Search results for: open flow
6037 Building Data Infrastructure for Public Use and Informed Decision Making in Developing Countries-Nigeria
Authors: Busayo Fashoto, Abdulhakeem Shaibu, Justice Agbadu, Samuel Aiyeoribe
Abstract:
Data has gone from just rows and columns to being an infrastructure itself. The traditional medium of data infrastructure has been managed by individuals in different industries and saved on personal work tools; one of such is the laptop. This hinders data sharing and Sustainable Development Goal (SDG) 9 for infrastructure sustainability across all countries and regions. However, there has been a constant demand for data across different agencies and ministries by investors and decision-makers. The rapid development and adoption of open-source technologies that promote the collection and processing of data in new ways and in ever-increasing volumes are creating new data infrastructure in sectors such as lands and health, among others. This paper examines the process of developing data infrastructure and, by extension, a data portal to provide baseline data for sustainable development and decision making in Nigeria. This paper employs the FAIR principle (Findable, Accessible, Interoperable, and Reusable) of data management using open-source technology tools to develop data portals for public use. eHealth Africa, an organization that uses technology to drive public health interventions in Nigeria, developed a data portal which is a typical data infrastructure that serves as a repository for various datasets on administrative boundaries, points of interest, settlements, social infrastructure, amenities, and others. This portal makes it possible for users to have access to datasets of interest at any point in time at no cost. A skeletal infrastructure of this data portal encompasses the use of open-source technology such as Postgres database, GeoServer, GeoNetwork, and CKan. These tools made the infrastructure sustainable, thus promoting the achievement of SDG 9 (Industries, Innovation, and Infrastructure). As of 6th August 2021, a wider cross-section of 8192 users had been created, 2262 datasets had been downloaded, and 817 maps had been created from the platform. This paper shows the use of rapid development and adoption of technologies that facilitates data collection, processing, and publishing in new ways and in ever-increasing volumes. In addition, the paper is explicit on new data infrastructure in sectors such as health, social amenities, and agriculture. Furthermore, this paper reveals the importance of cross-sectional data infrastructures for planning and decision making, which in turn can form a central data repository for sustainable development across developing countries.Keywords: data portal, data infrastructure, open source, sustainability
Procedia PDF Downloads 986036 Sportband: An Idea for Workout Monitoring in Amateur and Recreational Sports
Authors: Kamila Mazur-Oleszczuk, Rafal Banasiuk, Dawid Krasnowski, Maciej Pek, Marcin Podgorski, Krzysztof Rykaczewski, Sabina Zoledowska, Dawid Nidzworski
Abstract:
Workout safety is one of the most significant challenges of recreational sports. Loss of water and electrolytes is a consequence of thermoregulatory sweating during exercise. The rate of sweat loss and its chemical composition can fluctuate within and among individuals. That is why we propose our sportband 'Flow' as a device for monitoring these parameters. 'Flow' consists of two parts: an intelligent module and a mobile application. The application allows verifying the training progress and data archiving. The sportband intelligent module includes temperature, heart rate and pulse measurement (non-invasive, continuous methods of workout monitoring). Apart from the standard components, the device will consist of a sweat composition analyzer situated in sportband intelligent module. Sweat is a water solution of numerous compounds such as ions (sodium up to 1609 µg/ml, potassium up to 274 µg/ml), lactic acid (skin pH is between 4.5 - 6) and a small amount of glucose. Awareness of sweat composition allows personalizing electrolyte intake after training. A comprehensive workout monitoring (sweat composition, heart rate, blood oxygen level) will provide improvement in the training routine and time management, which is our goal for the development of the sweat composition analyzer.Keywords: flow, sportband, sweat, workout monitoring
Procedia PDF Downloads 1526035 Microalgae Technology for Nutraceuticals
Authors: Weixing Tan
Abstract:
Production of nutraceuticals from microalgae—a virtually untapped natural phyto-based source of which there are 200,000 to 1,000,000 species—offers a sustainable and healthy alternative to conventionally sourced nutraceuticals for the market. Microalgae can be grown organically using only natural sunlight, water and nutrients at an extremely fast rate, e.g. 10-100 times more efficiently than crops or trees. However, the commercial success of microalgae products at scale remains limited largely due to the lack of economically viable technologies. There are two major microalgae production systems or technologies currently available: 1) the open system as represented by open pond technology and 2) the closed system such as photobioreactors (PBR). Each carries its own unique features and challenges. Although an open system requires a lower initial capital investment relative to a PBR, it conveys many unavoidable drawbacks; for example, much lower productivity, difficulty in contamination control/cleaning, inconsistent product quality, inconvenience in automation, restriction in location selection, and unsuitability for cold areas – all directly linked to the system openness and flat underground design. On the other hand, a PBR system has characteristics almost entirely opposite to the open system, such as higher initial capital investment, better productivity, better contamination and environmental control, wider suitability in different climates, ease in automation, higher and consistent product quality, higher energy demand (particularly if using artificial lights), and variable operational expenses if not automated. Although closed systems like PBRs are not highly competitive yet in current nutraceutical supply market, technological advances can be made, in particular for the PBR technology, to narrow the gap significantly. One example is a readily scalable P2P Microalgae PBR Technology at Grande Prairie Regional College, Canada, developed over 11 years considering return on investment (ROI) for key production processes. The P2P PBR system is approaching economic viability at a pre-commercial stage due to five ROI-integrated major components. They include: (1) optimum use of free sunlight through attenuation (patented); (2) simple, economical, and chemical-free harvesting (patent ready to file); (3) optimum pH- and nutrient-balanced culture medium (published), (4) reliable water and nutrient recycling system (trade secret); and (5) low-cost automated system design (trade secret). These innovations have allowed P2P Microalgae Technology to increase daily yield to 106 g/m2/day of Chlorella vulgaris, which contains 50% proteins and 2-3% omega-3. Based on the current market prices and scale-up factors, this P2P PBR system presents as a promising microalgae technology for market competitive nutraceutical supply.Keywords: microalgae technology, nutraceuticals, open pond, photobioreactor PBR, return on investment ROI, technological advances
Procedia PDF Downloads 1576034 Neuropsychological Disabilities in Executive Functions and Visuospatial Skills of Juvenile Offenders in a Half-Open Program in Santiago De Chile
Authors: Gabriel Sepulveda Navarro
Abstract:
Traditional interventions for young offenders are necessary but not sufficient to tackle the multiple causes of juvenile crime. For instance, interventions offered to young offenders often are verbally mediated and dialogue based, requiring important metacognitive abilities as well as abstract thinking, assuming average performance in a wide variety of skills. It seems necessary to assess a broader set of abilities and functions in order to increase the efficiency of interventions while addressing offending. In order to clarify these assumptions, Stroop Test, as well as Rey-Osterrieth Complex Figure Test were applied to juvenile offenders tried and sentenced for violent crimes in Santiago de Chile. A random sample was drawn from La Cisterna Half-Open Program, consisting of 50 young males between 18 and 24 years old, residing in different districts of Santiago de Chile. The analysis of results suggests a disproportionately elevated incidence of impairments in executive functions and visuospatial skills. As an outcome, over 40% of the sample shows a significant low performance in both assessments, exceeding four times the same prevalence rates among young people in the general population. While executive functions entail working memory (being able to keep information and use it in some way), cognitive flexibility (to think about something in more than one way) and inhibitory control (being able to self-control, ignore distractions and delay immediate gratification), visuospatial skills permit to orientate and organize a planned conduct. All of these abilities are fundamental to the skill of avoiding violent behaviour and abiding by social rules. Understanding the relevance of neurodevelopmental impairments in the onset of violent and criminal behaviour, as well as recidivism, eventually may guide the deployment of a more comprehensive assessment and treatment for juvenile offenders.Keywords: executive functions, half-open program, juvenile offenders, neurodisabilities, visuospatial skills
Procedia PDF Downloads 1486033 Effect of Volute Tongue Shape and Position on Performance of Turbo Machinery Compressor
Authors: Anuj Srivastava, Kuldeep Kumar
Abstract:
This paper proposes a numerical study of volute tongue design, which affects the centrifugal compressor operating range and pressure recovery. Increased efficiency has been the traditional importance of compressor design. However, the increased operating range has become important in an age of ever-increasing productivity and energy costs in the turbomachinery industry. Efficiency and overall operating range are the two most important parameters studied to evaluate the aerodynamic performance of centrifugal compressor. Volute is one of the components that have significant effect on these two parameters. Choice of volute tongue geometry has major role in compressor performance, also affects performance map. The author evaluates the trade-off on using pull-back tongue geometry on centrifugal compressor performance. In present paper, three different tongue positions and shapes are discussed. These designs are compared in terms of pressure recovery coefficient, pressure loss coefficient, and stable operating range. The detailed flow structures for various volute geometries and pull back angle near tongue are studied extensively to explore the fluid behavior. The viscous Navier-Stokes equations are used to simulate the flow inside the volute. The numerical calculations are compared with thermodynamic 1-D calculations. Author concludes that the increment in compression ratio accompanies with more uniform pressure distribution in the modified tongue shape and location, a uniform static pressure around the circumferential which build a more uniform flow in the impeller and diffuser. Also, the blockage at the tongue of the volute was causing circumferentially nonuniformed pressure along the volute. This nonuniformity may lead impeller and diffuser to operate unstably. However, it is not the volute that directly controls the stall.Keywords: centrifugal compressor volute, tongue geometry, pull-back, compressor performance, flow instability
Procedia PDF Downloads 1636032 Not Suitable for Repatriation nor Refugee Status: How Undocumented Immigrant Women Survives Street Policing
Authors: Angel Mabudusha
Abstract:
The impression created by the high volume of foreign nationals being deported by the South African Home Affairs and the police departments is that all undocumented foreign nationals insist on staying in South Africa and voluntary repatriation is open for every person. However, those foreign nationals whose request for deportation has been rejected are often not reported on especially their everyday survival as undocumented immigrant women and their encounter with the police on the street. As a result, this paper aims at exploring the everyday experiences of these women on the street and on why the number of undocumented immigrant women in this country will remain a challenge to the police department. The research was conducted in two cities in South Africa, namely: Johannesburg and Pretoria where the police, the undocumented immigrant women, the human rights lawyers and NGO officials were interviewed on this matter. Based on the idea that voluntary repatriation is open for every immigrant, this study has found that some women’ request for voluntary repatriation remain a dream that never came true. Furthermore, this article proposes more humanitarian ways of dealing with undocumented immigrant women.Keywords: repatriation, refugee status, undocumented foreign nationals, humanitarian
Procedia PDF Downloads 4156031 Assessment of Heavy Metal Contamination in Soil and Groundwater Due to Leachate Migration from an Open Dumping Site
Authors: Kali Prasad Sarma
Abstract:
Indiscriminate disposal of municipal solid waste (MSW) in open dumping site is a common scenario in developing countries like India which poses a risk to the environment as well as human health. The objective of the present investigation was to find out the concentration of heavy metals (Pb, Cr, Ni, Mn, Zn, Cu, and Cd) and other physicochemical parameters of leachate and soil collected from an open dumping site of Tezpur town, Assam, India and its associated potential ecological risk. Tezpur is an urban agglomeration coming under the category of Class I UAs/Towns with a population of 105,377 as per data released by Government of India for Census 2011. Impact of the leachate on the groundwater was also addressed in our study. The concentrations of heavy metals were determined using ICP-OES. Energy dispersive X-Ray (SEM-EDS) microanalysis was also conducted to see the presence of the studied metals in the soil. X-Ray diffraction analysis (XRD) and Fourier Transform Infrared (FTIR) spectroscopy were also used to identify dominant minerals present in the soil samples. The trend of measured heavy metals in the soil samples was found in the following order: Mn > Pb > Cu > Zn > Cr > Ni > Cd. The assessment of heavy metal contamination in the soil was carried out by calculating enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (Cfi), degree of contamination (Cd), pollution load index (PLI) and ecological risk factor (Eri). The study showed that the concentrations of Pb, Cu, and Cd were much higher than their respective average shale value and the EF of the soil samples depicted very severe enrichment for Pb, Cu, and Cd; moderate enrichment for Cr and Zn. Calculated Igeo values indicated that the soil is moderate to strongly contaminated with Pb and uncontaminated to moderately contaminated with Cd and Cu. The Cfi value for Pb indicates a very strong contamination level of the metal in the soil. The Cfi values for Cu and Cd were 2.37 and 1.65 respectively indicating moderate contamination level. To apportion the possible sources of heavy metal contamination in soil, principal components analysis (PCA) has been adopted. From the leachate, heavy metals are accumulated at the dumping site soil which could easily percolate through the soil and reach the groundwater. The possible relation of groundwater contamination due to leachate percolation was examined by analyzing the heavy metal concentrations in groundwater with respect to distance from the dumping site. The concentrations of Cd and Pb in groundwater (at a distance of 20m from dumping site) exceeded the permissible limit for drinking water as set by WHO. Occurrence of elevated concentration of potentially toxic heavy metals such as Pb and Cd in groundwater and soil are much environmental concern as it is detrimental to human health and ecosystem.Keywords: groundwater, heavy metal contamination, leachate, open dumping site
Procedia PDF Downloads 1096030 Urban Open Source: Synthesis of a Citizen-Centric Framework to Design Densifying Cities
Authors: Shaurya Chauhan, Sagar Gupta
Abstract:
Prominent urbanizing centres across the globe like Delhi, Dhaka, or Manila have exhibited that development often faces a challenge in bridging the gap among the top-down collective requirements of the city and the bottom-up individual aspirations of the ever-diversifying population. When this exclusion is intertwined with rapid urbanization and diversifying urban demography: unplanned sprawl, poor planning, and low-density development emerge as automated responses. In parallel, new ideas and methods of densification and public participation are being widely adopted as sustainable alternatives for the future of urban development. This research advocates a collaborative design method for future development: one that allows rapid application with its prototypical nature and an inclusive approach with mediation between the 'user' and the 'urban', purely with the use of empirical tools. Building upon the concepts and principles of 'open-sourcing' in design, the research establishes a design framework that serves the current user requirements while allowing for future citizen-driven modifications. This is synthesized as a 3-tiered model: user needs – design ideology – adaptive details. The research culminates into a context-responsive 'open source project development framework' (hereinafter, referred to as OSPDF) that can be used for on-ground field applications. To bring forward specifics, the research looks at a 300-acre redevelopment in the core of a rapidly urbanizing city as a case encompassing extreme physical, demographic, and economic diversity. The suggestive measures also integrate the region’s cultural identity and social character with the diverse citizen aspirations, using architecture and urban design tools, and references from recognized literature. This framework, based on a vision – feedback – execution loop, is used for hypothetical development at the five prevalent scales in design: master planning, urban design, architecture, tectonics, and modularity, in a chronological manner. At each of these scales, the possible approaches and avenues for open- sourcing are identified and validated, through hit-and-trial, and subsequently recorded. The research attempts to re-calibrate the architectural design process and make it more responsive and people-centric. Analytical tools such as Space, Event, and Movement by Bernard Tschumi and Five-Point Mental Map by Kevin Lynch, among others, are deep rooted in the research process. Over the five-part OSPDF, a two-part subsidiary process is also suggested after each cycle of application, for a continued appraisal and refinement of the framework and urban fabric with time. The research is an exploration – of the possibilities for an architect – to adopt the new role of a 'mediator' in development of the contemporary urbanity.Keywords: open source, public participation, urbanization, urban development
Procedia PDF Downloads 1496029 Magnetohydrodynamics Flow and Heat Transfer in a Non-Newtonian Power-Law Fluid due to a Rotating Disk with Velocity Slip and Temperature Jump
Authors: Nur Dayana Khairunnisa Rosli, Seripah Awang Kechil
Abstract:
Swirling flows with velocity slip are important in nature and industrial processes. The present work considers the effects of velocity slip, temperature jump and suction/injection on the flow and heat transfer of power-law fluids due to a rotating disk in the presence of magnetic field. The system of the partial differential equations is highly non-linear. The number of independent variables is reduced by transforming the system into a system of coupled non-linear ordinary differential equations using similarity transformations. The effects of suction/injection, velocity slip and temperature jump on the flow rates are investigated for various cases of shear thinning and shear thickening power law fluids. The thermal and velocity jump strongly reduce the heat transfer rate and skin friction coefficient. Suction decreases the radial and tangential skin friction coefficient and the rate of heat transfer. It is also observed that the effects are more pronounced in the case of shear thinning fluids as compared to shear thickening fluids.Keywords: heat transfer, power-law fluids, rotating disk, suction or injection, temperature jump, velocity slip
Procedia PDF Downloads 2686028 Non-Linear Velocity Fields in Turbulent Wave Boundary Layer
Authors: Shamsul Chowdhury
Abstract:
The objective of this paper is to present the detailed analysis of the turbulent wave boundary layer produced by progressive finite-amplitude waves theory. Most of the works have done for the mass transport in the turbulent boundary layer assuming the eddy viscosity is not time varying, where the sediment movement is induced by the mean velocity. Near the ocean bottom, the waves produce a thin turbulent boundary layer, where the flow is highly rotational, and shear stress associated with the fluid motion cannot be neglected. The magnitude and the predominant direction of the sediment transport near the bottom are known to be closely related to the flow in the wave induced boundary layer. The magnitude of water particle velocity at the Crest phase differs from the one of the Trough phases due to the non-linearity of the waves, which plays an important role to determine the sediment movement. The non-linearity of the waves become predominant in the surf zone area, where the sediment movement occurs vigorously. Therefore, in order to describe the flow near the bottom and relationship between the flow and the movement of the sediment, the analysis was done using the non-linear boundary layer equation and the finite amplitude wave theory was applied to represent the velocity fields in the turbulent wave boundary layer. At first, the calculation was done for turbulent wave boundary layer by two-dimensional model where throughout the calculation is non-linear. But Stokes second order wave profile is adopted at the upper boundary. The calculated profile was compared with the experimental data. Finally, the calculation is done based on various modes of the velocity and turbulent energy. The mean velocity is found to differ from condition of the relative depth and the roughness. It is also found that due to non-linearity, the absolute value for velocity and turbulent energy as well as Reynolds stress are asymmetric. The mean velocity of the laminar boundary layer is always positive but in the turbulent boundary layer plays a very complicated role.Keywords: wave boundary, mass transport, mean velocity, shear stress
Procedia PDF Downloads 2626027 FEM Simulation of Triple Diffusive Magnetohydrodynamics Effect of Nanofluid Flow over a Nonlinear Stretching Sheet
Authors: Rangoli Goyal, Rama Bhargava
Abstract:
The triple diffusive boundary layer flow of nanofluid under the action of constant magnetic field over a non-linear stretching sheet has been investigated numerically. The model includes the effect of Brownian motion, thermophoresis, and cross-diffusion; slip mechanisms which are primarily responsible for the enhancement of the convective features of nanofluid. The governing partial differential equations are transformed into a system of ordinary differential equations (by using group theory transformations) and solved numerically by using variational finite element method. The effects of various controlling parameters, such as the magnetic influence number, thermophoresis parameter, Brownian motion parameter, modified Dufour parameter, and Dufour solutal Lewis number, on the fluid flow as well as on heat and mass transfer coefficients (both of solute and nanofluid) are presented graphically and discussed quantitatively. The present study has industrial applications in aerodynamic extrusion of plastic sheets, coating and suspensions, melt spinning, hot rolling, wire drawing, glass-fibre production, and manufacture of polymer and rubber sheets, where the quality of the desired product depends on the stretching rate as well as external field including magnetic effects.Keywords: FEM, thermophoresis, diffusiophoresis, Brownian motion
Procedia PDF Downloads 4206026 Identification of the Main Transition Velocities in a Bubble Column Based on a Modified Shannon Entropy
Authors: Stoyan Nedeltchev, Markus Schubert
Abstract:
The gas holdup fluctuations in a bubble column (0.15 m in ID) have been recorded by means of a conductivity wire-mesh sensor in order to extract information about the main transition velocities. These parameters are very important for bubble column design, operation and scale-up. For this purpose, the classical definition of the Shannon entropy was modified and used to identify both the onset (at UG=0.034 m/s) of the transition flow regime and the beginning (at UG=0.089 m/s) of the churn-turbulent flow regime. The results were compared with the Kolmogorov entropy (KE) results. A slight discrepancy was found, namely the transition velocities identified by means of the KE were shifted to somewhat higher (0.045 and 0.101 m/s) superficial gas velocities UG.Keywords: bubble column, gas holdup fluctuations, modified Shannon entropy, Kolmogorov entropy
