Search results for: health data
29051 Health Percentage Evaluation for Satellite Electrical Power System Based on Linear Stresses Accumulation Damage Theory
Authors: Lin Wenli, Fu Linchun, Zhang Yi, Wu Ming
Abstract:
To meet the demands of long-life and high-intelligence for satellites, the electrical power system should be provided with self-health condition evaluation capability. Any over-stress events in operations should be recorded. Based on Linear stresses accumulation damage theory, accumulative damage analysis was performed on thermal-mechanical-electrical united stresses for three components including the solar array, the batteries and the power conditioning unit. Then an overall health percentage evaluation model for satellite electrical power system was built. To obtain the accurate quantity for system health percentage, an automatic feedback closed-loop correction method for all coefficients in the evaluation model was present. The evaluation outputs could be referred as taking earlier fault-forecast and interventions for Ground Control Center or Satellites self.Keywords: satellite electrical power system, health percentage, linear stresses accumulation damage, evaluation model
Procedia PDF Downloads 41229050 Bifidobacterial Postbiotics as Health-Promoting Agents in Dairy Products
Authors: Saba Kamalledin Moghadam, Amir M. Mortazavian, Aziz Homayouni-Rad
Abstract:
In the recent decade, bioactive-enriched foods, as well as natural health products, have caught the intention of the general and health-conscious population. In this regard, naturally occurring beneficial microorganisms have been successfully added to various dairy products during fermentation. Bifidobacteria, known as probiotics with a broad range of bioactivities, are commonly used in the dairy industry to naturally enrich dairy products. These bioactive metabolites are industrially and commercially important due to health-promoting activities on the consumers (e.g., anti-hypertensive, anti-diabetic, anti-oxidative, immune-modulatory, anti-cholesterolemic, or microbiome modulation, etcetera). This review aims to discuss the potential of bifidobacteria for the elaboration of dairy foods with functional properties and added value.Keywords: dairy, probiotic, postbiotic, bifidobacteria, bifidobacterial postbiotic
Procedia PDF Downloads 17329049 Improvement in Oral Health-Related Quality of Life of Adult Patients After Rehabilitation With Partial Dentures: A Systematic Review and Meta-Analysis
Authors: Adama NS Bah
Abstract:
Background: Loss of teeth has a negative influence on essential oral functions such as phonetics, mastication, and aesthetics. Dentists treat people with prosthodontic rehabilitation to recover essential oral functions. The oral health quality of life inventory reflects the success of prosthodontic rehabilitation. In many countries, the current conventional care delivered to replace missing teeth for adult patients involves the provision of removable partial dentures. Aim: The aim of this systematic review and meta-analysis is to gather the best available evidence to determine patients’ oral health-related quality of life improvement after treatment with partial dentures. Methods: We searched electronic databases from January 2010 to September 2019, including PubMed, ProQuest, Science Direct, Scopus and Google Scholar. In this paper, studies were included only if the average age was 30 years and above and also published in English. Two reviewers independently screened and selected all the references based on inclusion criteria using the PRISMA guideline, and assessed the quality of the included references using the Joanna Briggs Institute quality assessment tools. Data extracted were analyzed in RevMan 5.0 software, the heterogeneity between the studies was assessed using Forest plot, I2 statistics and chi-square test with a statistical P value less than 0.05 to indicate statistical significance. Random effect models were used in case of moderate or high heterogeneity. Four studies were included in the systematic review and three studies were pooled for meta-analysis. Results: Four studies included in the systematic review and three studies included in the meta-analysis with a total of 285 patients comparing the improvement in oral health-related quality of life before and after rehabilitation with partial denture, the pooled results showed a better improvement of oral health-related quality of life after treatment with partial dentures (mean difference 5.25; 95% CI [3.81, 6.68], p < 0.00001) favoring the wearing of partial dentures. In order to ascertain the reliability of the included studies for meta-analysis risk of bias was assessed and found to be low in all included studies for meta-analysis using the Cochrane collaboration tool for risk of bias assessment. Conclusion: There is high evidence that rehabilitation with partial dentures can improve the patient’s oral health-related quality of life measured with Oral Health Impact Profile 14. This review has clinical evidence value for dentists treating the expanding vulnerable adult population.Keywords: meta-analysis, oral health impact profile, partial dentures, systematic review
Procedia PDF Downloads 10829048 The Relationship between Exercise Attitude and Performance with Self-Image in Elderly Men in Iran
Authors: Hadis Mahmoodsalehi, Elham Shakoor, Maryam Koushkie Jahromi
Abstract:
Background and aims: Given the importance of health promotion in elderly and attention to health factors including physical activity and self-image reinforcing, this study aimed to investigate the relationship between exercise attitude and performance with self-image concept in elderly men. Methods: In this descriptive–correlational study, 50 different daily exercise activities of the elderly men living in Iran (mean age: 60.94 years) were selected through simple sampling method. Participants completed a questionnaire regarding exercise attitude and performance and Beck self-image concept. Pearson correlation test was used for analysis of the data. Results: The results showed the significant correlation between optimism and exercise performance (p = 0.012) and exercise attitude (p = 0.005). Conclusion: Findings show that exercise performance and attitude are associated positively with optimism in elderly women. So, increasing exercise or improving attitude toward exercise can lead to improving optimism.Keywords: elderly, exercise performance and attitude, self-image, descriptive–correlational study
