Search results for: model implementation
18853 Systemic Family therapy in the Queensland Foster Care System: The implementation of Integrative Practice as a Purposeful Intervention Implemented with Complex ‘Family’ Systems
Authors: Rachel Jones
Abstract:
Systemic Family therapy in the Queensland Foster Care System is the implementation of Integrative Practice as a purposeful intervention implemented with complex ‘family’ systems (by expanding the traditional concept of family to include all relevant stakeholders for a child) and is shown to improve the overall wellbeing of children (with developmental delays and trauma) in Queensland out of home care contexts. The importance of purposeful integrative practice in the field of systemic family therapy has been highlighted in achieving change in complex family systems. Essentially, it is the purposeful use of multiple interventions designed to meet the myriad of competing needs apparent for a child (with developmental delays resulting from early traumatic experiences - both in utero and in their early years) and their family. In the out-of-home care context, integrative practice is particularly useful to promote positive change for the child and what is an extended concept of whom constitutes their family. Traditionally, a child’s family may have included biological and foster care family members, but when this concept is extended to include all their relevant stakeholders (including biological family, foster carers, residential care workers, child safety, school representatives, Health and Allied Health staff, police and youth justice staff), the use of integrative family therapy can produce positive change for the child in their overall wellbeing, development, risk profile, social and emotional functioning, mental health symptoms and relationships across domains. By tailoring therapeutic interventions that draw on systemic family therapies from the first and second-order schools of family therapy, neurobiology, solution focussed, trauma-informed, play and art therapy, and narrative interventions, disability/behavioural interventions, clinicians can promote change by mixing therapeutic modalities with the individual and their stakeholders. This presentation will unpack the implementation of systemic family therapy using this integrative approach to formulation and treatment for a child in out-of-home care in Queensland (experiencing developmental delays resulting from trauma). It considers the need for intervention for the individual and in the context of the environment and relationships. By reviewing a case example, this study aims to highlight the simultaneous and successful use of pharmacological interventions, psychoeducational programs for carers and school staff, parenting programs, cognitive-behavioural and trauma-informed interventions, traditional disability approaches, play therapy, mapping genograms and meaning-making, and using family and dyadic sessions for the system associated with the foster child. These elements of integrative systemic family practice have seen success in the reduction of symptoms and improved overall well-being of foster children and their stakeholders. Accordingly, a model for best practice using this integrative systemic approach is presented for this population group and preliminary findings for this approach over four years of local data have been reviewed.Keywords: systemic family therapy, treating families of children with delays, trauma and attachment in families systems, improving practice and functioning of children and families
Procedia PDF Downloads 1318852 Urban Design via Estimation Model for Traffic Index of Cities Based on an Artificial Intelligence
Authors: Seyed Sobhan Alvani, Mohammad Gohari
Abstract:
By developing cities and increasing the population, traffic congestion has become a vital problem. Due to this crisis, urban designers try to present solutions to decrease this difficulty. On the other hand, predicting the model with perfect accuracy is essential for solution-providing. The current study presents a model based on artificial intelligence which can predict traffic index based on city population, growth rate, and area. The accuracy of the model was evaluated, which is acceptable and it is around 90%. Thus, urban designers and planners can employ it for predicting traffic index in the future to provide strategies.Keywords: traffic index, population growth rate, cities wideness, artificial neural network
Procedia PDF Downloads 4018851 Exploiting Fast Independent Component Analysis Based Algorithm for Equalization of Impaired Baseband Received Signal
Authors: Muhammad Umair, Syed Qasim Gilani
Abstract:
A technique using Independent Component Analysis (ICA) for blind receiver signal processing is investigated. The problem of the receiver signal processing is viewed as of signal equalization and implementation imperfections compensation. Based on this, a model similar to a general ICA problem is developed for the received signal. Then, the use of ICA technique for blind signal equalization in the time domain is presented. The equalization is regarded as a signal separation problem, since the desired signal is separated from interference terms. This problem is addressed in the paper by over-sampling of the received signal. By using ICA for equalization, besides channel equalization, other transmission imperfections such as Direct current (DC) bias offset, carrier phase and In phase Quadrature phase imbalance will also be corrected. Simulation results for a system using 16-Quadraure Amplitude Modulation(QAM) are presented to show the performance of the proposed scheme.Keywords: blind equalization, blind signal separation, equalization, independent component analysis, transmission impairments, QAM receiver