Procedia PDF Downloads 3286025 Experimental Study to Determine the Effect of Wire Mesh Pore Size on Natural Draft Chimney Performance
Authors: Md. Mizanur Rahman, Chu Chi Ming, Mohd Suffian Bin Misaran
Abstract:
Chimney is an important part of the industries to remove waste heat from the processes side to the atmosphere. The increased demand of energy helps to restart to think about the efficiency of chimney as well as to find out a valid option to replace forced draft chimney system from industries. In this study natural draft chimney model is air flow rate; exit air temperature and pressure losses are studied through modification with wire mesh screen and compare the results with without wire mesh screen chimney model. The heat load is varies from 0.1 kW to 1kW and three different wire mesh screens that have pore size 0.15 mm2, 0.40 mm2 and 4.0 mm2 respectively are used. The experimental results show that natural draft chimney model with wire mesh screens significantly restored the flow losses compared to the system without wire mesh screen. The natural draft chimney model with 0.40 mm2 pore size wire mesh screen can minimize the draft losses better than others and able to enhance velocity about 54 % exit air temperature about 41% and pressure loss decreased by about 20%. Therefore, it can be decided that the wire mesh screens significantly minimize the draft losses in the natural draft chimney and 0.40 mm2 pore size screen will be a suitable option.Keywords: natural draft dhimney, wire mesh screen, natural draft flow, mechanical engineering
Procedia PDF Downloads 3196024 System Identification and Controller Design for a DC Electrical Motor
Authors: Armel Asongu Nkembi, Ahmad Fawad
Abstract:
The aim of this paper is to determine in a concise way the transfer function that characterizes a DC electrical motor with a helix. In practice it can be obtained by applying a particular input to the system and then, based on the observation of its output, determine an approximation to the transfer function of the system. In our case, we use a step input and find the transfer function parameters that give the simulated first-order time response. The simulation of the system is done using MATLAB/Simulink. In order to determine the parameters, we assume a first order system and use the Broida approximation to determine the parameters and then its Mean Square Error (MSE). Furthermore, we design a PID controller for the control process first in the continuous time domain and tune it using the Ziegler-Nichols open loop process. We then digitize the controller to obtain a digital controller since most systems are implemented using computers, which are digital in nature.Keywords: transfer function, step input, MATLAB, Simulink, DC electrical motor, PID controller, open-loop process, mean square process, digital controller, Ziegler-Nichols
Procedia PDF Downloads 566023 Modeling of Sand Boil near the Danube River
Authors: Edina Koch, Károly Gombás, Márton Maller
Abstract:
The Little Plain is located along the Danube river, and this area is a “hotbed” of sand boil formation. This is due to the combination of a 100-250 m thick gravel layer beneath the Little Plain with a relatively thin blanket of poor soil spreading the gravel with variable thickness. Sand boils have a tradition and history in this area. It was possible to know which sand boil started and stopped working at what water level, and some of them even have names. The authors present a 2D finite element model of groundwater flow through a selected cross-section of the Danube river, which observed activation of piping phenomena during the 2013 flood event. Soil parametrization is based on a complex site investigation program conducted along the Danube River in the Little Plain.Keywords: site characterization, groundwater flow, numerical modeling, sand boil
Procedia PDF Downloads 956022 The Design of a Computer Simulator to Emulate Pathology Laboratories: A Model for Optimising Clinical Workflows
Authors: M. Patterson, R. Bond, K. Cowan, M. Mulvenna, C. Reid, F. McMahon, P. McGowan, H. Cormican
Abstract:
This paper outlines the design of a simulator to allow for the optimisation of clinical workflows through a pathology laboratory and to improve the laboratory’s efficiency in the processing, testing, and analysis of specimens. Often pathologists have difficulty in pinpointing and anticipating issues in the clinical workflow until tests are running late or in error. It can be difficult to pinpoint the cause and even more difficult to predict any issues which may arise. For example, they often have no indication of how many samples are going to be delivered to the laboratory that day or at a given hour. If we could model scenarios using past information and known variables, it would be possible for pathology laboratories to initiate resource preparations, e.g. the printing of specimen labels or to activate a sufficient number of technicians. This would expedite the clinical workload, clinical processes and improve the overall efficiency of the laboratory. The simulator design visualises the workflow of the laboratory, i.e. the clinical tests being ordered, the specimens arriving, current tests being performed, results being validated and reports being issued. The simulator depicts the movement of specimens through this process, as well as the number of specimens at each stage. This movement is visualised using an animated flow diagram that is updated in real time. A traffic light colour-coding system will be used to indicate the level of flow through each stage (green for normal flow, orange for slow flow, and red for critical flow). This would allow pathologists to clearly see where there are issues and bottlenecks in the process. Graphs would also be used to indicate the status of specimens at each stage of the process. For example, a graph could show the percentage of specimen tests that are on time, potentially late, running late and in error. Clicking on potentially late samples will display more detailed information about those samples, the tests that still need to be performed on them and their urgency level. This would allow any issues to be resolved quickly. In the case of potentially late samples, this could help to ensure that critically needed results are delivered on time. The simulator will be created as a single-page web application. Various web technologies will be used to create the flow diagram showing the workflow of the laboratory. JavaScript will be used to program the logic, animate the movement of samples through each of the stages and to generate the status graphs in real time. This live information will be extracted from an Oracle database. As well as being used in a real laboratory situation, the simulator could also be used for training purposes. ‘Bots’ would be used to control the flow of specimens through each step of the process. Like existing software agents technology, these bots would be configurable in order to simulate different situations, which may arise in a laboratory such as an emerging epidemic. The bots could then be turned on and off to allow trainees to complete the tasks required at that step of the process, for example validating test results.Keywords: laboratory-process, optimization, pathology, computer simulation, workflow
Procedia PDF Downloads 2866021 Generative Design Method for Cooled Additively Manufactured Gas Turbine Parts
Authors: Thomas Wimmer, Bernhard Weigand
Abstract:
The improvement of gas turbine efficiency is one of the main drivers of research and development in the gas turbine market. This has led to elevated gas turbine inlet temperatures beyond the melting point of the utilized materials. The turbine parts need to be actively cooled in order to withstand these harsh environments. However, the usage of compressor air as coolant decreases the overall gas turbine efficiency. Thus, coolant consumption needs to be minimized in order to gain the maximum advantage from higher turbine inlet temperatures. Therefore, sophisticated cooling designs for gas turbine parts aim to minimize coolant mass flow. New design space is accessible as additive manufacturing is maturing to industrial usage for the creation of hot gas flow path parts. By making use of this technology more efficient cooling schemes can be manufacture. In order to find such cooling schemes a generative design method is being developed. It generates cooling schemes randomly which adhere to a set of rules. These assure the sanity of the design. A huge amount of different cooling schemes are generated and implemented in a simulation environment where it is validated. Criteria for the fitness of the cooling schemes are coolant mass flow, maximum temperature and temperature gradients. This way the whole design space is sampled and a Pareto optimum front can be identified. This approach is applied to a flat plate, which resembles a simplified section of a hot gas flow path part. Realistic boundary conditions are applied and thermal barrier coating is accounted for in the simulation environment. The resulting cooling schemes are presented and compared to representative conventional cooling schemes. Further development of this method can give access to cooling schemes with an even better performance having higher complexity, which makes use of the available design space.Keywords: additive manufacturing, cooling, gas turbine, heat transfer, heat transfer design, optimization
Procedia PDF Downloads 3526020 Clustered Regularly Interspaced Short Palindromic Repeat/cas9-Based Lateral Flow and Fluorescence Diagnostics for Rapid Pathogen Detection
Authors: Mark Osborn
Abstract:
Clustered, regularly interspaced short palindromic repeat (CRISPR/Cas) proteins can be designed to bind specified DNA and RNA sequences and hold great promise for the accurate detection of nucleic acids for diagnostics. Commercially available reagents were integrated into a CRISPR/Cas9-based lateral flow assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences with single-base specificity. This approach requires minimal equipment and represents a simplified platform for field-based deployment. A rapid, multiplex fluorescence CRISPR/Cas9 nuclease cleavage assay capable of detecting and differentiating SARS-CoV-2, influenza A and B, and respiratory syncytial virus in a single reaction was also developed. These findings provide proof of principle for CRISPR/Cas9 point-of-care diagnosis that can detect specific SARS-CoV-2 strain(s). Further, Cas9 cleavage allows for a scalable fluorescent platform for identifying respiratory viral pathogens with overlapping symptomology. Collectively, this approach is a facile platform for diagnostics with broad application to user-defined sequence interrogation and detection.Keywords: CRISPR/Cas9, lateral flow assay, SARS-Co-V2, single-nucleotide resolution
Procedia PDF Downloads 1846019 Three-Dimensional Unsteady Natural Convection and Entropy Generation in an Inclined Cubical Trapezoidal Cavity Subjected to Uniformly Heated Bottom Wall
Authors: Farshid Fathinia
Abstract:
Numerical computation of unsteady laminar three-dimensional natural convection and entropy generation in an inclined cubical trapezoidal air-filled cavity is performed for the first time in this work. The vertical right and left sidewalls of the cavity are maintained at constant cold temperatures. The lower wall is subjected to a constant hot temperature, while the upper one is considered insulated. Computations are performed for Rayleigh numbers varied as 103 ≤ Ra ≤ 105, while the trapezoidal cavity inclination angle is varied as 0° ≤ ϕ ≤ 180°. Prandtl number is considered constant at Pr = 0.71. The second law of thermodynamics is applied to obtain thermodynamic losses inside the cavity due to both heat transfer and fluid friction irreversibilities. The variation of local and average Nusselt numbers are presented and discussed.While, streamlines, isotherms and entropy contours are presented in both two and three-dimensional pattern. The results show that when the Rayleigh number increases, the flow patterns are changed especially in three-dimensional results and the flow circulation increases. Also, the inclination angle effect on the total entropy generation becomes insignificant when the Rayleigh number is low.Moreover, when the Rayleigh number increases the average Nusselt number increases.Keywords: transient natural convection, trapezoidal cavity, three-dimensional flow, entropy generation, second law
Procedia PDF Downloads 3506018 Endoscopic Versus Open Treatment of Carpal Tunnel Syndrome: Postoperative Complications in Patients with Diabetes Mellitus
Authors: Arman Kishan, Mark Haft, Steve Li, Duc Nguyen, Dawn Laporte
Abstract:
Objective: Patients with Type 2 diabetes (T2DM) often face higher postoperative complication rates. Limited data exist on outcomes in T2DM patients undergoing carpal tunnel release (CTR). This study aims to compare complication rates between endoscopic CTR (ECTR) and open CTR (OCTR) in patients with T2DM. Methods: This was a retrospective cohort study using the TriNetX database of 56741 patients with T2DM undergoing ECTR (N= 14,949) or OCTR (N= 41,792). Demographic data, medical comorbidities, and complication rates were analyzed. We used multivariable analysis to identify differences in postoperative complication rates between the two treatment methods in patients with T2DM. Results: Patients with T2DM undergoing ECTR had a significantly lower incidence of 90-day wound infection (p < 0.001), 90-day wound dehiscence (p < 0.001), and nerve injury (p < 0.001) when compared to patients who underwent OCTR. After matching, there was a significantly higher number of T2DM patients undergoing ECTR who had peripheral vascular disease (p = 0.045) and hypertension (p = 0.020) when compared to the OCTR group. These patients also had a lower incidence of fluid and electrolyte disorders (p = 0.002) and chronic blood loss anemia (p = 0.025). Conclusion: ECTR presents a superior choice for T2DM patients undergoing CTR, yielding significantly lower rates of wound infection, wound dehiscence, and nerve injury within 90 days post-surgery—reducing the risk by 31%, 48%, and 59%, respectively. These findings support the adoption of ECTR as the preferred method in this patient population, potentially leading to improved postoperative outcomes.Keywords: endoscopic treatment of carpal tunnel syndrome, open treatment of carpal tunnel syndrome, carpal tunnel syndrome, postoperative complications in patients with diabetes mellitus
Procedia PDF Downloads 696017 Resolving a Piping Vibration Problem by Installing Viscous Damper Supports
Authors: Carlos Herrera Sierralta, Husain M. Muslim, Meshal T. Alsaiari, Daniel Fischer
Abstract:
Preventing piping fatigue flow induced vibration in the Oil & Gas sector demands not only the constant development of engineering design methodologies based on available software packages, but also special piping support technologies for designing safe and reliable piping systems. The vast majority of piping vibration problems in the Oil & Gas industry are provoked by the process flow characteristics which are basically intrinsically related to the fluid properties, the type of service and its different operational scenarios. In general, the corrective actions recommended for flow induced vibration in piping systems can be grouped in two major areas: those which affect the excitation mechanisms typically associated to process variables, and those which affect the response mechanism of the pipework per se, and the pipework associated steel support structure. Where possible the first option is to try to solve the flow induced problem from the excitation mechanism perspective. However, in producing facilities the approach of changing process parameters might not always be convenient as it could lead to reduction of production rates or it may require the shutdown of the system in order to perform the required piping modification. That impediment might lead to a second option, which is to modify the response of the piping system to excitation generated by the type of process flow. In principle, the action of shifting the natural frequency of the system well above the frequency inherent to the process always favours the elimination, or considerably reduces, the level of vibration experienced by the piping system. Tightening up the clearances at the supports (ideally zero gap), and adding new static supports at the system, are typical ways of increasing the natural frequency of the piping system. However, only stiffening the piping system may not be sufficient to resolve the vibration problem, and in some cases, it might not be feasible to implement it at all, as the available piping layout could create limitations on adding supports due to thermal expansion/contraction requirements. In these cases, utilization of viscous damper supports could be recommended as these devices can allow relatively large quasi-static movement of piping while providing sufficient capabilities of dissipating the vibration. Therefore, when correctly selected and installed, viscous damper supports can provide a significant effect on the response of the piping system over a wide range of frequencies. Viscous dampers cannot be used to support sustained, static loads. This paper shows over a real case example, a methodology which allows to determine the selection of the viscous damper supports via a dynamic analysis model. By implementing this methodology, it was possible to resolve the piping vibration problem throughout redesigning adequately the existing static piping supports and by adding new viscous dampers supports. This was conducted on-stream at the oil crude pipeline in question without the necessity of reducing the production of the plant. Concluding that the application of the methodology of this paper can be applied to solve similar cases in a straightforward manner.Keywords: dynamic analysis, flow induced vibration, piping supports, turbulent flow, slug flow, viscous damper