Procedia PDF Downloads 56729047 Association between Occupational Characteristics and Well-Being: An Exploratory Study of Married Working Women in New Delhi, India
Authors: Kanchan Negi
Abstract:
Background: Modern and urban occupational culture have driven demands for people to work long hours and weekends and take work to home at times. Research on the health effects of these exhaustive temporal work patterns is scant or contradictory. This study examines the relationship between work patterns and wellbeing in a sample of women living in the metropolitan hub of Delhi. Method: This study is based on the data collected from 360 currently married women between age 29 and 49 years, working in the urban capital hub of India, i.e., Delhi. The women interviewed were professionals from the education, health, banking and information and technology (IT) sector. Bivariate analysis was done to study the characteristics of the sample. Logistic regression analysis was used to estimate the physical and psychological wellbeing across occupational characteristics. Results: Most of the working women were below age 35 years; around 30% of women worked in the education sector, 23% in health, 21% in banking and 26% in the IT sector. Over 55% of women were employed in the private sector and only 36% were permanent employees. Nearly 30% of women worked for more than the standard 8 hours a day. The findings from logistic regression showed that compared to women working in the education sector, those who worked in the banking and IT sector more likely to have physical and psychological health issues (OR 2.07-4.37, CI 1.17-4.37); women who bear dual burden of responsibilities had higher odds of physical and psychological health issues than women who did not (OR 1.19-1.85 CI 0.96-2.92). Women who worked for more than 8 hours a day (OR 1.15, CI 1.01-1.30) and those who worked for more than five days a week (OR 1.25, CI 1.05-1.35) were more likely to have physical health issues than women who worked for 6-8 hours a day and five days e week, respectively. Also, not having flexible work timings and compensatory holidays increased the odds of having physical and psychological health issues among working women (OR 1.17-1.29, CI 1.01-1.47). Women who worked in the private sector, those employed temporarily and who worked in the non-conducive environments were more likely to have psychological health issues as compared to women in the public sector, permanent employees and those who worked in a conducive environment, respectively (OR 1.33-1.67, CI 1.09-2.91). Women who did not have poor work-life balance had reduced the odds of psychological health issues than women with poor work-life balance (OR 0.46, CI 0.25-0.84). Conclusion: Poor wellbeing significantly linked to strenuous and rigid work patterns, suggesting that modern and urban work culture may contribute to the poor wellbeing of working women. Noticing the recent decline in female workforce participation in Delhi, schemes like Flexi-timings, compensatory holidays, work-from-home and daycare facilities for young ones must be welcomed; these policies already exist in some private sector firms, and the public sectors companies should also adopt such changes to ease the dual burden as homemaker and career maker. This could encourage women in the urban areas to readily take up the jobs with less juggle to manage home and work.Keywords: occupational characteristics, urban India, well-being, working women
Procedia PDF Downloads 20729046 Environmental Pollution and Health Risks of Residents Living near Ewekoro Cement Factory, Ewekoro, Nigeria
Authors: Michael Ajide Oyinloye
Abstract:
The natural environment is made up of air, water and soil. The release of emission of industrial waste into anyone of the components of the environment causes pollution. Industrial pollution significantly threatens the inherent right of people, to the enjoyment of a safe and secure environment. The aim of this paper is to assess the effect of environmental pollution and health risks of residents living near Ewekoro Cement factory. The research made use of IKONOS imagery for Geographical Information System (GIS) to buffer and extract buildings that are less than 1 km to the plant, within 1 km to 5 km and above 5 km to the factory. Also, a questionnaire was used to elicit information on the socio-economic factors, the effect of environmental pollution on residents and measures adopted to control industrial pollution on the residents. Findings show that most buildings that between less than 1 km and 1 km to 5 km to the factory have high health risk in the study area. The study recommended total relocation for the residents of the study area to reduce risk health problems.Keywords: environmental pollution, health risk, GIS, satellite imagery, ewekoro
Procedia PDF Downloads 54929045 Determinants of Youth Engagement with Health Information on Social Media Platforms in United Arab Emirates
Authors: Niyi Awofeso, Yunes Gaber, Moyosola Bamidele
Abstract:
Since most social media platforms are accessible anytime and anywhere where Internet connections and smartphones are available, the invisibility of the reader raises questions about accuracy, appropriateness and comprehensibility of social media communication. Furthermore, the identity and motives of individuals and organizations who post articles on social media sites are not always transparent. In the health sector, through socially networked platforms constitute a common source of health-related information, given their purported wealth of information. Nevertheless, fake blogs and sponsored postings for marketing 'natural cures' pervade most commonly used social media platforms, thus complicating readers’ abilities to access and understand trustworthy health-related information. This purposive sampling study of 120 participants aged 18-35 year in UAE was conducted between September and December 2017, and explored commonly used social media platforms, frequency of use of social media for accessing health related information, and approaches for assessing the trustworthiness of health information on social media platforms. Results indicate that WhatsApp (95%), Instagram (87%) and Youtube (82%) were the most commonly used social media platforms among respondents. Majority of respondents (81%) indicated that they regularly access social media to get health-associated