Procedia PDF Downloads 21418850 Frailty Models for Modeling Heterogeneity: Simulation Study and Application to Quebec Pension Plan
Authors: Souad Romdhane, Lotfi Belkacem
Abstract:
When referring to actuarial analysis of lifetime, only models accounting for observable risk factors have been developed. Within this context, Cox proportional hazards model (CPH model) is commonly used to assess the effects of observable covariates as gender, age, smoking habits, on the hazard rates. These covariates may fail to fully account for the true lifetime interval. This may be due to the existence of another random variable (frailty) that is still being ignored. The aim of this paper is to examine the shared frailty issue in the Cox proportional hazard model by including two different parametric forms of frailty into the hazard function. Four estimated methods are used to fit them. The performance of the parameter estimates is assessed and compared between the classical Cox model and these frailty models through a real-life data set from the Quebec Pension Plan and then using a more general simulation study. This performance is investigated in terms of the bias of point estimates and their empirical standard errors in both fixed and random effect parts. Both the simulation and the real dataset studies showed differences between classical Cox model and shared frailty model.Keywords: life insurance-pension plan, survival analysis, risk factors, cox proportional hazards model, multivariate failure-time data, shared frailty, simulations study
Procedia PDF Downloads 35918849 Quantification of Dispersion Effects in Arterial Spin Labelling Perfusion MRI
Authors: Rutej R. Mehta, Michael A. Chappell
Abstract:
Introduction: Arterial spin labelling (ASL) is an increasingly popular perfusion MRI technique, in which arterial blood water is magnetically labelled in the neck before flowing into the brain, providing a non-invasive measure of cerebral blood flow (CBF). The accuracy of ASL CBF measurements, however, is hampered by dispersion effects; the distortion of the ASL labelled bolus during its transit through the vasculature. In spite of this, the current recommended implementation of ASL – the white paper (Alsop et al., MRM, 73.1 (2015): 102-116) – does not account for dispersion, which leads to the introduction of errors in CBF. Given that the transport time from the labelling region to the tissue – the arterial transit time (ATT) – depends on the region of the brain and the condition of the patient, it is likely that these errors will also vary with the ATT. In this study, various dispersion models are assessed in comparison with the white paper (WP) formula for CBF quantification, enabling the errors introduced by the WP to be quantified. Additionally, this study examines the relationship between the errors associated with the WP and the ATT – and how this is influenced by dispersion. Methods: Data were simulated using the standard model for pseudo-continuous ASL, along with various dispersion models, and then quantified using the formula in the WP. The ATT was varied from 0.5s-1.3s, and the errors associated with noise artefacts were computed in order to define the concept of significant error. The instantaneous slope of the error was also computed as an indicator of the sensitivity of the error with fluctuations in ATT. Finally, a regression analysis was performed to obtain the mean error against ATT. Results: An error of 20.9% was found to be comparable to that introduced by typical measurement noise. The WP formula was shown to introduce errors exceeding 20.9% for ATTs beyond 1.25s even when dispersion effects were ignored. Using a Gaussian dispersion model, a mean error of 16% was introduced by using the WP, and a dispersion threshold of σ=0.6 was determined, beyond which the error was found to increase considerably with ATT. The mean error ranged from 44.5% to 73.5% when other physiologically plausible dispersion models were implemented, and the instantaneous slope varied from 35 to 75 as dispersion levels were varied. Conclusion: It has been shown that the WP quantification formula holds only within an ATT window of 0.5 to 1.25s, and that this window gets narrower as dispersion occurs. Provided that the dispersion levels fall below the threshold evaluated in this study, however, the WP can measure CBF with reasonable accuracy if dispersion is correctly modelled by the Gaussian model. However, substantial errors were observed with other common models for dispersion with dispersion levels similar to those that have been observed in literature.Keywords: arterial spin labelling, dispersion, MRI, perfusion
Procedia PDF Downloads 37218848 The Non-Stationary BINARMA(1,1) Process with Poisson Innovations: An Application on Accident Data
Authors: Y. Sunecher, N. Mamode Khan, V. Jowaheer
Abstract:
This paper considers the modelling of a non-stationary bivariate integer-valued autoregressive moving average of order one (BINARMA(1,1)) with correlated Poisson innovations. The BINARMA(1,1) model is specified using the binomial thinning operator and by assuming that the cross-correlation between the two series is induced by the innovation terms only. Based on these assumptions, the non-stationary marginal and joint moments of the BINARMA(1,1) are derived iteratively by using some initial stationary moments. As regards to the estimation of parameters of the proposed model, the conditional maximum likelihood (CML) estimation method is derived based on thinning and convolution properties. The forecasting equations of the BINARMA(1,1) model are also derived. A simulation study is also proposed where BINARMA(1,1) count data are generated using a multivariate Poisson R code for the innovation terms. The performance of the BINARMA(1,1) model is then assessed through a simulation experiment and the mean estimates of the model parameters obtained are all efficient, based on their standard errors. The proposed model is then used to analyse a real-life accident data on the motorway in Mauritius, based on some covariates: policemen, daily patrol, speed cameras, traffic lights and roundabouts. The BINARMA(1,1) model is applied on the accident data and the CML estimates clearly indicate a significant impact of the covariates on the number of accidents on the motorway in Mauritius. The forecasting equations also provide reliable one-step ahead forecasts.Keywords: non-stationary, BINARMA(1, 1) model, Poisson innovations, conditional maximum likelihood, CML
Procedia PDF Downloads 12918847 The Discriminate Analysis and Relevant Model for Mapping Export Potential
Authors: Jana Gutierez Chvalkovska, Michal Mejstrik, Matej Urban
Abstract:
There are pending discussions over the mapping of country export potential in order to refocus export strategy of firms and its evidence-based promotion by the Export Credit Agencies (ECAs) and other permitted vehicles of governments. In this paper we develop our version of an applied model that offers “stepwise” elimination of unattractive markets. We modify and calibrate the model for the particular features of the Czech Republic and specific pilot cases where we apply an individual approach to each sector.Keywords: export strategy, modeling export, calibration, export promotion
Procedia PDF Downloads 49818846 Control of an SIR Model for Basic Reproduction Number Regulation
Authors: Enrique Barbieri
Abstract:
The basic disease-spread model described by three states denoting the susceptible (S), infectious (I), and removed (recovered and deceased) (R) sub-groups of the total population N, or SIR model, has been considered. Heuristic mitigating action profiles of the pharmaceutical and non-pharmaceutical types may be developed in a control design setting for the purpose of reducing the transmission rate or improving the recovery rate parameters in the model. Even though the transmission and recovery rates are not control inputs in the traditional sense, a linear observer and feedback controller can be tuned to generate an asymptotic estimate of the transmission rate for a linearized, discrete-time version of the SIR model. Then, a set of mitigating actions is suggested to steer the basic reproduction number toward unity, in which case the disease does not spread, and the infected population state does not suffer from multiple waves. The special case of piecewise constant transmission rate is described and applied to a seventh-order SEIQRDP model, which segments the population into four additional states. The offline simulations in discrete time may be used to produce heuristic policies implemented by public health and government organizations.Keywords: control of SIR, observer, SEIQRDP, disease spread
Procedia PDF Downloads 11118845 Open Innovation Strategy (OIS) Paradigm and an OIS Capabilities Model
Authors: Anastasis D. Petrou
Abstract:
Innovation and strategy discussions do highlight open innovation as a new paradigm in business. Yet, a number of stumbling blocks in the form of closed innovation principles weaved into the fabric of a traditional business model stand in the way of the new paradigm’s momentum to increase value in various business contexts. The paper argues that businesses considering an engagement with the open innovation paradigm would need to take steps to improve their multiplicative, absorptive and relational capabilities, respectively. The needed improvements would amount to a business model evolutionary transformation and eventually bring about a paradigm overhaul in business. The transformation is worth staging over time to ensure that open innovation is developed across interconnected and partnered areas of strategic importance. This article develops an open innovation strategy (OIS) capabilities model, and employs examples from different industries to briefly discuss OIS’s potential to augment business value in a number of suggested areas for future research.Keywords: close innovation, open innovation paradigm, open innovation strategy (OIS) paradigm, OIS capabilities model, multiplicative capability, absorptive capability, relational capability
Procedia PDF Downloads 52018844 Factors Influencing the General Public Intention to Be Vaccinated: A Case of Botswana
Authors: Meng Qing Feng, Otsile Morake
Abstract:
Background: Successful implementation of the COVID-19 vaccination ensures the prevention of virus infection. Postponement and refusal of the vaccination will threaten public health, which is now common among the general public across the world. In addition, an acceptance of the COVID-19 vaccine appears as a decisive factor in controlling the COVID-19 pandemic. Purpose: This study's objective is to explore the factors influencing the public intention to be vaccinated (ITBV). Design/methodology/approach: The web-based survey included socio-demographics and questions related to the theory of planned behavior (TPB) and the health belief model (HBM). An online survey was administered using Google Form to collect data from participants of Botswana. The sample included 339 participants, half-half of the participants were female. Data analysis was run using the Statistical Package for the Social Sciences (SPSS). Findings: The study results highlight that perceived severity, perceived barriers, health motivation, and attitude have a positive and significant effect on ITBV, while perceived susceptibility, benefits, subjective norms, and perceived behavior control do not affect ITBV. Among all of the predictors, perceived barriers have the most significant influence on ITBV. Conclusion: Theoretically, this research stated that both HBM and TPB are effective in predicting and explaining the general public ITBV. Practically, this study offers insights to the government and health departments to arrange and launch health awareness programs and provide a better guide to vaccination so that doubts about vaccine confidence and the level of uncertainty can be decreased.Keywords: COVID-19, Omicron, intention to be COVID-19 vaccine, health behavior model, theory of planned behavior, Botswana
Procedia PDF Downloads 9418843 Electricity Demand Modeling and Forecasting in Singapore
Authors: Xian Li, Qing-Guo Wang, Jiangshuai Huang, Jidong Liu, Ming Yu, Tan Kok Poh
Abstract:
In power industry, accurate electricity demand forecasting for a certain leading time is important for system operation and control, etc. In this paper, we investigate the modeling and forecasting of Singapore’s electricity demand. Several standard models, such as HWT exponential smoothing model, the ARMA model and the ANNs model have been proposed based on historical demand data. We applied them to Singapore electricity market and proposed three refinements based on simulation to improve the modeling accuracy. Compared with existing models, our refined model can produce better forecasting accuracy. It is demonstrated in the simulation that by adding forecasting error into the forecasting equation, the modeling accuracy could be improved greatly.Keywords: power industry, electricity demand, modeling, forecasting
Procedia PDF Downloads 64018842 Saltwater Intrusion Studies in the Cai River in the Khanh Hoa Province, Vietnam
Authors: B. Van Kessel, P. T. Kockelkorn, T. R. Speelman, T. C. Wierikx, C. Mai Van, T. A. Bogaard
Abstract:
Saltwater intrusion is a common problem in estuaries around the world, as it could hinder the freshwater supply of coastal zones. This problem is likely to grow due to climate change and sea-level rise. The influence of these factors on the saltwater intrusion was investigated for the Cai River in the Khanh Hoa province in Vietnam. In addition, the Cai River has high seasonal fluctuations in discharge, leading to increased saltwater intrusion during the dry season. Sea level rise, river discharge changes, river mouth widening and a proposed saltwater intrusion prevention dam can have influences on the saltwater intrusion but have not been quantified for the Cai River estuary. This research used both an analytical and numerical model to investigate the effect of the aforementioned factors. The analytical model was based on a model proposed by Savenije and was calibrated using limited in situ data. The numerical model was a 3D hydrodynamic model made using the Delft3D4 software. The analytical model and numerical model agreed with in situ data, mostly for tidally average data. Both models indicated a roughly similar dependence on discharge, also agreeing that this parameter had the most severe influence on the modeled saltwater intrusion. Especially for discharges below 10 m/s3, the saltwater was predicted to reach further than 10 km. In the models, both sea-level rise and river widening mainly resulted in salinity increments up to 3 kg/m3 in the middle part of the river. The predicted sea-level rise in 2070 was simulated to lead to an increase of 0.5 km in saltwater intrusion length. Furthermore, the effect of the saltwater intrusion dam seemed significant in the model used, but only for the highest position of the gate.Keywords: Cai River, hydraulic models, river discharge, saltwater intrusion, tidal barriers
Procedia PDF Downloads 11218841 Quantum Statistical Machine Learning and Quantum Time Series
Authors: Omar Alzeley, Sergey Utev
Abstract:
Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series
Procedia PDF Downloads 46918840 Methodology for Obtaining Static Alignment Model
Authors: Lely A. Luengas, Pedro R. Vizcaya, Giovanni Sánchez
Abstract:
In this paper, a methodology is presented to obtain the Static Alignment Model for any transtibial amputee person. The proposed methodology starts from experimental data collected on the Hospital Militar Central, Bogotá, Colombia. The effects of transtibial prosthesis malalignment on amputees were measured in terms of joint angles, center of pressure (COP) and weight distribution. Some statistical tools are used to obtain the model parameters. Mathematical predictive models of prosthetic alignment were created. The proposed models are validated in amputees and finding promising results for the prosthesis Static Alignment. Static alignment process is unique to each subject; nevertheless the proposed methodology can be used in each transtibial amputee.Keywords: information theory, prediction model, prosthetic alignment, transtibial prosthesis
