberg-Marquardt algorithm. The experimental results show that our calibration method is very effective in saving the calibration time and improving the calibration accuracy.

Keywords: AACMM, kinematic model, parameter identify, measurement accuracy, calibration

Procedia PDF Downloads 83
29477 Improvement of Process Competitiveness Using Intelligent Reference Models

Authors: Julio Macedo

Abstract:

Several methodologies are now available to conceive the improvements of a process so that it becomes competitive as for example total quality, process reengineering, six sigma, define measure analysis improvement control method. These improvements are of different nature and can be external to the process represented by an optimization model or a discrete simulation model. In addition, the process stakeholders are several and have different desired performances for the process. Hence, the methodologies above do not have a tool to aid in the conception of the required improvements. In order to fill this void we suggest the use of intelligent reference models. A reference model is a set of qualitative differential equations and an objective function that minimizes the gap between the current and the desired performance indexes of the process. The reference models are intelligent so when they receive the current state of the problematic process and the desired performance indexes they generate the required improvements for the problematic process. The reference models are fuzzy cognitive maps added with an objective function and trained using the improvements implemented by the high performance firms. Experiments done in a set of students show the reference models allow them to conceive more improvements than students that do not use these models.

Keywords: continuous improvement, fuzzy cognitive maps, process competitiveness, qualitative simulation, system dynamics

Procedia PDF Downloads 88
29476 Pilot Scale Deproteinization Study on Fish Scale Using Response Surface Methodology

Authors: Fatima Bellali, Mariem Kharroubi

Abstract:

Fish scale wastes are one of the main sources of production of value-added products such as collagen. The main aim of this study is to investigate the optimization conditions of the sardine scale deproteinization using response surface methodology (RSM) on a pilot scale. In order to look for the optimal conditions, a Box–Behnken-based design of experiment (DOE) method was carried out. The model predicted values of product coal ash content were in good agreement with the experiment values (R2 = 0.9813). Finally, model-based optimization was carried out to identify the operating parameters (reaction time=4h and the solid-liquid ratio= 1/10) and to obtain the lowest collagen content.

Keywords: pilot scale, Plackett and Burman design, fish waste, deproteinization

Procedia PDF Downloads 161
29475 Localization of Buried People Using Received Signal Strength Indication Measurement of Wireless Sensor

Authors: Feng Tao, Han Ye, Shaoyi Liao

Abstract:

City constructions collapse after earthquake and people will be buried under ruins. Search and rescue should be conducted as soon as possible to save them. Therefore, according to the complicated environment, irregular aftershocks and rescue allow of no delay, a kind of target localization method based on RSSI (Received Signal Strength Indication) is proposed in this article. The target localization technology based on RSSI with the features of low cost and low complexity has been widely applied to nodes localization in WSN (Wireless Sensor Networks). Based on the theory of RSSI transmission and the environment impact to RSSI, this article conducts the experiments in five scenes, and multiple filtering algorithms are applied to original RSSI value in order to establish the signal propagation model with minimum test error respectively. Target location can be calculated from the distance, which can be estimated from signal propagation model, through improved centroid algorithm. Result shows that the localization technology based on RSSI is suitable for large-scale nodes localization. Among filtering algorithms, mixed filtering algorithm (average of average, median and Gaussian filtering) performs better than any other single filtering algorithm, and by using the signal propagation model, the minimum error of distance between known nodes and target node in the five scene is about 3.06m.

Keywords: signal propagation model, centroid algorithm, localization, mixed filtering, RSSI

Procedia PDF Downloads 303
29474 Numerical Study of an Impinging Jet in a Coflow Stream

Authors: Rim Ben Kalifa, Sabra Habli, Nejla Mahjoub Saïd, Hervé Bournot, Georges Le Palec

Abstract:

The present study treats different phenomena taking place in a configuration of air jet impinging on a flat surface in a coflow stream. A Computational Fluid Dynamics study is performed using the Reynolds-averaged Navier–Stokes equations by means of the Reynolds Stress Model (RSM) second order turbulent closure model. The results include mean and turbulent velocities and quantify the large effects of the coflow stream on an impinging air jet. The study of the jet in a no-directed coflow stream shows the presence of a phenomenon of recirculation near the flat plate. The influence of the coflow velocity ratio on the behavior of an impinging plane jet was also numerically investigated. The coflow stream imposed noticeable restrictions on the spreading of the impinging jet. The results show that the coflow stream decreases considerably the entrainment of air jet.

Keywords: turbulent jet, turbulence models, coflow stream, velocity ratio

Procedia PDF Downloads 239
29473 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils

Authors: Muqdad Al-Juboori, Bithin Datta

Abstract:

Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.