information. More than half of respondents (55%) with non-chronic health status relied on unsolicited messages to obtain health-related information. Doctors’ health blogs (21%) and social media sites of international healthcare organizations (20%) constitute the most trusted source of health information among respondents, with UAE government health agencies’ social media accounts trusted by 15% of respondents. Cardiovascular diseases, diabetes, and hypertension were the most commonly searched topics on social media (29%), followed by nutrition (20%) and skin care (16%). Majority of respondents (41%) rely on reliability of hits on Google search engines, 22% check for health information only from 'reliable' social media sites, while 8% utilize 'logic' to ascertain reliability of health information. As social media has rapidly become an integral part of the health landscape, it is important that health care policy makers, healthcare providers and social media companies collaborate to promote the positive aspects of social media for young people, whilst mitigating the potential negatives. Utilizing popular social media platforms for posting reader-friendly health information will achieve high coverage. Improving youth digital literacy will facilitate easier access to trustworthy information on the internet.Keywords: social media, United Arab Emirates, youth engagement, digital literacy
Procedia PDF Downloads 12129044 Interrelationship of Socio-Demographic Factors, Health Belief Dimensions and Compliance to Measles Vaccination among Filipino Mothers
Authors: Beryl Rene R. Lopez, Lesley Anne M. Lipat, Rhogene Barbette C. Lirio, Laurice Joy H. Llanes, Karl Philippe M. Llapitan, Einstein James R. Lopez, Socorro S. GuanHing
Abstract:
Background: Measles remain as one of the most common childhood diseases despite the availability of the vaccine that is safe and cost-effective. Because of morbidity and mortality associated with the recent measles outbreak in the Philippines, there is an increasing concern from the health care professionals. Objective: The purpose of this study is to determine the relationship between the compliance of Filipino mothers to measles vaccination and their health beliefs when grouped according to the given socio-demographic factors using a researcher-made questionnaire. Research Methodology: This research utilized the descriptive-correlational research design. With the use of purposive sampling technique, the study involved 200 Filipino mothers aged 18 years old and above excluding those who are healthcare professionals with children aged 2-3 years old with either urban or rural as their settlements. Pre-testing was done prior to the actual data gathering. A questionnaire composed of 26 items involving socio-demographic, compliance, and health beliefs was distributed to the sample population. Statistical analysis was done with the use of Exploratory Factor Analysis (EFA) for the first research question and Structural Equation Model (SEM) for the second research question. Results: Four dimensions were generated with the use of EFA namely: Vulnerability-Oriented Beliefs (VOB), Knowledge-Oriented Beliefs (KOB), Accessibility-Oriented Beliefs (AOB), and Outcomes-Oriented Beliefs (OOB). These were then correlated with the mothers’ socio-demographic factors (age, educational attainment, the area of residence, the number of children, and family income) and their compliance to the measles vaccination schedule. Results showed significant and direct relationships between area of residence and compliance, family income and compliance, KOB and compliance, education and KOB, KOB and VOB, KOB and OOB, AOB and KOB, AOB and OOB, AOB and VOB, and lastly, OOB and VOB. Conclusion: The Knowledge – Oriented Belief dimension greatly influence compliance to measles vaccination. Other determinants of compliance like the area of residence, educational attainment, and family income significantly increase the Filipino mothers’ likelihood of compliance to measles vaccination, which have implications to health education.Keywords: socio-demographic, health beliefs, compliance, measles vaccination
Procedia PDF Downloads 37529043 Community Participation in Health Planning in Australia
Authors: Amanda Kenny, Virginia Dickson-Swift, Jane Farmer, Sarah Larkins, Karen Carlisle, Helen Hickson
Abstract:
Rural ECOH (Engaging Communities in Oral Health) is a collaborative project that connects policy makers, service providers and community members. The aim of the project is to empower community members to determine what is important for their community and to design the services that they need. This three-year project is currently underway in six rural communities across Australia. This study is specifically focused on Remote Services Futures (RSF), an evidence-based method of community participation that was developed in Scotland. The findings highlight the complexities of community participation in health service planning. We assumed that people living in rural communities would welcome participation in oral health planning and engage with their community to discuss these issues. We found that to understand the relationships between community members and health service providers, it was essential to identify the formal and informal community leaders and to engage stakeholders from the various community governance structures. Our study highlights the sometimes ‘messiness’ of decision making in rural communities as well as ways to ensure that community members have the training and practical skills necessary to participate in community decision making.Keywords: community participation, health planning, rural ECOH, Remote Services Futures
Procedia PDF Downloads 54129042 A Proposal for U-City (Smart City) Service Method Using Real-Time Digital Map
Authors: SangWon Han, MuWook Pyeon, Sujung Moon, DaeKyo Seo
Abstract:
Recently, technologies based on three-dimensional (3D) space information are being developed and quality of life is improving as a result. Research on real-time digital map (RDM) is being conducted now to provide 3D space information. RDM is a service that creates and supplies 3D space information in real time based on location/shape detection. Research subjects on RDM include the construction of 3D space information with matching image data, complementing the weaknesses of image acquisition using multi-source data, and data collection methods using big data. Using RDM will be effective for space analysis using 3D space information in a U-City and for other space information utilization technologies.Keywords: RDM, multi-source data, big data, U-City