Procedia PDF Downloads 1436016 Wave-Assisted Flapping Foil Propulsion: Flow Physics and Scaling Laws From Fluid-Structure Interaction Simulations
Authors: Rajat Mittal, Harshal Raut, Jung Hee Seo
Abstract:
Wave-assisted propulsion (WAP) systems convert wave energy into thrust using elastically mounted hydrofoils. We employ sharp-interface immersed boundary simulations to examine the effect of two key parameters on the flow physics, the fluid-structure interaction, as well as thrust performance of these systems - the stiffness of the torsional spring and the location of the rotational center. The variation in spring stiffness leads to different amplitude of pitch motion, phase difference with respect to heaving motion and thrust coefficient and we show the utility of ‘maps’ of energy exchange between the flow and the hydrofoil system, as a way to understand and predict this behavior. The Force Partitioning Method (FPM) is used to decompose the pressure forces into individual components and understand the mechanism behind increase in thrust. Next, a scaling law is presented for the thrust coefficient generated by heaving and pitching foil. The parameters within the scaling law are calculated based on direct-numerical simulations based parametric study utilized to generate the energy maps. The predictions of the proposed scaling law are then compared with those of a similar model from the literature, showing a noticeable improvement in the prediction of the thrust coefficient.Keywords: propulsion, flapping foils, hydrodynamics, wave power
Procedia PDF Downloads 616015 Dynamic Characterization of Shallow Aquifer Groundwater: A Lab-Scale Approach
Authors: Anthony Credoz, Nathalie Nief, Remy Hedacq, Salvador Jordana, Laurent Cazes
Abstract:
Groundwater monitoring is classically performed in a network of piezometers in industrial sites. Groundwater flow parameters, such as direction, sense and velocity, are deduced from indirect measurements between two or more piezometers. Groundwater sampling is generally done on the whole column of water inside each borehole to provide concentration values for each piezometer location. These flow and concentration values give a global ‘static’ image of potential plume of contaminants evolution in the shallow aquifer with huge uncertainties in time and space scales and mass discharge dynamic. TOTAL R&D Subsurface Environmental team is challenging this classical approach with an innovative dynamic way of characterization of shallow aquifer groundwater. The current study aims at optimizing the tools and methodologies for (i) a direct and multilevel measurement of groundwater velocities in each piezometer and, (ii) a calculation of potential flux of dissolved contaminant in the shallow aquifer. Lab-scale experiments have been designed to test commercial and R&D tools in a controlled sandbox. Multiphysics modeling were performed and took into account Darcy equation in porous media and Navier-Stockes equation in the borehole. The first step of the current study focused on groundwater flow at porous media/piezometer interface. Huge uncertainties from direct flow rate measurements in the borehole versus Darcy flow rate in the porous media were characterized during experiments and modeling. The structure and location of the tools in the borehole also impacted the results and uncertainties of velocity measurement. In parallel, direct-push tool was tested and presented more accurate results. The second step of the study focused on mass flux of dissolved contaminant in groundwater. Several active and passive commercial and R&D tools have been tested in sandbox and reactive transport modeling has been performed to validate the experiments at the lab-scale. Some tools will be selected and deployed in field assays to better assess the mass discharge of dissolved contaminants in an industrial site. The long-term subsurface environmental strategy is targeting an in-situ, real-time, remote and cost-effective monitoring of groundwater.Keywords: dynamic characterization, groundwater flow, lab-scale, mass flux
Procedia PDF Downloads 1676014 Temporal and Spatio-Temporal Stability Analyses in Mixed Convection of a Viscoelastic Fluid in a Porous Medium
Authors: P. Naderi, M. N. Ouarzazi, S. C. Hirata, H. Ben Hamed, H. Beji
Abstract:
The stability of mixed convection in a Newtonian fluid medium heated from below and cooled from above, also known as the Poiseuille-Rayleigh-Bénard problem, has been extensively investigated in the past decades. To our knowledge, mixed convection in porous media has received much less attention in the published literature. The present paper extends the mixed convection problem in porous media for the case of a viscoelastic fluid flow owing to its numerous environmental and industrial applications such as the extrusion of polymer fluids, solidification of liquid crystals, suspension solutions and petroleum activities. Without a superimposed through-flow, the natural convection problem of a viscoelastic fluid in a saturated porous medium has already been treated. The effects of the viscoelastic properties of the fluid on the linear and nonlinear dynamics of the thermoconvective instabilities have also been treated in this work. Consequently, the elasticity of the fluid can lead either to a Hopf bifurcation, giving rise to oscillatory structures in the strongly elastic regime, or to a stationary bifurcation in the weakly elastic regime. The objective of this work is to examine the influence of the main horizontal flow on the linear and characteristics of these two types of instabilities. Under the Boussinesq approximation and Darcy's law extended to a viscoelastic fluid, a temporal stability approach shows that the conditions for the appearance of longitudinal rolls are identical to those found in the absence of through-flow. For the general three-dimensional (3D) perturbations, a Squire transformation allows the deduction of the complex frequencies associated with the 3D problem using those obtained by solving the two-dimensional one. The numerical resolution of the eigenvalue problem concludes that the through-flow has a destabilizing effect and selects a convective configuration organized in purely transversal rolls which oscillate in time and propagate in the direction of the main flow. In addition, by using the mathematical formalism of absolute and convective instabilities, we study the nature of unstable three-dimensional disturbances. It is shown that for a non-vanishing through-flow, general three-dimensional instabilities are convectively unstable which means that in the absence of a continuous noise source these instabilities are drifted outside the porous medium, and no long-term pattern is observed. In contrast, purely transversal rolls may exhibit a transition to absolute instability regime and therefore affect the porous medium everywhere including in the absence of a noise source. The absolute instability threshold, the frequency and the wave number associated with purely transversal rolls are determined as a function of the Péclet number and the viscoelastic parameters. Results are discussed and compared to those obtained from laboratory experiments in the case of Newtonian fluids.Keywords: instability, mixed convection, porous media, and viscoelastic fluid