Procedia PDF Downloads 25718839 Effect of Sand Particle Distribution in Oil and Gas Pipeline Erosion
Authors: Christopher Deekia Nwimae, Nigel Simms, Liyun Lao
Abstract:
Erosion in pipe bends caused by particles is a major obstacle in the oil and gas fields and might cause the breakdown of production equipment. This work studied the effects imposed by flow velocity and impact of solid particles diameter in an elbow; erosion rate was verified with experimental data using the computational fluid dynamics (CFD) approach. Two-way coupled Euler-Lagrange and discrete phase model was employed to calculate the air/solid particle flow in an elbow. One erosion model and three-particle rebound models were used to predict the erosion rate on the 90° elbows. The generic erosion model was used in the CFD-based erosion model, and after comparing it with experimental data, results showed agreement with the CFD-based predictions as observed.Keywords: erosion, prediction, elbow, computational fluid dynamics
Procedia PDF Downloads 15718838 6D Posture Estimation of Road Vehicles from Color Images
Authors: Yoshimoto Kurihara, Tad Gonsalves
Abstract:
Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.Keywords: 6D posture estimation, image recognition, deep learning, AlexNet
Procedia PDF Downloads 15518837 Sustainable Approach in Textile and Apparel Industry: Case Study Applied to a Medium Enterprise
Authors: Maged Kamal
Abstract:
Previous research papers have suggested that enhancing the environmental performance in textiles and apparel industry would affect positively on the overall enterprise competitiveness. However, there is a gap in the literature regarding simplifying the available theory to get it practically implemented with more confidence of the expected results, especially for small and medium enterprises. The aim of this paper is to simplify and best use of the concerned international norms to produce a systematic approach that could be used as a guideline for practical application of the main sustainable principles in medium size textile business. The increasing in efficiency which has been resulted from the implementation of the suggested approach/model originated from reduction in raw materials usage, energy, and water savings, in addition to the risk reduction for the people and the environment. The practical case study has been implemented in a textile factory producing knitted fabrics, readymade garments, dyed and printed fabrics. The results were analyzed to examine the effect of the suggested change on the enterprise profitability.Keywords: apparel industry, environmental management, sustainability, textiles
Procedia PDF Downloads 29018836 A Robust Optimization Model for Multi-Objective Closed-Loop Supply Chain
Authors: Mohammad Y. Badiee, Saeed Golestani, Mir Saman Pishvaee
Abstract:
In recent years consumers and governments have been pushing companies to design their activities in such a way as to reduce negative environmental impacts by producing renewable product or threat free disposal policy more and more. It is therefore important to focus more accurate to the optimization of various aspect of total supply chain. Modeling a supply chain can be a challenging process due to the fact that there are a large number of factors that need to be considered in the model. The use of multi-objective optimization can lead to overcome those problems since more information is used when designing the model. Uncertainty is inevitable in real world. Considering uncertainty on parameters in addition to use multi-objectives are ways to give more flexibility to the decision making process since the process can take into account much more constraints and requirements. In this paper we demonstrate a stochastic scenario based robust model to cope with uncertainty in a closed-loop multi-objective supply chain. By applying the proposed model in a real world case, the power of proposed model in handling data uncertainty is shown.Keywords: supply chain management, closed-loop supply chain, multi-objective optimization, goal programming, uncertainty, robust optimization
Procedia PDF Downloads 41618835 Generalized Additive Model Approach for the Chilean Hake Population in a Bio-Economic Context
Authors: Selin Guney, Andres Riquelme
Abstract:
The traditional bio-economic method for fisheries modeling uses some estimate of the growth parameters and the system carrying capacity from a biological model for the population dynamics (usually a logistic population growth model) which is then analyzed as a traditional production function. The stock dynamic is transformed into a revenue function and then compared with the extraction costs to estimate the maximum economic yield. In this paper, the logistic population growth model for the population is combined with a forecast of the abundance and location of the stock by using a generalized additive model approach. The paper focuses on the Chilean hake population. This method allows for the incorporation of climatic variables and the interaction with other marine species, which in turn will increase the reliability of the estimates and generate better extraction paths for different conservation objectives, such as the maximum biological yield or the maximum economic yield.Keywords: bio-economic, fisheries, GAM, production