Procedia PDF Downloads 43629041 Effective Counseling Techniques Working with At-Risk Youth in Residential and Outpatient Settings
Authors: David A. Scott, Michelle G. Scott
Abstract:
The problem of juvenile crime, school suspensions and oppositional behaviors indicates a need for a wide range of intervention programs for at-risk youth. Juvenile court systems and mental health agencies are examining alternative ways to deal with at-risk youth that will allow the adolescent to live within their home community. The previous trend that treatment away from home is more effective than treatment near one's community has shifted. Research now suggests that treatment be close to home for several reasons, such as increased treatment success, parental involvement, and reduced costs. Treatment options consist of a wide range of interventions, including outpatient, inpatient, and community-based services (therapeutic group homes, foster care and in-home preservation services). The juvenile justice system, families and other mental health agencies continue to seek the most effective treatment for at-risk youth in their communities. This research examines two possible treatment modalities, a multi-systemic outpatient program and a residential program. Research examining effective, evidence- based counseling will be discussed during this presentation. The presenter recently completed a three-year research grant examining effective treatment modalities for at-risk youth participating in a multi-systemic program. The presenter has also been involved in several research activities gathering data on effective techniques used in residential programs. The data and discussion will be broken down into two parts, each discussing one of the treatment modalities mentioned above. Data on the residential programs was collected on both a sample of 740 at- risk youth over a five-year period and also a sample of 63 participants during a one-year period residing in a residential programs. The effectiveness of these residential services was measured in three ways: services are evaluated by primary referral sources; follow-up data is obtained at various intervals after program participation to measure recidivism (what percentage got back into trouble with the Department of Juvenile Justice); and a more sensitive, "Offense Seriousness Score", has been computed and analyzed prior to, during and after treatment in the residential program. Data on the multi-systemic program was gathered over the past three years on 190 participants. Research will discuss pre and post test results, recidivism rates, academic performance, parental involvement, and effective counseling treatment modalities.Keywords: at-risk youth, group homes, therapeutic group homes, recidivism rates
Procedia PDF Downloads 8429040 Determination and Comparison of Some Elements in Different Types of Orange Juices and Investigation of Health Effect
Authors: F. Demir, A. S. Kipcak, O. Dere Ozdemir, E. M. Derun, S. Piskin
Abstract:
Fruit juices play important roles in human health as being a key part of nutrition.Juice and nectar are two categories of drinks with so many variations for consumers, regardless of age, lifestyle and taste preferences, which they can find their favorites. Juices contain 100% pulp when pulp content of ‘nectar’ changes between 25%-50%. In this study, potassium (K), magnesium (Mg), and phosphorus (P) contents in orange juice and nectar is determined for conscious consumption. For this purpose inductively coupled plasma optical emission spectrometry (ICP-OES) is used to find out potassium (K), magnesium (Mg), and phosphorus (P) contents in orange juices and nectar. Furthermore, the daily intake of elements from orange juice and nectar that affects human health is also investigated. From the results of experiments K, Mg and P contents are found in orange juice as 1351; 73,25; 89,27 ppm and in orange nectar as 986; 33,76; 51,30 respectively.Keywords: element, health, ICP-OES, orange juice
Procedia PDF Downloads 52529039 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-
Authors: Nieto Bernal Wilson, Carmona Suarez Edgar
Abstract:
The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects. Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.Keywords: data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse
Procedia PDF Downloads 41229038 Early Prediction of Diseases in a Cow for Cattle Industry
Authors: Ghufran Ahmed, Muhammad Osama Siddiqui, Shahbaz Siddiqui, Rauf Ahmad Shams Malick, Faisal Khan, Mubashir Khan
Abstract:
In this paper, a machine learning-based approach for early prediction of diseases in cows is proposed. Different ML algos are applied to extract useful patterns from the available dataset. Technology has changed today’s world in every aspect of life. Similarly, advanced technologies have been developed in livestock and dairy farming to monitor dairy cows in various aspects. Dairy cattle monitoring is crucial as it plays a significant role in milk production around the globe. Moreover, it has become necessary for farmers to adopt the latest early prediction technologies as the food demand is increasing with population growth. This highlight the importance of state-ofthe-art technologies in analyzing how important technology is in analyzing dairy cows’ activities. It is not easy to predict the activities of a large number of cows on the farm, so, the system has made it very convenient for the farmers., as it provides all the solutions under one roof. The cattle industry’s productivity is boosted as the early diagnosis of any disease on a cattle farm is detected and hence it is treated early. It is done on behalf of the machine learning output received. The learning models are already set which interpret the data collected in a centralized system. Basically, we will run different algorithms on behalf of the data set received to analyze milk quality, and track cows’ health, location, and safety. This deep learning algorithm draws patterns from the data, which makes it easier for farmers to study any animal’s behavioral changes. With the emergence of machine learning algorithms and the Internet of Things, accurate tracking of animals is possible as the rate of error is minimized. As a result, milk productivity is increased. IoT with ML capability has given a new phase to the cattle farming industry by increasing the yield in the most cost-effective and time-saving manner.Keywords: IoT, machine learning, health care, dairy cows