Procedia PDF Downloads 3416013 Application and Aspects of Biometeorology in Inland Open Water Fisheries Management in the Context of Changing Climate: Status and Research Needs
Authors: U.K. Sarkar, G. Karnatak, P. Mishal, Lianthuamluaia, S. Kumari, S.K. Das, B.K. Das
Abstract:
Inland open water fisheries provide food, income, livelihood and nutritional security to millions of fishers across the globe. However, the open water ecosystem and fisheries are threatened due to climate change and anthropogenic pressures, which are more visible in the recent six decades, making the resources vulnerable. Understanding the interaction between meteorological parameters and inland fisheries is imperative to develop mitigation and adaptation strategies. As per IPCC 5th assessment report, the earth is warming at a faster rate in recent decades. Global mean surface temperature (GMST) for the decade 2006–2015 (0.87°C) was 6 times higher than the average over the 1850–1900 period. The direct and indirect impacts of climatic parameters on the ecology of fisheries ecosystem have a great bearing on fisheries due to alterations in fish physiology. The impact of meteorological factors on ecosystem health and fish food organisms brings about changes in fish diversity, assemblage, reproduction and natural recruitment. India’s average temperature has risen by around 0.7°C during 1901–2018. The studies show that the mean air temperature in the Ganga basin has increased in the range of 0.20 - 0.47 °C and annual rainfall decreased in the range of 257-580 mm during the last three decades. The studies clearly indicate visible impacts of climatic and environmental factors on inland open water fisheries. Besides, a significant reduction in-depth and area (37.20–57.68% reduction), diversity of natural indigenous fish fauna (ranging from 22.85 to 54%) in wetlands and progression of trophic state from mesotrophic to eutrophic were recorded. In this communication, different applications of biometeorology in inland fisheries management with special reference to the assessment of ecosystem and species vulnerability to climatic variability and change have been discussed. Further, the paper discusses the impact of climate anomaly and extreme climatic events on inland fisheries and emphasizes novel modeling approaches for understanding the impact of climatic and environmental factors on reproductive phenology for identification of climate-sensitive/resilient fish species for the adoption of climate-smart fisheries in the future. Adaptation and mitigation strategies to enhance fish production and the role of culture-based fisheries and enclosure culture in converting sequestered carbon into blue carbon have also been discussed. In general, the type and direction of influence of meteorological parameters on fish biology in open water fisheries ecosystems are not adequately understood. The optimum range of meteorological parameters for sustaining inland open water fisheries is yet to be established. Therefore, the application of biometeorology in inland fisheries offers ample scope for understanding the dynamics in changing climate, which would help to develop a database on such least, addressed research frontier area. This would further help to project fisheries scenarios in changing climate regimes and develop adaptation and mitigation strategies to cope up with adverse meteorological factors to sustain fisheries and to conserve aquatic ecosystem and biodiversity.Keywords: biometeorology, inland fisheries, aquatic ecosystem, modeling, India
Procedia PDF Downloads 1956012 Potentiality of Litchi-Fodder Based Agroforestry System in Bangladesh
Authors: M. R. Zaman, M. S. Bari, M. Kajal
Abstract:
A field experiment was conducted at the Agroforestry and Environment Research Field, Hajee Mohammad Danesh Science and Technology University, Dinajpur during 2013 to investigate the potentiality of three napier fodder varieties under Litchi orchard. The experiment was consisted of 2 factors RCBD with 3 replications. Among the two factors, factor A was two production systems; S1= Litchi + fodder and S2 = Fodder (sole crop); another factor B was three napier varieties: V1= BARI Napier -1 (Bazra), V2= BARI Napier - 2 (Arusha) and V3= BARI Napier -3 (Hybrid). The experimental results revealed that there were significant variation among the varieties in terms of leaf growth and yield. The maximum number of leaf plant -1 was recorded in variety Bazra (V1) whereas the minimum number was recorded in hybrid variety (V3).Significantly the highest (13.75, 14.53 and14.84 tha-1 at 1st, 2nd and 3rd harvest respectively) yield was also recorded in variety Bazra whereas the lowest (5.89, 6.36 and 9.11 tha-1 at 1st, 2nd v and 3rd harvest respectively) yield was in hybrid variety. Again, in case of production systems, there were also significant differences between the two production systems were founded. The maximum number of leaf plant -1 was recorded under Litchi based AGF system (T1) whereas the minimum was recorded in open condition (T2). Similarly, significantly the highest (12.00, 12.35 and 13.31 tha-1 at 1st, 2nd and 3rd harvest respectively) yield of napier was recorded under Litchi based AGF system where as the lowest (9.73, 10.47 and 11.66 tha-1 at 1st, 2nd and 3rd harvest respectively) yield was recorded in open condition i.e. napier in sole cropping. Furthermore, the interaction effect of napier variety and production systems were also gave significant deviation result in terms of growth and yield. The maximum number of leaf plant -1 was recorded under Litchi based AGF systems with Bazra variety whereas the minimum was recorded in open condition with hybrid variety. The highest yield (14.42, 16.14 and 16.15 tha-1 at 1st, 2nd and 3rd harvest respectively) of napier was found under Litchi based AGF systems with Bazra variety. Significantly the lowest (5.33, 5.79 and 8.48 tha-1 at 1st, 2nd and 3rd harvest respectively) yield was found in open condition i.e. sole cropping with hybrid variety. In case of the quality perspective, the highest nutritive value (DM, ASH, CP, CF, EE, and NFE) was found in Bazra (V1) and the lowest value was found in hybrid variety (V3). Therefore, the suitability of napier production under Litchi based AGF system may be ranked as Bazra > Arusha > Hybrid variety. Finally, the economic analysis showed that maximum BCR (5.20) was found in the Litchi based AGF systems over sole cropping (BCR=4.38). From the findings of the taken investigation, it may be concluded that the cultivation of Bazra napier varieties in the floor of Litchi orchard ensures higher revenue to the farmers compared to its sole cropping.Keywords: potentiality, Litchi, fodder, agroforestry
Procedia PDF Downloads 3236011 Flow Field Analysis of Different Intake Bump (Compression Surface) Configurations on a Supersonic Aircraft
Authors: Mudassir Ghafoor, Irsalan Arif, Shuaib Salamat
Abstract:
This paper presents modeling and analysis of different intake bump (compression surface) configurations and comparison with an existing supersonic aircraft having bump intake configuration. Many successful aircraft models have shown that Diverter less Supersonic Inlet (DSI) as compared to conventional intake can reduce weight, complexity and also maintenance cost. The research is divided into two parts. In the first part, four different intake bumps are modeled for comparative analysis keeping in view the consistency of outer perimeter dimensions of fighter aircraft and various characteristics such as flow behavior, boundary layer diversion and pressure recovery are analyzed. In the second part, modeled bumps are integrated with intake duct for performance analysis and comparison with existing supersonic aircraft data is carried out. The bumps are named as uniform large (Config 1), uniform small (Config 2), uniform sharp (Config 3), non-uniform (Config 4) based on their geometric features. Analysis is carried out at different Mach Numbers to analyze flow behavior in subsonic and supersonic regime. Flow behavior, boundary layer diversion and Pressure recovery are examined for each bump characteristics, and comparative study is carried out. The analysis reveals that at subsonic speed, Config 1 and Config 2 give similar pressure recoveries as diverterless supersonic intake, but difference in pressure recoveries becomes significant at supersonic speed. It was concluded from research that Config 1 gives better results as compared to Config 3. Also, higher amplitude (Config 1) is preferred over lower (Config 2 and 4). It was observed that maximum height of bump is preferred to be placed near cowl lip of intake duct.Keywords: bump intake, boundary layer, computational fluid dynamics, diverter-less supersonic inlet