Procedia PDF Downloads 25218834 Non-Performing Assets and Credit Risk Performance: An Evidence of Commercial Banks in India
Authors: Sirus Sharifi, Arunima Haldar, S. V. D. Nageswara Rao
Abstract:
This research analyzes the effect of credit risk management practices of commercial banks in India and the relationship with their non-performing assets (NPAs). Required data on credit risk performance was collected through a survey questionnaire from top risk officers of 38 Indian banks. NPA data (period from 2012 to 2016) was collected from Prowess database compiled by the Centre for Monitoring Indian Economy (CMIE). The model was assessed utilizing cross sectional regression method. As expected, the results indicate a negative significant relationship between credit risk management in India banks and their NPA growth. The research has implications for banks given the high level of losses in India and other economies as well, and the implementation of Basel III standards by the central banks. This research would be an evidence on credit risk performance and its relationship with the level of non-performing assets (NPAs) in Indian banks.Keywords: risk management, risk identification, banks, Non-Performing Assets (NPAs)
Procedia PDF Downloads 26418833 Applying an Application-Based Knowledge Capturing and Reusing for Construction Consultant Organizations Applying
Authors: Phan Nghiem Vu, Le Tuan Vu, Ta Quang Tai
Abstract:
Knowledge Management effectively is critical to the survival and advance of a company, especially in company-based industries such as construction. Knowledge management practice is crucial to the survival and progress of a company, especially company-based knowledge such as construction consultancy. Effective knowledge management practices are very significant to the competitive and development of a consulting organization. Hence, the success of knowledge management implementation depends on knowledge capturing and reusing effectively. In this paper, a survey was carried out of engineers and managers with experience in seven construction consulting organizations that provide services on the north-central coast of Vietnam. The main objectives of the survey to finding out how these organizations capture and reuse knowledge and significant barriers to the implementation of knowledge management. A conceptual framework based-on Trello application is proposed to formalize the knowledge-capturing and reusing process within construction consulting companies. It is showed that the conceptual framework could be used to manage both implicit and explicit knowledge effectively in construction consultant organizations.Keywords: knowledge management, construction consultant organization, knowledge capturing, reusing knowledge, application-based technology
Procedia PDF Downloads 13018832 A Model-Reference Sliding Mode for Dual-Stage Actuator Servo Control in HDD
Authors: S. Sonkham, U. Pinsopon, W. Chatlatanagulchai
Abstract:
This paper presents a method of sliding mode control (SMC) designing and developing for the servo system in a dual-stage actuator (DSA) hard disk drive. Mathematical modelling of hard disk drive actuators is obtained, extracted from measuring frequency response of the voice-coil motor (VCM) and PZT micro-actuator separately. Matlab software tools are used for mathematical model estimation and also for controller design and simulation. A model-reference approach for tracking requirement is selected as a proposed technique. The simulation results show that performance of a model-reference SMC controller design in DSA servo control can be satisfied in the tracking error, as well as keeping the positioning of the head within the boundary of +/-5% of track width under the presence of internal and external disturbance. The overall results of model-reference SMC design in DSA are met per requirement specifications and significant reduction in %off track is found when compared to the single-state actuator (SSA).Keywords: hard disk drive, dual-stage actuator, track following, hdd servo control, sliding mode control, model-reference, tracking control
Procedia PDF Downloads 36518831 A Surrealist Play of Associations: Neoliberalism, Critical Pedagogy and Surrealism in Secondary English Language Arts
Authors: Stephanie Ho
Abstract:
This project utilizes principles derived from the Surrealist movement to prioritize creative and critical thinking in secondary English Language Arts (ELA). The implementation of Surrealist-style pedagogies within an ELA classroom will be rooted in critical, radical pedagogy, which addresses the injustices caused by economic-oriented educational systems. The use of critical pedagogy will enable the subversive artistic and political aims of Surrealism to be transmitted to a classroom context. Through aesthetic reading strategies, appreciative questioning and dialogue, students will actively critique the power dynamics which structure (and often restrict) their lives. Within the ELA domain, cost-effective approaches often replace the actual “arts” of ELA. This research will therefore explore how Surrealist-oriented pedagogies could restore imaginative freedom and deconstruct conceptual barriers (normative standards, curricular constraints, and status quo power relations) in