Procedia PDF Downloads 7429037 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis
Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee
Abstract:
In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences
Procedia PDF Downloads 74629036 Automated Testing to Detect Instance Data Loss in Android Applications
Authors: Anusha Konduru, Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai
Abstract:
Mobile applications are increasing in a significant amount, each to address the requirements of many users. However, the quick developments and enhancements are resulting in many underlying defects. Android apps create and handle a large variety of 'instance' data that has to persist across runs, such as the current navigation route, workout results, antivirus settings, or game state. Due to the nature of Android, an app can be paused, sent into the background, or killed at any time. If the instance data is not saved and restored between runs, in addition to data loss, partially-saved or corrupted data can crash the app upon resume or restart. However, it is difficult for the programmer to manually test this issue for all the activities. This results in the issue of data loss that the data entered by the user are not saved when there is any interruption. This issue can degrade user experience because the user needs to reenter the information each time there is an interruption. Automated testing to detect such data loss is important to improve the user experience. This research proposes a tool, DroidDL, a data loss detector for Android, which detects the instance data loss from a given android application. We have tested 395 applications and found 12 applications with the issue of data loss. This approach is proved highly accurate and reliable to find the apps with this defect, which can be used by android developers to avoid such errors.Keywords: Android, automated testing, activity, data loss
Procedia PDF Downloads 23729035 Big Data: Appearance and Disappearance
Authors: James Moir
Abstract:
The mainstay of Big Data is prediction in that it allows practitioners, researchers, and policy analysts to predict trends based upon the analysis of large and varied sources of data. These can range from changing social and political opinions, patterns in crimes, and consumer behaviour. Big Data has therefore shifted the criterion of success in science from causal explanations to predictive modelling and simulation. The 19th-century science sought to capture phenomena and seek to show the appearance of it through causal mechanisms while 20th-century science attempted to save the appearance and relinquish causal explanations. Now 21st-century science in the form of Big Data is concerned with the prediction of appearances and nothing more. However, this pulls social science back in the direction of a more rule- or law-governed reality model of science and away from a consideration of the internal nature of rules in relation to various practices. In effect Big Data offers us no more than a world of surface appearance and in doing so it makes disappear any context-specific conceptual sensitivity.Keywords: big data, appearance, disappearance, surface, epistemology
Procedia PDF Downloads 42229034 From Data Processing to Experimental Design and Back Again: A Parameter Identification Problem Based on FRAP Images
Authors: Stepan Papacek, Jiri Jablonsky, Radek Kana, Ctirad Matonoha, Stefan Kindermann
Abstract:
FRAP (Fluorescence Recovery After Photobleaching) is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data processing part is still under development. In this paper, we formulate and solve the problem of data selection which enhances the processing of FRAP images. We introduce the concept of the irrelevant data set, i.e., the data which are almost not reducing the confidence interval of the estimated parameters and thus could be neglected. Based on sensitivity analysis, we both solve the problem of the optimal data space selection and we find specific conditions for optimizing an important experimental design factor, e.g., the radius of bleach spot. Finally, a theorem announcing less precision of the integrated data approach compared to the full data case is proven; i.e., we claim that the data set represented by the FRAP recovery curve lead to a larger confidence interval compared to the spatio-temporal (full) data.Keywords: FRAP, inverse problem, parameter identification, sensitivity analysis, optimal experimental design
Procedia PDF Downloads 27929033 Scheduling Flexibility and Employee Health Outcomes: A Meta-Analytic Review
Authors: Nicole V. Shifrin
Abstract:
Scheduling flexibility is becoming an increasingly available option for employees struggling to balance their work and life responsibilities, allowing employees to coordinate work schedules with their additional roles. The goal of such opportunities is to help employees manage the demands they face across domains of life by allowing employees to work from home, design their own work hours, take time off when necessary, along with various other scheduling accommodations. Organizations are also turning to utilizing scheduling flexibility to facilitate employee health and wellbeing through the reduction of stress and maximization of efficiency. The purpose of the present study is to investigate the effects of scheduling flexibility on employee health-related behaviors and outcomes through a synthesis of research. The current meta-analytic review of 19 samples within 16 studies with a total sample size of 20,707 employees examines the relationship between the degree of scheduling flexibility available to employees and the resulting health outcomes and exercise habits. The results demonstrate that reduced scheduling flexibility is associated with poorer health status, suggesting that schedule inflexibility can hinder employees’ ability to maintain and support their health. These findings hold practical implications for developing work schedules to promote employee health and health-related behaviors, such as eating well and exercising. Additionally, there was a positive association between increased scheduling flexibility and engagement in exercise, suggesting that employees with more flexible schedules exercise more frequently than those with less flexible schedules. A potential explanation for the resulting relationship is that flexible schedules leave employees more time due to shorter work days, shorter or eliminated commutes, etc. with which they can use to engage in healthy behaviors. These findings stress the importance of promoting job designs that facilitate employee engagement in healthy behaviors, which directly impact their overall health status. Implications for practice are discussed as well as future directions in examining the link between job design and employee health and well-being.Keywords: exercise, health, meta-analysis, job design, scheduling flexibility
