Search results for: agile methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15423

Search results for: agile methods

13863 Inductive Grammar, Student-Centered Reading, and Interactive Poetry: The Effects of Teaching English with Fun in Schools of Two Villages in Lebanon

Authors: Talar Agopian

Abstract:

Teaching English as a Second Language (ESL) is a common practice in many Lebanese schools. However, ESL teaching is done in traditional ways. Methods such as constructivism are seldom used, especially in villages. Here lies the significance of this research which joins constructivism and Piaget’s theory of cognitive development in ESL classes in Lebanese villages. The purpose of the present study is to explore the effects of applying constructivist student-centered strategies in teaching grammar, reading comprehension, and poetry on students in elementary ESL classes in two villages in Lebanon, Zefta in South Lebanon and Boqaata in Mount Lebanon. 20 English teachers participated in a training titled “Teaching English with Fun”, which focused on strategies that create a student-centered class where active learning takes place and there is increased learner engagement and autonomy. The training covered three main areas in teaching English: grammar, reading comprehension, and poetry. After participating in the training, the teachers applied the new strategies and methods in their ESL classes. The methodology comprised two phases: in phase one, practice-based research was conducted as the teachers attended the training and applied the constructivist strategies in their respective ESL classes. Phase two included the reflections of the teachers on the effects of the application of constructivist strategies. The results revealed the educational benefits of constructivist student-centered strategies; the students of teachers who applied these strategies showed improved engagement, positive attitudes towards poetry, increased motivation, and a better sense of autonomy. Future research is required in applying constructivist methods in the areas of writing, spelling, and vocabulary in ESL classrooms of Lebanese villages.

Keywords: active learning, constructivism, learner engagement, student-centered strategies

Procedia PDF Downloads 142
13862 Preparation of Composite Alginate/Perlite Beads for Pb (II) Removal in Aqueous Solution

Authors: Hasan Türe, Kader Terzioglu, Evren Tunca

Abstract:

Contamination of aqueous environment by heavy metal ions is a serious and complex problem, owing to their hazards to human being and ecological systems. The treatment methods utilized for removing metal ions from aqueous solution include membrane separation, ion exchange and chemical precipitation. However, these methods are limited by high operational cost. Recently, biobased beads are considered as promising biosorbent to remove heavy metal ions from water. The aim of present study was to characterize the alginate/perlite composite beads and to investigate the adsorption performance of obtained beads for removing Pb (II) from aqueous solution. Alginate beads were synthesized by ionic gelation methods and different amount of perlite (aljinate:perlite=1, 2, 3, 4, 5 wt./wt.) was incorporated into alginate beads. Samples were characterized by means of X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM). The effects of perlite level, the initial concentration of Pb (II), initial pH value of Pb(II) solution and effect of contact time on the adsorption capacity of beads were investigated by using batch method. XRD analysis indicated that perlite includes silicon or silicon and aluminum bearing crystalline phase. The diffraction pattern of perlite containing beads is similar to that of that perlite powder with reduced intensity. SEM analysis revealed that perlite was embedded into alginate polymer and SEM-EDX (Energy-Dispersive X-ray) showed that composite beads (aljinate:perlite=1) composed of C (41.93 wt.%,), O (43.64 wt.%), Na (10.20 wt.%), Al (0.74 wt.%), Si (2.72 wt.%) ve K (0.77 wt.%). According to TGA analysis, incorporation of perlite into beads significantly improved the thermal stability of the samples. Batch experiment indicated that optimum pH value for Pb (II) adsorption was found at pH=7 with 1 hour contact time. It was also found that the adsorption capacity of beads decreased with increases in perlite concentration. The results implied that alginate/perlite composite beads could be used as promising adsorbents for the removal of Pb (II) from wastewater. Acknowledgement: This study was supported by TUBITAK (Project No: 214Z146).