secondary ELA. This research will also examine how Surrealism can be used as a political and pedagogical model to treat societal problems mirrored in ELA classrooms. The stakeholders are teachers, as they experience constant pressure within their practices. Similarly, students encounter rigorous, results-based pressures. These dynamics contribute to feelings of powerlessness, thus reinforcing a formulaic model of ELA. The ELA curriculum has potential to create laboratories for critical discussion and active movement towards social change. This proposed research strategy of Surrealist-oriented pedagogies could enable students to experiment with social issues and develop senses of agency and voice that reflect awareness of contemporary society while simultaneously building their ELA skills.Keywords: arts-informed pedagogies, language arts, literature, surrealism
Procedia PDF Downloads 13418830 Instruction High-Leverage Practices in Reading Instruction for Adolescents
Authors: Nicole Pyle, Daniel Pyle, Christa Haring, Marty Hougen
Abstract:
Effective special education teachers utilize evidence-based practices for adolescent reading instruction and target the skills needed to improve the reading of older struggling readers. High-Leverage Practices (HLPs) are critical to helping students with disabilities learn important content. Therefore, special education teachers are encouraged to implement HLPs to maximize the learning of students with disabilities, including students with reading difficulties. Teachers’ implementation of HLPs in reading comprehension instruction should aim to develop adolescents’ understanding of grade-level narrative texts and informational texts, including content area texts. Instruction High-Leverage Practices (11-22) that ensure effective implementation of evidence-based practice in reading comprehension instruction for adolescents are presented. Effective reading comprehension activities within the 12 Instruction HLPs are illustrated.Keywords: high-leverage practices, adolescent, instructional activities, students with disabilities
Procedia PDF Downloads 7918829 Identification of Successful Criteria for Measuring Large Infrastructure Projects Performance in Malaysia
Authors: M. A. N. Masrom, M. H. I. A. Rahim, G. K. Chen, S. Mohamed
Abstract:
Large infrastructure project is one of significant category in the development of Malaysian construction industry. This type of project has been recognized as a high complexity project with numerous construction risks, large cost involvement, highly technical requirements and divers of resources. Besides, the development of large infrastructure such as highway, railway, Mass Rapid Transit (MRT) and airport are also needed a large investment of public and private sector. To accomplish the development successfully, several challenges has to be determined prior the project commencement. To date, a comprehensive assessment of key success criteria particularly for large infrastructure in developing country such as Malaysia, is still not systematically defined and therefore, it needs further investigation. This paper aims to explore the potential success criteria that would be useful in gauging overall performance of large infrastructure implementation particularly in developing country. Previous successful criteria studies were used to develop a conceptual framework that possibly suitable for measuring large infrastructure performance. The findings show that successful criteria of infrastructure projects implementation could be grouped according to several key elements as it seems significant to the participants in prioritizing project challenges more systematically.Keywords: successful criteria, performance, large infrastructure, Malaysia
Procedia PDF Downloads 40818828 Stabilization Control of the Nonlinear AIDS Model Based on the Theory of Polynomial Fuzzy Control Systems
Authors: Shahrokh Barati
Abstract:
In this paper, we introduced AIDS disease at first, then proposed dynamic model illustrate its progress, after expression of a short history of nonlinear modeling by polynomial phasing systems, we considered the stability conditions of the systems, which contained a huge amount of researches in order to modeling and control of AIDS in dynamic nonlinear form, in this approach using a frame work of control any polynomial phasing modeling system which have been generalized by part of phasing model of T-S, in order to control the system in better way, the stability conditions were achieved based on polynomial functions, then we focused to design the appropriate controller, firstly we considered the equilibrium points of system and their conditions and in order to examine changes in the parameters, we presented polynomial phase model that was the generalized approach rather than previous Takagi Sugeno models, then with using case we evaluated the equations in both open loop and close loop and with helping the controlling feedback, the close loop equations of system were calculated, to simulate nonlinear model of AIDS disease, we used polynomial phasing controller output that was capable to make the parameters of a nonlinear system to follow a sustainable reference model properly.Keywords: polynomial fuzzy, AIDS, nonlinear AIDS model, fuzzy control systems
Procedia PDF Downloads 46818827 Vibration-Based Data-Driven Model for Road Health Monitoring
Authors: Guru Prakash, Revanth Dugalam
Abstract:
A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.Keywords: SVM, data-driven, road health monitoring, pot-hole
Procedia PDF Downloads 8618826 An Integreated Intuitionistic Fuzzy ELECTRE Model for Multi-Criteria Decision-Making
Authors: Babek Erdebilli
Abstract:
The aim of this study is to develop and describe a new methodology for the Multi-Criteria Decision-Making (MCDM) problem using IFE (Elimination Et Choix Traduisant La Realite (ELECTRE) model. The proposed models enable Decision-Makers (DMs) on the assessment and use Intuitionistic Fuzzy Numbers (IFN). A numerical example is provided to demonstrate and clarify the proposed analysis procedure. Also, an empirical experiment is conducted to validation the effectiveness.Keywords: multi-criteria decision-making, IFE, DM’s, fuzzy electre model
Procedia PDF Downloads 65118825 Modeling Average Paths Traveled by Ferry Vessels Using AIS Data
Authors: Devin Simmons
Abstract:
At the USDOT’s Bureau of Transportation Statistics, a biannual census of ferry operators in the U.S. is conducted, with results such as route mileage used to determine federal funding levels for operators. AIS data allows for the possibility of using GIS software and geographical methods to confirm operator-reported mileage for individual ferry routes. As part of the USDOT’s work on the ferry census, an algorithm was developed that uses AIS data for ferry vessels in conjunction with known ferry terminal locations to model the average route travelled for use as both a cartographic product and confirmation of operator-reported mileage. AIS data from each vessel is first analyzed to determine individual journeys based on the vessel’s velocity, and changes in velocity over time. These trips are then converted to geographic linestring objects. Using the terminal locations, the algorithm then determines whether the trip represented a known ferry route. Given a large enough dataset, routes will be represented by multiple trip linestrings, which are then filtered by DBSCAN spatial clustering to remove outliers. Finally, these remaining trips are ready to be averaged into one route. The algorithm interpolates the point on each trip linestring that represents the start point. From these start points, a centroid is calculated, and the first point of the average route is determined. Each trip is interpolated again to find the point that represents one percent of the journey’s completion, and the centroid of those points is used as the next point in the average route, and so on until 100 points have been calculated. Routes created using this algorithm have shown demonstrable improvement over previous methods, which included the implementation of a LOESS model. Additionally, the algorithm greatly reduces the amount of manual digitizing needed to visualize ferry activity.Keywords: ferry vessels, transportation, modeling, AIS data
Procedia PDF Downloads 17618824 Computationally Efficient Electrochemical-Thermal Li-Ion Cell Model for Battery Management System
Authors: Sangwoo Han, Saeed Khaleghi Rahimian, Ying Liu
Abstract:
Vehicle electrification is gaining momentum, and many car manufacturers promise to deliver more electric vehicle (EV) models to consumers in the coming years. In controlling the battery pack, the battery management system (BMS) must maintain optimal battery performance while ensuring the safety of a battery pack. Tasks related to battery performance include determining state-of-charge (SOC), state-of-power (SOP), state-of-health (SOH), cell balancing, and battery charging. Safety related functions include making sure cells operate within specified, static and dynamic voltage window and temperature range, derating power, detecting faulty cells, and warning the user if necessary. The BMS often utilizes an RC circuit model to model a Li-ion cell because of its robustness and low computation cost among other benefits. Because an equivalent circuit model such as the RC model is not a physics-based model, it can never be a prognostic model to predict battery state-of-health and avoid any safety risk even before it occurs. A physics-based Li-ion cell model, on the other hand, is more capable at the expense of computation cost. To avoid the high computation cost associated with a full-order model, many researchers have demonstrated the use of a single particle model (SPM) for BMS applications. One drawback associated with the single particle modeling approach is that it forces to use the average current density in the calculation. The SPM would be appropriate for simulating drive cycles where there is insufficient time to develop a significant current distribution within an electrode. However, under a continuous or high-pulse electrical load, the model may fail to predict cell voltage or Li⁺ plating potential. To overcome this issue, a multi-particle reduced-order model is proposed here. The use of multiple particles combined with either linear or nonlinear charge-transfer reaction kinetics enables to capture current density distribution within an electrode under any type of electrical load. To maintain computational complexity like that of an SPM, governing equations are solved sequentially to minimize iterative solving processes. Furthermore, the model is validated against a full-order model implemented in COMSOL Multiphysics.Keywords: battery management system, physics-based li-ion cell model, reduced-order model, single-particle and multi-particle model
Procedia PDF Downloads 111