Procedia PDF Downloads 13929032 Exploring the Feasibility of Utilizing Blockchain in Cloud Computing and AI-Enabled BIM for Enhancing Data Exchange in Construction Supply Chain Management
Authors: Tran Duong Nguyen, Marwan Shagar, Qinghao Zeng, Aras Maqsoodi, Pardis Pishdad, Eunhwa Yang
Abstract:
Construction supply chain management (CSCM) involves the collaboration of many disciplines and actors, which generates vast amounts of data. However, inefficient, fragmented, and non-standardized data storage often hinders this data exchange. The industry has adopted building information modeling (BIM) -a digital representation of a facility's physical and functional characteristics to improve collaboration, enhance transmission security, and provide a common data exchange platform. Still, the volume and complexity of data require tailored information categorization, aligning with stakeholders' preferences and demands. To address this, artificial intelligence (AI) can be integrated to handle this data’s magnitude and complexities. This research aims to develop an integrated and efficient approach for data exchange in CSCM by utilizing AI. The paper covers five main objectives: (1) Investigate existing framework and BIM adoption; (2) Identify challenges in data exchange; (3) Propose an integrated framework; (4) Enhance data transmission security; and (5) Develop data exchange in CSCM. The proposed framework demonstrates how integrating BIM and other technologies, such as cloud computing, blockchain, and AI applications, can significantly improve the efficiency and accuracy of data exchange in CSCM.Keywords: construction supply chain management, BIM, data exchange, artificial intelligence
Procedia PDF Downloads 3429031 Representation Data without Lost Compression Properties in Time Series: A Review
Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan
Abstract:
Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.Keywords: compression properties, uncertainty, uncertain time series, mining technique, weather prediction
Procedia PDF Downloads 43129030 Mapping a Data Governance Framework to the Continuum of Care in the Active Assisted Living Context
Authors: Gaya Bin Noon, Thoko Hanjahanja-Phiri, Laura Xavier Fadrique, Plinio Pelegrini Morita, Hélène Vaillancourt, Jennifer Teague, Tania Donovska
Abstract:
Active Assisted Living (AAL) refers to systems designed to improve the quality of life, aid in independence, and create healthier lifestyles for care recipients. As the population ages, there is a pressing need for non-intrusive, continuous, adaptable, and reliable health monitoring tools to support aging in place. AAL has great potential to support these efforts with the wide variety of solutions currently available, but insufficient efforts have been made to address concerns arising from the integration of AAL into care. The purpose of this research was to (1) explore the integration of AAL technologies and data into the clinical pathway, and (2) map data access and governance for AAL technology in order to develop standards for use by policy-makers, technology manufacturers, and developers of smart communities for seniors. This was done through four successive research phases: (1) literature search to explore existing work in this area and identify lessons learned; (2) modeling of the continuum of care; (3) adapting a framework for data governance into the AAL context; and (4) interviews with stakeholders to explore the applicability of previous work. Opportunities for standards found in these research phases included a need for greater consistency in language and technology requirements, better role definition regarding who can access and who is responsible for taking action based on the gathered data, and understanding of the privacy-utility tradeoff inherent in using AAL technologies in care settings.Keywords: active assisted living, aging in place, internet of things, standards
Procedia PDF Downloads 13429029 Enhancing Mental Health Services Through Strategic Planning: The East Tennessee State University Counseling Center’s 2024-2028 Plan
Authors: R. M. Kilonzo, S. Bedingfield, K. Smith, K. Hudgins Smith, K. Couper, R. Ratley, Z. Taylor, A. Engelman, M. Renne
Abstract:
Introduction: The mental health needs of university students continue to evolve, necessitating a strategic approach to service delivery. The East Tennessee State University (ETSU) Counseling Center developed its inaugural Strategic Plan (2024-2028) to enhance student mental health services. The plan focuses on improving access, quality of care, and service visibility, aligning with the university’s mission to support academic success and student well-being. Aim: This strategic plan aims to establish a comprehensive framework for delivering high-quality, evidence-based mental health services to ETSU students, addressing current challenges, and anticipating future needs. Methods: The development of the strategic plan was a collaborative effort involving the Counseling Center’s leadership, staff, with technical support from Doctor of Public Health-community and behavioral health intern. Multiple workshops, online/offline reviews, and stakeholder consultations were held to ensure a robust and inclusive process. A SWOT analysis and stakeholder mapping were conducted to identify strengths, weaknesses, opportunities, and challenges. Key performance indicators (KPIs) were set to measure service utilization, satisfaction, and outcomes. Results: The plan resulted in four strategic priorities: service application, visibility/accessibility, safety and satisfaction, and training programs. Key objectives include expanding counseling services, improving service access through outreach, reducing stigma, and increasing peer support programs. The plan also focuses on continuous quality improvement through data-driven assessments and research initiatives. Immediate outcomes include expanded group therapy, enhanced staff training, and increased mental health literacy across campus. Conclusion and Recommendation: The strategic plan provides a roadmap for addressing the mental health needs of ETSU students, with a clear focus on accessibility, inclusivity, and evidence-based practices. Implementing the plan will strengthen the Counseling Center’s capacity to meet the diverse needs of the student population. To ensure sustainability, it is recommended that the center continuously assess student needs, foster partnerships with university and external stakeholders, and advocate for increased funding to expand services and staff capacity.Keywords: strategic plan, university counseling center, mental health, students