Keywords: alginate, adsorption, beads, perlite

Procedia PDF Downloads 290
13861 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm

Procedia PDF Downloads 142
13860 Critical Review of Oceanic and Geological Storage of Carbon Sequestration

Authors: Milad Nooshadi, Alessandro Manzardo

Abstract:

CO₂ emissions in the atmosphere continue to rise, mostly as a result of the combustion of fossil fuels. CO₂ injection into the oceans and geological formation as a process of physical carbon capture are two of the most promising emerging strategies for mitigating climate change and global warming. The purpose of this research is to evaluate the two mentioned methods of CO₂ sequestration and to assess information on previous and current advancements, limitations, and uncertainties associated with carbon sequestration in order to identify possible prospects for ensuring the timely implementation of the technology, such as determining how governments and companies can gain a better understanding of CO₂ storage in terms of which media have the most applicable capacity, which type of injection has the fewer environmental impact, and how much carbon sequestration and storage will cost. The behavior of several forms is characterized as a near field, a far field, and a see-floor in ocean storage, and three medias in geological formations as an oil and gas reservoir, a saline aquifer, and a coal bed. To determine the capacity of various forms of media, an analysis of some models and practical experiments are necessary. Additionally, as a major component of sequestration, the various injection methods into diverse media and their monitoring are associated with a variety of environmental impacts and financial consequences.

Keywords: carbon sequestration, ocean storage, geologic storage, carbon transportation

Procedia PDF Downloads 102
13859 Hybrid Direct Numerical Simulation and Large Eddy Simulating Wall Models Approach for the Analysis of Turbulence Entropy

Authors: Samuel Ahamefula

Abstract:

Turbulent motion is a highly nonlinear and complex phenomenon, and its modelling is still very challenging. In this study, we developed a hybrid computational approach to accurately simulate fluid turbulence phenomenon. The focus is coupling and transitioning between Direct Numerical Simulation (DNS) and Large Eddy Simulating Wall Models (LES-WM) regions. In the framework, high-order fidelity fluid dynamical methods are utilized to simulate the unsteady compressible Navier-Stokes equations in the Eulerian format on the unstructured moving grids. The coupling and transitioning of DNS and LES-WM are conducted through the linearly staggered Dirichlet-Neumann coupling scheme. The high-fidelity framework is verified and validated based on namely, DNS ability for capture full range of turbulent scales, giving accurate results and LES-WM efficiency in simulating near-wall turbulent boundary layer by using wall models.

Keywords: computational methods, turbulence modelling, turbulence entropy, navier-stokes equations

Procedia PDF Downloads 101
13858 The Use of Artificial Intelligence in Language Learning and Teaching: A New Frontier in Education

Authors: Abdulaziz Fageeh

Abstract:

This study investigates the integration of artificial intelligence (AI) within the landscape of language learning and teaching, exploring its potential benefits and challenges. Employing a mixed-methods approach, the research draws upon a comprehensive literature review, case studies, user reviews, and in-depth interviews with educators and students. Findings demonstrate that AI tools, including language learning apps and writing assistants, can enhance personalization, improve writing skills, and increase accessibility to language learning resources. However, the study also highlights concerns regarding over-reliance on AI, potential accuracy and reliability issues, and ethical implications such as data privacy and potential bias. User and educator perspectives emphasize the importance of balancing AI with traditional teaching methods, fostering critical thinking skills, and addressing potential misuse. The study concludes by underscoring the need for ongoing research and development to ensure responsible AI integration in language learning, focusing on pedagogical strategies, ethical frameworks, and the long-term impact of AI on learning outcomes.

Keywords: artificial intelligence, language learning, education, technology, ethical considerations, user perceptions

Procedia PDF Downloads 17
13857 Phylogenetic Analysis of Klebsiella Species from Clinical Specimens from Nelson Mandela Academic Hospital in Mthatha, South Africa

Authors: Sandeep Vasaikar, Lary Obi

Abstract:

Rapid and discriminative genotyping methods are useful for determining the clonality of the isolates in nosocomial or household outbreaks. Multilocus sequence typing (MLST) is a nucleotide sequence-based approach for characterising bacterial isolates. The genetic diversity and the clinical relevance of the drug-resistant Klebsiella isolates from Mthatha are largely unknown. For this reason, prospective, experimental study of the molecular epidemiology of Klebsiella isolates from patients being treated in Mthatha over a three-year period was analysed. Methodology: PCR amplification and sequencing of the drug-resistance-associated genes, and multilocus sequence typing (MLST) using 7 housekeeping genes mdh, pgi, infB, FusAR, phoE, gapA and rpoB were conducted. A total of 32 isolates were analysed. Results: The percentages of multidrug-resistant (MDR), extensively drug-resistance (XDR) and pandrug-resistant (PDR) isolates were; MDR 65.6 % (21) and XDR and PDR with 0 % each. In this study, K. pneumoniae was 19/32 (59.4 %). MLST results showed 22 sequence types (STs) were identified, which were further separated by Maximum Parsimony into 10 clonal complexes and 12 singletons. The most dominant group was Klebsiella pneumoniae with 23/32 (71.8 %) isolates, Klebsiella oxytoca as a second group with 2/32 (6.25 %) isolates, and a single (3.1 %) K. varricola as a third group while 6 isolates were of unknown sequences. Conclusions/significance: A phylogenetic analysis of the concatenated sequences of the 7 housekeeping genes showed that strains of K. pneumoniae form a distinct lineage within the genus Klebsiella, with K. oxytoca and K. varricola its nearest phylogenetic neighbours. With the analysis of 7 genes were determined 1 K. variicola, which was mistakenly identified as K. pneumoniae by phenotypic methods. Two misidentifications of K. oxytoca were found when phenotypic methods were used. No significant differences were observed between ESBL blaCTX-M, blaTEM and blaSHV groups in the distribution of Sequence types (STs) or Clonal complexes (CCs).

Keywords: phylogenetic analysis, phylogeny, klebsiella phylogenetic, klebsiella

Procedia PDF Downloads 373
13856 DISGAN: Efficient Generative Adversarial Network-Based Method for Cyber-Intrusion Detection

Authors: Hongyu Chen, Li Jiang

Abstract:

Ubiquitous anomalies endanger the security of our system con- stantly. They may bring irreversible damages to the system and cause leakage of privacy. Thus, it is of vital importance to promptly detect these anomalies. Traditional supervised methods such as Decision Trees and Support Vector Machine (SVM) are used to classify normality and abnormality. However, in some case, the abnormal status are largely rarer than normal status, which leads to decision bias of these methods. Generative adversarial network (GAN) has been proposed to handle the case. With its strong generative ability, it only needs to learn the distribution of normal status, and identify the abnormal status through the gap between it and the learned distribution. Nevertheless, existing GAN-based models are not suitable to process data with discrete values, leading to immense degradation of detection performance. To cope with the discrete features, in this paper, we propose an efficient GAN-based model with specifically-designed loss function. Experiment results show that our model outperforms state-of-the-art models on discrete dataset and remarkably reduce the overhead.

Keywords: GAN, discrete feature, Wasserstein distance, multiple intermediate layers

Procedia PDF Downloads 129
13855 Student Loan Debt among Students with Disabilities

Authors: Kaycee Bills

Abstract:

This study will determine if students with disabilities have higher student loan debt payments than other student populations. The hypothesis was that students with disabilities would have significantly higher student loan debt payments than other students due to the length of time they spend in school. Using the Bachelorette and Beyond Study Wave 2015/017 dataset, quantitative methods were employed. These data analysis methods included linear regression and a correlation matrix. Due to the exploratory nature of the study, the significance levels for the overall model and each variable were set at .05. The correlation matrix demonstrated that students with certain types of disabilities are more likely to fall under higher student loan payment brackets than students without disabilities. These results also varied among the different types of disabilities. The result of the overall linear regression model was statistically significant (p = .04). Despite the overall model being statistically significant, the majority of the significance values for the different types of disabilities were null. However, several other variables had statistically significant results, such as veterans, people of minority races, and people who attended private schools. Implications for how this impacts the economy, capitalism, and financial wellbeing of various students are discussed.

Keywords: disability, student loan debt, higher education, social work

Procedia PDF Downloads 168
13854 An Advanced Approach to Detect and Enumerate Soil-Transmitted Helminth Ova from Wastewater

Authors: Vivek B. Ravindran, Aravind Surapaneni, Rebecca Traub, Sarvesh K. Soni, Andrew S. Ball

Abstract:

Parasitic diseases have a devastating, long-term impact on human health and welfare. More than two billion people are infected with soil-transmitted helminths (STHs), including the roundworms (Ascaris), hookworms (Necator and Ancylostoma) and whipworm (Trichuris) with majority occurring in the tropical and subtropical regions of the world. Despite its low prevalence in developed countries, the removal of STHs from wastewater remains crucial to allow the safe use of sludge or recycled water in agriculture. Conventional methods such as incubation and optical microscopy are cumbersome; consequently, the results drastically vary from person-to-person observing the ova (eggs) under microscope. Although PCR-based methods are an alternative to conventional techniques, it lacks the ability to distinguish between viable and non-viable helminth ova. As a result, wastewater treatment industries are in major need for radically new and innovative tools to detect and quantify STHs eggs with precision, accuracy and being cost-effective. In our study, we focus on the following novel and innovative techniques: -Recombinase polymerase amplification and Surface enhanced Raman spectroscopy (RPA-SERS) based detection of helminth ova. -Use of metal nanoparticles and their relative nanozyme activity. -Colorimetric detection, differentiation and enumeration of genera of helminth ova using hydrolytic enzymes (chitinase and lipase). -Propidium monoazide (PMA)-qPCR to detect viable helminth ova. -Modified assay to recover and enumerate helminth eggs from fresh raw sewage. -Transcriptome analysis of ascaris ova in fresh raw sewage. The aforementioned techniques have the potential to replace current conventional and molecular methods thereby producing a standard protocol for the determination and enumeration of helminth ova in sewage sludge.

Keywords: colorimetry, helminth, PMA-QPCR, nanoparticles, RPA, viable

Procedia PDF Downloads 299
13853 Tyrosine Rich Fraction as an Immunomodulatory Agent from Ficus Religiosa Bark

Authors: S. A. Nirmal, G. S. Asane, S. C. Pal, S. C. Mandal

Abstract:

Objective: Ficus religiosa Linn (Moraceae) is being used in traditional medicine to improve immunity hence present work was undertaken to validate this use scientifically. Material and Methods: Dried, powdered bark of F. religiosa was extracted successively using petroleum ether and 70% ethanol in soxhlet extractor. The extracts obtained were screened for immunomodulatory activity by delayed type hypersensitivity (DTH), neutrophil adhesion test and cyclophosphamide-induced neutropenia in Swiss albino mice at the dose of 50 and 100 mg/kg, i.p. 70% ethanol extract showed significant immunostimulant activity hence subjected to column chromatography to produce tyrosine rich fraction (TRF). TRF obtained was screened for immunomodulatory activity by above methods at the dose of 10 mg/kg, i.p. Results: TRF showed potentiation of DTH response in terms of significant increase in the mean difference in foot-pad thickness and it significantly increased neutrophil adhesion to nylon fibers by 48.20%. Percentage reduction in total leukocyte count and neutrophil by TRF was found to be 43.85% and 18.72%, respectively. Conclusion: Immunostimulant activity of TRF was more pronounced and thus it has great potential as a source for natural health products.

Keywords: Ficus religiosa, immunomodulatory, cyclophosphamide, neutropenia

Procedia PDF Downloads 446
13852 An Accurate Computation of 2D Zernike Moments via Fast Fourier Transform

Authors: Mohammed S. Al-Rawi, J. Bastos, J. Rodriguez

Abstract:

Object detection and object recognition are essential components of every computer vision system. Despite the high computational complexity and other problems related to numerical stability and accuracy, Zernike moments of 2D images (ZMs) have shown resilience when used in object recognition and have been used in various image analysis applications. In this work, we propose a novel method for computing ZMs via Fast Fourier Transform (FFT). Notably, this is the first algorithm that can generate ZMs up to extremely high orders accurately, e.g., it can be used to generate ZMs for orders up to 1000 or even higher. Furthermore, the proposed method is also simpler and faster than the other methods due to the availability of FFT software and/or hardware. The accuracies and numerical stability of ZMs computed via FFT have been confirmed using the orthogonality property. We also introduce normalizing ZMs with Neumann factor when the image is embedded in a larger grid, and color image reconstruction based on RGB normalization of the reconstructed images. Astonishingly, higher-order image reconstruction experiments show that the proposed methods are superior, both quantitatively and subjectively, compared to the q-recursive method.