Procedia PDF Downloads 2436010 Exploring the Role of Hydrogen to Achieve the Italian Decarbonization Targets using an OpenScience Energy System Optimization Model
Authors: Alessandro Balbo, Gianvito Colucci, Matteo Nicoli, Laura Savoldi
Abstract:
Hydrogen is expected to become an undisputed player in the ecological transition throughout the next decades. The decarbonization potential offered by this energy vector provides various opportunities for the so-called “hard-to-abate” sectors, including industrial production of iron and steel, glass, refineries and the heavy-duty transport. In this regard, Italy, in the framework of decarbonization plans for the whole European Union, has been considering a wider use of hydrogen to provide an alternative to fossil fuels in hard-to-abate sectors. This work aims to assess and compare different options concerning the pathway to be followed in the development of the future Italian energy system in order to meet decarbonization targets as established by the Paris Agreement and by the European Green Deal, and to infer a techno-economic analysis of the required asset alternatives to be used in that perspective. To accomplish this objective, the Energy System Optimization Model TEMOA-Italy is used, based on the open-source platform TEMOA and developed at PoliTo as a tool to be used for technology assessment and energy scenario analysis. The adopted assessment strategy includes two different scenarios to be compared with a business-as-usual one, which considers the application of current policies in a time horizon up to 2050. The studied scenarios are based on the up-to-date hydrogen-related targets and planned investments included in the National Hydrogen Strategy and in the Italian National Recovery and Resilience Plan, with the purpose of providing a critical assessment of what they propose. One scenario imposes decarbonization objectives for the years 2030, 2040 and 2050, without any other specific target. The second one (inspired to the national objectives on the development of the sector) promotes the deployment of the hydrogen value-chain. These scenarios provide feedback about the applications hydrogen could have in the Italian energy system, including transport, industry and synfuels production. Furthermore, the decarbonization scenario where hydrogen production is not imposed, will make use of this energy vector as well, showing the necessity of its exploitation in order to meet pledged targets by 2050. The distance of the planned policies from the optimal conditions for the achievement of Italian objectives is be clarified, revealing possible improvements of various steps of the decarbonization pathway, which seems to have as a fundamental element Carbon Capture and Utilization technologies for its accomplishment. In line with the European Commission open science guidelines, the transparency and the robustness of the presented results is ensured by the adoption of the open-source open-data model such as the TEMOA-Italy.Keywords: decarbonization, energy system optimization models, hydrogen, open-source modeling, TEMOA
Procedia PDF Downloads 736009 Experimental Characterization of Flowable Cement Pastes Made with Marble Waste
Authors: F. Messaoudi, O. Haddad, R. Bouras, S. Kaci
Abstract:
The development of self-compacting concrete (SCC) marks a huge step towards improved efficiency and working conditions on construction sites and in the precast industry. SCC flows easily into more complex shapes and through reinforcement bars, reduces the manpower required for the placement; no vibration is required to ensure correct compaction of concrete. This concrete contains a high volume of binder which is controlled by their rheological behavior. The paste consists of binders (Portland cement with or without supplementary cementitious materials), water, chemical admixtures and fillers. In this study, two series of tests were performed on self-compacting cement pastes made with marble waste additions as the mineral addition. The first series of this investigation was to determine the flow time of paste using Marsh cone, the second series was to determine the rheological parameters of the same paste namely yield stress and plastic viscosity using the rheometer Haake RheoStress 1. The results of this investigation allowed us to study the evolution of the yield stress, viscosity and the flow time Marsh cone paste as a function of the composition of the paste. A correlation between the results obtained on the flow test Marsh cone and those of the plastic viscosity on the mottled different cement pastes is proposed.Keywords: adjuvant, rheological parameter, self-compacting cement pastes, waste marble
Procedia PDF Downloads 2766008 Reduction of Specific Energy Consumption in Microfiltration of Bacillus velezensis Broth by Air Sparging and Turbulence Promoter
Authors: Jovana Grahovac, Ivana Pajcin, Natasa Lukic, Jelena Dodic, Aleksandar Jokic
Abstract:
To obtain purified biomass to be used in the plant pathogen biocontrol or as soil biofertilizer, it is necessary to eliminate residual broth components at the end of the fermentation process. The main drawback of membrane separation techniques is permeate flux decline due to the membrane fouling. Fouling mitigation measures increase the pressure drop along membrane channel due to the increased resistance to flow of the feed suspension, thus increasing the hydraulic power drop. At the same time, these measures lead to an increase in the permeate flux due to the reduced resistance of the filtration cake on the membrane surface. Because of these opposing effects, the energy efficiency of fouling mitigation measures is limited, and the justification of its application is provided by information on a reducing specific energy consumption compared to a case without any measures employed. In this study, the influence of static mixer (Kenics) and air-sparging (two-phase flow) on reduction of specific energy consumption (ER) was investigated. Cultivation Bacillus velezensis was carried out in the 3-L bioreactor (Biostat® Aplus) containing 2 L working volume with two parallel Rushton turbines and without internal baffles. Cultivation was carried out at 28 °C on at 150 rpm with an aeration rate of 0.75 vvm during 96 h. The experiments were carried out in a conventional cross-flow microfiltration unit. During experiments, permeate and retentate were recycled back to the broth vessel to simulate continuous process. The single channel ceramic membrane (TAMI Deutschland) used had a nominal pore size 200 nm with the length of 250 mm and an inner/external diameter of 6/10 mm. The useful membrane channel surface was 4.33×10⁻³ m². Air sparging was brought by the pressurized air connected by a three-way valve to the feed tube by a simple T-connector without diffusor. The different approaches to flux improvement are compared in terms of energy consumption. Reduction of specific energy consumption compared to microfiltration without fouling mitigation is around 49% and 63%, for use of two-phase flow and a static mixer, respectively. In the case of a combination of these two fouling mitigation methods, ER is 60%, i.e., slightly lower compared to the use of turbulence promoter alone. The reason for this result can be found in the fact that flux increase is more affected by the presence of a Kenics static mixer while sparging results in an increase of energy used during microfiltration. By comparing combined method with turbulence promoter flux enhancement method ER is negative (-7%) which can be explained by increased power consumption for air flow with moderate contribution to the flux increase. Another confirmation for this fact can be found by comparing energy consumption values for combined method with energy consumption in the case of two-phase flow. In this instance energy reduction (ER) is 22% that demonstrates that turbulence promoter is more efficient compared to two phase flow. Antimicrobial activity of Bacillus velezensis biomass against phytopathogenic isolates Xanthomonas campestris was preserved under different fouling reduction methods.Keywords: Bacillus velezensis, microfiltration, static mixer, two-phase flow
Procedia PDF Downloads 118