Procedia PDF Downloads 2229028 Combined Proteomic and Metabolomic Analysis Approaches to Investigate the Modification in the Proteome and Metabolome of in vitro Models Treated with Gold Nanoparticles (AuNPs)
Authors: H. Chassaigne, S. Gioria, J. Lobo Vicente, D. Carpi, P. Barboro, G. Tomasi, A. Kinsner-Ovaskainen, F. Rossi
Abstract:
Emerging approaches in the area of exposure to nanomaterials and assessment of human health effects combine the use of in vitro systems and analytical techniques to study the perturbation of the proteome and/or the metabolome. We investigated the modification in the cytoplasmic compartment of the Balb/3T3 cell line exposed to gold nanoparticles. On one hand, the proteomic approach is quite standardized even if it requires precautions when dealing with in vitro systems. On the other hand, metabolomic analysis is challenging due to the chemical diversity of cellular metabolites that complicate data elaboration and interpretation. Differentially expressed proteins were found to cover a range of functions including stress response, cell metabolism, cell growth and cytoskeleton organization. In addition, de-regulated metabolites were annotated using the HMDB database. The "omics" fields hold huge promises in the interaction of nanoparticles with biological systems. The combination of proteomics and metabolomics data is possible however challenging.Keywords: data processing, gold nanoparticles, in vitro systems, metabolomics, proteomics
Procedia PDF Downloads 50629027 Investigating University Students' Attitudes towards Infertility in Terms of Socio-Demographic Variables
Authors: Yelda Kağnıcı, Seçil Seymenler, Bahar Baran, Erol Esen, Barışcan Öztürk, Ender Siyez, Diğdem M. Siyez
Abstract:
Infertility is the inability to reproduce after twelve months or longer unprotected sexual relationship. Although infertility is not a life threatening illness, it is considered as a serious problem for both the individual and the society. At this point, the importance of examining attitudes towards infertility is critical. Negative attitudes towards infertility may postpone individuals’ help seeking behaviors. The aim of this study is to investigate university students’ attitudes towards infertility in terms of socio-demographic variables (gender, age, taking sexual health education, existence of an infertile individual in the social network, plans about having child and behaviors about health). The sample of the study was 9693 university students attending to 21 universities in Turkey. Of the 9693 students, % 51.6 (n = 5002) were female, % 48.4 (n = 4691) were male. The data was collected by Attitudes toward Infertility Scale developed by researchers and Personal Information Form. In data analysis first frequencies were calculated, then in order to test whether there were significant differences in attitudes towards infertility scores of university students in terms of socio-demographic variables, one way ANOVA was conducted. According to the results, it was found that female students, students who had sexual health education, who have sexual relationship experience, who have an infertile individual in their social networks, who have child plans, who have high caffeine usage and who use alcohol regularly have more positive attitudes towards infertility. On the other hand, attitudes towards infidelity did not show significant differences in terms of age and cigarette usage. When the results of the study were evaluated in general, it was seen that university students’ attitudes towards infertility were negative. The attitudes of students who have high caffeine and alcohols usage were high. It can be considered that these students are aware that their social habits are risky. Female students’ positive attitudes might be explained by their gender role. The results point out that in order to decrease university students’ negative attitudes towards infertility, there is a necessity to develop preventive programs in universities.Keywords: infertility, attitudes, sex, university students
Procedia PDF Downloads 25029026 Data Mining As A Tool For Knowledge Management: A Review
Authors: Maram Saleh
Abstract:
Knowledge has become an essential resource in today’s economy and become the most important asset of maintaining competition advantage in organizations. The importance of knowledge has made organizations to manage their knowledge assets and resources through all multiple knowledge management stages such as: Knowledge Creation, knowledge storage, knowledge sharing and knowledge use. Researches on data mining are continues growing over recent years on both business and educational fields. Data mining is one of the most important steps of the knowledge discovery in databases process aiming to extract implicit, unknown but useful knowledge and it is considered as significant subfield in knowledge management. Data miming have the great potential to help organizations to focus on extracting the most important information on their data warehouses. Data mining tools and techniques can predict future trends and behaviors, allowing businesses to make proactive, knowledge-driven decisions. This review paper explores the applications of data mining techniques in supporting knowledge management process as an effective knowledge discovery technique. In this paper, we identify the relationship between data mining and knowledge management, and then focus on introducing some application of date mining techniques in knowledge management for some real life domains.Keywords: Data Mining, Knowledge management, Knowledge discovery, Knowledge creation.