Keywords: Chebyshev polynomial, fourier transform, fast algorithms, image recognition, pseudo Zernike moments, Zernike moments

Procedia PDF Downloads 265
13851 The Advantages of Using DNA-Barcoding for Determining the Fraud in Seafood

Authors: Elif Tugce Aksun Tumerkan

Abstract:

Although seafood is an important part of human diet and categorized highly traded food industry internationally, it is remain overlooked generally in the global food security aspect. Food product authentication is the main interest in the aim of both avoids commercial fraud and to consider the risks that might be harmful to human health safety. In recent years, with increasing consumer demand for regarding food content and it's transparency, there are some instrumental analyses emerging for determining food fraud depend on some analytical methodologies such as proteomic and metabolomics. While, fish and seafood consumed as fresh previously, within advanced technology, processed or packaged seafood consumption have increased. After processing or packaging seafood, morphological identification is impossible when some of the external features have been removed. The main fish and seafood quality-related issues are the authentications of seafood contents such as mislabelling products which may be contaminated and replacement partly or completely, by lower quality or cheaper ones. For all mentioned reasons, truthful consistent and easily applicable analytical methods are needed for assurance the correct labelling and verifying of seafood products. DNA-barcoding methods become popular robust that used in taxonomic research for endangered or cryptic species in recent years; they are used for determining food traceability also. In this review, when comparing the other proteomic and metabolic analysis, DNA-based methods are allowing a chance to identification all type of food even as raw, spiced and processed products. This privilege caused by DNA is a comparatively stable molecule than protein and other molecules. Furthermore showing variations in sequence based on different species and founding in all organisms, make DNA-based analysis more preferable. This review was performed to clarify the main advantages of using DNA-barcoding for determining seafood fraud among other techniques.

Keywords: DNA-barcoding, genetic analysis, food fraud, mislabelling, packaged seafood

Procedia PDF Downloads 168
13850 Political Economy of Electronic News Media in Pakistan

Authors: Asad Ullah Khalid

Abstract:

This paper encompasses the application of the concept of political economy of mass media in Pakistan. The media has developed at a massive pace and now is considered as one of the vital parts in having better administration furthermore helps in conveying the issues identified with the government to the public. Albeit Pakistani media has gained much independence after 2003 but there are many social, political and economy factors which influence the content of the media. The study employs triangulation of quantitative and qualitative methods. In terms of methods, content analysis and interview method both are used. The content of Pakistani media is analyzed quantitatively and qualitatively. Moreover, interviews with various journalists are conducted, and their findings are disclosed in this paper. Pakistan's communication landscape is neither well documented nor well understood, leaving its public off guard with regards to reviewing the role and impact of news inflow, correspondence and media in political, economic and social life. It has been found out that on particular issues some media channels have strong affiliations with certain political parties, moreover reporting and coverage have also been affected by the factors like terrorism, state policies(written and verbal), advertising/economic and demographic factors like the composition of the population.

Keywords: political economy, news media, Pakistan, electronic news media, journalism, mass media

Procedia PDF Downloads 331
13849 Evaluation of Diagnostic Values of Culture, Rapid Urease Test, and Histopathology in the Diagnosis of Helicobacter pylori Infection and in vitro Effects of Various Antimicrobials against Helicobacter pylori

Authors: Recep Kesli, Huseyin Bilgin, Yasar Unlu, Gokhan Gungor

Abstract:

Aim: The aim of this study, was to investigate the presence of Helicobacter pylori (H. pylori) infection by culture, histology, and RUT (Rapid Urease Test) in gastric antrum biopsy samples taken from patients presented with dyspeptic complaints and to determine resistance rates of amoxicillin, clarithromycin, levofloxacin and metronidazole against the H. pylori strains by E-test. Material and Methods: A total of 278 patients who admitted to Konya Education and Research Hospital Department of Gastroenterology with dyspeptic complaints, between January 2011-July 2013, were included in the study. Microbiological and histopathological examinations of biopsy specimens taken from antrum and corpus regions were performed. The presence of H. pylori in biopsy samples was investigated by culture (Portagerm pylori-PORT PYL, Pylori agar-PYL, GENbox microaer, bioMerieux, France), histology (Giemsa, Hematoxylin and Eosin staining), and RUT(CLOtest, Cimberly-Clark, USA). Antimicrobial resistance of isolates against amoxicillin, clarithromycin, levofloxacin, and metronidazole was determined by E-test method (bioMerieux, France). As a gold standard in the diagnosis of H. pylori; it was accepted that the culture method alone was positive or both histology and RUT were positive together. Sensitivity and specificity for histology and RUT were calculated by taking the culture as a gold standard. Sensitivity and specificity for culture were also calculated by taking the co-positivity of both histology and RUT as a gold standard. Results: H. pylori was detected in 140 of 278 of patients with culture and 174 of 278 of patients with histology in the study. H. pylori positivity was also found in 191 patients with RUT. According to the gold standard criteria, a false negative result was found in 39 cases by culture method, 17 cases by histology, and 8 cases by RUT. Sensitivity and specificity of the culture, histology, and RUT methods of the patients were 76.5 % and 88.3 %, 87.8 % and 63 %, 94.2 % and 57.2 %, respectively. Antibiotic resistance was investigated by E-test in 140 H. pylori strains isolated from culture. The resistance rates of H. pylori strains to the amoxicillin, clarithromycin, levofloxacin, and metronidazole was detected as 9 (6.4 %), 22 (15.7 %), 17 (12.1 %), 57 (40.7 %), respectively. Conclusion: In our study, RUT was found to be the most sensitive, culture was the most specific test between culture, histology, and RUT methods. Although we detected the specificity of the culture method as high, its sensitivity was found to be quite low compared to other methods. The low sensitivity of H. pylori culture may be caused by the factors affect the chances of direct isolation such as spoild bacterium, difficult-to-breed microorganism, clinical sample retrieval, and transport conditions.

Keywords: antimicrobial resistance, culture, histology, H. pylori, RUT

Procedia PDF Downloads 163
13848 Application of Electrical Resistivity, Induced Polarization and Statistical Methods in Chichak Iron Deposit Exploration

Authors: Shahrzad Maghsoodi, Hamid Reza Ranazi

Abstract:

This paper is devoted to exploration of Chichak (hematite) deposit, using electrical resistivity, chargeability and statistical methods. Chichak hematite deposit is located in Chichak area west Azarbaijan, northwest of Iran. There are some outcrops of hematite bodies in the area. The goal of this study was to identify the depth, thickness and shape of these bodies and to explore other probabile hematite bodies. Therefore nine profiles were considered to be surveyed by RS and IP method by utilizing an innovative electrode array so called CRSP (Combined Resistivity Sounding and Profiling). IP and RS sections were completed along each profile. In addition, the RS and IP data were analyzed and relation between these two variables was determined by statistical tools. Finally, hematite bodies were identified in each of the sections. The results showed that hematite bodies have a resistivity lower than 125 Ωm and very low chargeability, lower than 8 mV⁄V. After geophysical study some points were proposed for drilling, results obtained from drilling confirm the geophysical results.

Keywords: Hematite deposit, Iron exploration, Electrical resistivity, Chargeability, Iran, Chichak, Statistical, CRSP electrodes array

Procedia PDF Downloads 78
13847 An Approach to Automate the Modeling of Life Cycle Inventory Data: Case Study on Electrical and Electronic Equipment Products

Authors: Axelle Bertrand, Tom Bauer, Carole Charbuillet, Martin Bonte, Marie Voyer, Nicolas Perry

Abstract:

The complexity of Life Cycle Assessment (LCA) can be identified as the ultimate obstacle to massification. Due to these obstacles, the diffusion of eco-design and LCA methods in the manufacturing sectors could be impossible. This article addresses the research question: How to adapt the LCA method to generalize it massively and improve its performance? This paper aims to develop an approach for automating LCA in order to carry out assessments on a massive scale. To answer this, we proceeded in three steps: First, an analysis of the literature to identify existing automation methods. Given the constraints of large-scale manual processing, it was necessary to define a new approach, drawing inspiration from certain methods and combining them with new ideas and improvements. In a second part, our development of automated construction is presented (reconciliation and implementation of data). Finally, the LCA case study of a conduit is presented to demonstrate the feature-based approach offered by the developed tool. A computerized environment supports effective and efficient decision-making related to materials and processes, facilitating the process of data mapping and hence product modeling. This method is also able to complete the LCA process on its own within minutes. Thus, the calculations and the LCA report are automatically generated. The tool developed has shown that automation by code is a viable solution to meet LCA's massification objectives. It has major advantages over the traditional LCA method and overcomes the complexity of LCA. Indeed, the case study demonstrated the time savings associated with this methodology and, therefore, the opportunity to increase the number of LCA reports generated and, therefore, to meet regulatory requirements. Moreover, this approach also presents the potential of the proposed method for a wide range of applications.