Keywords: artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis

Procedia PDF Downloads 225
29472 Simulation Model for Optimizing Energy in Supply Chain Management

Authors: Nazli Akhlaghinia, Ali Rajabzadeh Ghatari

Abstract:

In today's world, with increasing environmental awareness, firms are facing severe pressure from various stakeholders, including the government and customers, to reduce their harmful effects on the environment. Over the past few decades, the increasing effects of global warming, climate change, waste, and air pollution have increased the global attention of experts to the issue of the green supply chain and led them to the optimal solution for greenery. Green supply chain management (GSCM) plays an important role in motivating the sustainability of the organization. With increasing environmental concerns, the main objective of the research is to use system thinking methodology and Vensim software for designing a dynamic system model for green supply chain and observing behaviors. Using this methodology, we look for the effects of a green supply chain structure on the behavioral dynamics of output variables. We try to simulate the complexity of GSCM in a period of 30 months and observe the complexity of behaviors of variables including sustainability, providing green products, and reducing energy consumption, and consequently reducing sample pollution.

Keywords: supply chain management, green supply chain management, system dynamics, energy consumption

Procedia PDF Downloads 139
29471 Efficacy of Isometric Neck Exercises and Stretching with Ergonomics for Neck Pain in Computer Professionals

Authors: Esther Liyanage, Indrajith Liyanage, Masih Khan

Abstract:

Neck pain has become a common epidemiological problem. One of the reasons for this is a sedentary way of life, connected with using a personal computer during all daily activities. Work place and work duration has not been properly adapted to the personal physical conditions of these employees. During 1990’s the importance of workstation design and work methods, or ergonomics on health was brought to the forefront of public attention. Ergonomics is the application of scientific information concerning humans to the design of objects. Ergonomic intervention results in improvement of working posture and a decrease in prevalence of musculoskeletal symptoms. Stretching and resistance exercises to the neck are easy to do, when performed 1-2 times daily reduce discomfort and ease neck stiffness. This study is aimed at finding if ergonomics with exercises to the neck prove beneficial to reduce neck pain in Computer Professionals. The outcomes measures used were: Oswestry neck disability index and VAS score for pain. 100 subjects satisfying the inclusion criteria were included in the study. Results: Ergonomic intervention along with isometric neck exercises and stretching proved to reduce neck pain and disability among computer professionals.

Keywords: ergonomics, neck pain, neck exercises, physiotherapy for neck pain

Procedia PDF Downloads 329
29470 Optimum Flight Altitude

Authors: Ravi Nandu, Anmol Taploo

Abstract:

As per current scenario, commercial aircrafts have been very well functioning with higher efficiency, but there is something that affects it. Every aircraft runs with the combustion produced by mixture of fuel and air. For example: A flight to travel from Mumbai to Kolkata it takes 2h: 30 min and from Kolkata to Mumbai it takes 2h: 45 min. It happens due to head and tail wind. Due to head wind air craft travels faster than its usual velocity and it takes 2h: 30 min to reach to Kolkata, while it takes 2h;45min vis versa. This lag in time is caused due to head wind that increases the drag and reduces the relative velocity of the plane. So in order to reduce this wastage of fuel there is an optimal flight altitude at which the head and tail wind action is reduced compared to the present scenario.

Keywords: drag, head wind, tail wind, aircraft

Procedia PDF Downloads 468
29469 Study of Methods to Reduce Carbon Emissions in Structural Engineering

Authors: Richard Krijnen, Alan Wang

Abstract:

As the world is aiming to reach net zero around 2050, structural engineers must begin finding solutions to contribute to this global initiative. Approximately 40% of global energy-related emissions are due to buildings and construction, and a building’s structure accounts for 50% of its embodied carbon, which indicates that structural engineers are key contributors to finding solutions to reach carbon neutrality. However, this task presents a multifaceted challenge as structural engineers must navigate technical, safety and economic considerations while striving to reduce emissions. This study reviews several options and considerations to reduce carbon emissions that structural engineers can use in their future designs without compromising the structural integrity of their proposed design. Low-carbon structures should adhere to several guiding principles. Firstly, prioritize the selection of materials with low carbon footprints, such as recyclable or alternative materials. Optimization of design and engineering methods is crucial to minimize material usage. Encouraging the use of recyclable and renewable materials reduces dependency on natural resources. Energy efficiency is another key consideration involving the design of structures to minimize energy consumption across various systems. Choosing local materials and minimizing transportation distances help in reducing carbon emissions during transport. Innovation, such as pre-fabrication and modular design or low-carbon concrete, can further cut down carbon emissions during manufacturing and construction. Collaboration among stakeholders and sharing experiences and resources are essential for advancing the development and application of low-carbon structures. This paper identifies current available tools and solutions to reduce embodied carbon in structures, which can be used as part of daily structural engineering practice.

Keywords: efficient structural design, embodied carbon, low-carbon material, sustainable structural design

Procedia PDF Downloads 42