Procedia PDF Downloads 21129025 Assessment of the Masticatory Muscle Function in Young Adults Following SARS-CoV-2 Infection
Authors: Mimoza Canga, Edit Xhajanka, Irene Malagnino
Abstract:
The COVID-19 pandemic has had a significant influence on the lives of millions of people and is a threat to public health. SARS-CoV-2 infection has been associated with a number of health problems, including damage to the lungs and central nervous system damage. Additionally, it can also cause oral health problems, such as pain and weakening of the chewing muscles. The purpose of the study is the assessment of the masticatory muscle function in young adults between 18 and 29 years old following SARS-CoV-2 infection. Materials and methods: This study is quantitative cross-sectional research conducted in Albania between March 2023 and September 2023. Our research involved a total of 104 students who participated in our research, of which 64 were female (61.5%) and 40 were male (38.5%). They were divided into four age groups: 18-20, 21-23, 24-26, and 27-29 years old. In this study, the students willingly consented to take part in this study and were guaranteed that their participation would remain anonymous. The study recorded no dropouts, and it was carried out in compliance with the Declaration of Helsinki. Statistical analysis was conducted using IBM SPSS Statistics Version 23.0 on Microsoft Windows Linux, Chicago, IL, USA. Data were evaluated utilizing analysis of variance (ANOVA), with a significance level set at P ≤ 0.05. Results: 80 (76.9%) of the participants who had passed COVID-19 reported chronic masticatory muscle pain (P < 0.0001) and masticatory muscle spasms (P = 0.002). According to data analysis, 70 (67.3%) of the participants had a sore throat (P=0.007). 74% of the students reported experiencing weakness in their chewing muscles (P=0.003). The participants reported having undergone the following treatments: azithromycin (500 mg daily), prednisolone sodium phosphate (15 mg/5 mL daily), Augmentin tablets (625 mg), vitamin C (1000 mg), magnesium sulfate (4 g/100 mL), oral vitamin D3 supplementation of 5000 IU daily, ibuprofen (400 mg every 6 hours), and tizanidine (2 mg every 6 hours). Conclusion: This study, conducted in Albania, has limitations, but it can be concluded that COVID-19 directly affects the functioning of the masticatory muscles.Keywords: Albania, chronic pain, COVID-19, cross-sectional study, masticatory muscles, spasm
Procedia PDF Downloads 3629024 Factors Affecting Internet Behavior and Life Satisfaction of Older Adult Learners with Use of Smartphone
Authors: Horng-Ji Lai
Abstract:
The intuitive design features and friendly interface of smartphone attract older adults. In Taiwan, many senior education institutes offer smartphone training courses for older adult learners who are interested in learning this innovative technology. It is expected that the training courses can help them to enjoy the benefits of using smartphone and increase their life satisfaction. Therefore, it is important to investigate the factors that influence older adults’ behavior of using smartphone. The purpose of the research was to develop and test a research model that investigates the factors (self-efficacy, social connection, the need to seek health information, and the need to seek financial information) affecting older adult learners’ Internet behaviour and their life satisfaction with use of smartphone. Also, this research sought to identify the relationship between the proposed variables. Survey method was used to collect research data. A Structural Equation Modeling was performed using Partial Least Squares (PLS) regression for data exploration and model estimation. The participants were 394 older adult learners from smartphone training courses in active aging learning centers located in central Taiwan. The research results revealed that self-efficacy significantly affected older adult learner’ social connection, the need to seek health information, and the need to seek financial information. The construct of social connection yielded a positive influence in respondents’ life satisfaction. The implications of these results for practice and future research are also discussed.Keywords: older adults, smartphone, internet behaviour, life satisfaction
Procedia PDF Downloads 19329023 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data
Authors: Murat Yazici
Abstract:
Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data
Procedia PDF Downloads 5629022 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encyption Scheme
Authors: Victor Onomza Waziri, John K. Alhassan, Idris Ismaila, Noel Dogonyara
Abstract:
This paper describes the problem of building secure computational services for encrypted information in the Cloud. Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy or confidentiality, availability and integrity of the data and user’s security. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute a theoretical presentations in a high-level computational processes that are based on number theory that is derivable from abstract algebra which can easily be integrated and leveraged in the Cloud computing interface with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based on cryptographic security algorithm.Keywords: big data analytics, security, privacy, bootstrapping, Fully Homomorphic Encryption Scheme
Procedia PDF Downloads 484