Keywords: automation, EEE, life cycle assessment, life cycle inventory, massively

Procedia PDF Downloads 90
13846 Main Tendencies of Youth Unemployment and the Regulation Mechanisms for Decreasing Its Rate in Georgia

Authors: Nino Paresashvili, Nino Abesadze

Abstract:

The modern world faces huge challenges. Globalization changed the socio-economic conditions of many countries. The current processes in the global environment have a different impact on countries with different cultures. However, an alleviation of poverty and improvement of living conditions is still the basic challenge for the majority of countries, because much of the population still lives under the official threshold of poverty. It is very important to stimulate youth employment. In order to prepare young people for the labour market, it is essential to provide them with the appropriate professional skills and knowledge. It is necessary to plan efficient activities for decreasing an unemployment rate and for developing the perfect mechanisms for regulation of a labour market. Such planning requires thorough study and analysis of existing reality, as well as development of corresponding mechanisms. Statistical analysis of unemployment is one of the main platforms for regulation of the labour market key mechanisms. The corresponding statistical methods should be used in the study process. Such methods are observation, gathering, grouping, and calculation of the generalized indicators. Unemployment is one of the most severe socioeconomic problems in Georgia. According to the past as well as the current statistics, unemployment rates always have been the most problematic issue to resolve for policy makers. Analytical works towards to the above-mentioned problem will be the basis for the next sustainable steps to solve the main problem. The results of the study showed that the choice of young people is not often due to their inclinations, their interests and the labour market demand. That is why the wrong professional orientation of young people in most cases leads to their unemployment. At the same time, it was shown that there are a number of professions in the labour market with a high demand because of the deficit the appropriate specialties. To achieve healthy competitiveness in youth employment, it is necessary to formulate regional employment programs with taking into account the regional infrastructure specifications.

Keywords: unemployment, analysis, methods, tendencies, regulation mechanisms

Procedia PDF Downloads 378
13845 The Significance of Picture Mining in the Fashion and Design as a New Research Method

Authors: Katsue Edo, Yu Hiroi

Abstract:

T Increasing attention has been paid to using pictures and photographs in research since the beginning of the 21th century in social sciences. Meanwhile we have been studying the usefulness of Picture mining, which is one of the new ways for a these picture using researches. Picture Mining is an explorative research analysis method that takes useful information from pictures, photographs and static or moving images. It is often compared with the methods of text mining. The Picture Mining concept includes observational research in the broad sense, because it also aims to analyze moving images (Ochihara and Edo 2013). In the recent literature, studies and reports using pictures are increasing due to the environmental changes. These are identified as technological and social changes (Edo et.al. 2013). Low price digital cameras and i-phones, high information transmission speed, low costs for information transferring and high performance and resolution of the cameras of mobile phones have changed the photographing behavior of people. Consequently, there is less resistance in taking and processing photographs for most of the people in the developing countries. In these studies, this method of collecting data from respondents is often called as ‘participant-generated photography’ or ‘respondent-generated visual imagery’, which focuses on the collection of data and its analysis (Pauwels 2011, Snyder 2012). But there are few systematical and conceptual studies that supports it significance of these methods. We have discussed in the recent years to conceptualize these picture using research methods and formalize theoretical findings (Edo et. al. 2014). We have identified the most efficient fields of Picture mining in the following areas inductively and in case studies; 1) Research in Consumer and Customer Lifestyles. 2) New Product Development. 3) Research in Fashion and Design. Though we have found that it will be useful in these fields and areas, we must verify these assumptions. In this study we will focus on the field of fashion and design, to determine whether picture mining methods are really reliable in this area. In order to do so we have conducted an empirical research of the respondents’ attitudes and behavior concerning pictures and photographs. We compared the attitudes and behavior of pictures toward fashion to meals, and found out that taking pictures of fashion is not as easy as taking meals and food. Respondents do not often take pictures of fashion and upload their pictures online, such as Facebook and Instagram, compared to meals and food because of the difficulty of taking them. We concluded that we should be more careful in analyzing pictures in the fashion area for there still might be some kind of bias existing even if the environment of pictures have drastically changed in these years.

Keywords: empirical research, fashion and design, Picture Mining, qualitative research

Procedia PDF Downloads 363
13844 Training of Future Computer Science Teachers Based on Machine Learning Methods

Authors: Meruert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova

Abstract:

The article highlights and describes the characteristic features of real-time face detection in images and videos using machine learning algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As a result, the advantages and disadvantages of Haar Cascade (Haar Cascade OpenCV), HoG SVM (Histogram of Oriented Gradients, Support Vector Machine), and MMOD CNN Dlib (Max-Margin Object Detection, convolutional neural network) detectors used for face detection were determined. Dlib is a general-purpose cross-platform software library written in the programming language C++. It includes detectors used for determining face detection. The Cascade OpenCV algorithm is efficient for fast face detection. The considered work forms the basis for the development of machine learning methods by future computer science teachers.

Keywords: algorithm, artificial intelligence, education, machine learning

Procedia PDF Downloads 73
13843 Image Segmentation: New Methods

Authors: Flaurence Benjamain, Michel Casperance

Abstract:

We present in this paper, first, a comparative study of three mathematical theories to achieve the fusion of information sources. This study aims to identify the characteristics inherent in theories of possibilities, belief functions (DST) and plausible and paradoxical reasoning to establish a strategy of choice that allows us to adopt the most appropriate theory to solve a problem of fusion in order, taking into account the acquired information and imperfections that accompany them. Using the new theory of plausible and paradoxical reasoning, also called Dezert-Smarandache Theory (DSmT), to fuse information multi-sources needs, at first step, the generation of the composites events witch is, in general, difficult. Thus, we present in this paper a new approach to construct pertinent paradoxical classes based on gray levels histograms, which also allows to reduce the cardinality of the hyper-powerset. Secondly, we developed a new technique for order and coding generalized focal elements. This method is exploited, in particular, to calculate the cardinality of Dezert and Smarandache. Then, we give an experimentation of classification of a remote sensing image that illustrates the given methods and we compared the result obtained by the DSmT with that resulting from the use of the DST and theory of possibilities.

Keywords: segmentation, image, approach, vision computing

Procedia PDF Downloads 276
13842 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network

Authors: Pawan Kumar Mishra, Ganesh Singh Bisht

Abstract:

Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.

Keywords: resolution, deep-learning, neural network, de-blurring

Procedia PDF Downloads 517
13841 Comparing the Efficacy of Minimally Supervised Home-Based and Closely Supervised Gym Based Exercise Programs on Weight Reduction and Insulin Resistance after Bariatric Surgery

Authors: Haleh Dadgostar, Sara Kaviani, Hanieh Adib, Ali Mazaherinezhad, Masoud Solaymani-Dodaran, Fahimeh Soheilipour, Abdolreza Pazouki

Abstract:

Background and Objectives: Effectiveness of various exercise protocols in weight reduction after bariatric surgery has not been sufficiently explored in the literature. We compared the effect of minimally supervised home-based and closely supervised Gym based exercise programs on weight reduction and insulin resistance after bariatric surgery. Methods: Women undergoing gastric bypass surgery were invited to participate in an exercise program and were randomly allocated into two groups. They were either offered a minimally supervised home-based (MSHB) or closely supervised Gym-based (CSGB) exercise program. The CSGB protocol constitute two sessions per week of training under ACSM guidelines. In the MSHB protocol participants received a notebook containing a list of recommended aerobic and resistance exercises, a log to record their activity and a schedule of follow up phone calls and clinic visits. Both groups received a pedometer. We measured their weight, BMI, lipid profile, FBS, and insulin level at the baseline and after 20 weeks of exercise and were compared at the end of the study. Results: A total of 80 patients completed our study (MSHB=38 and CSGB=42). The baseline comparison showed that the two groups are similar. Using the ANCOVA method of analysis the mean change in BMI (covariate: BMI at the beginning of the study) was slightly better in CSGB compared with the MSHB (between-group mean difference: 3.33 (95%CI 4.718 to 1.943, F: 22.844 p < 0.001)). Conclusion: Our results showed that both MSHB and CSGB exercise methods are somewhat equally effective in improvement of studied factors in the two groups. With considerably lower costs of Minimally Supervised Home Based exercise programs, these methods should be considered when adequate funding are not available.

Keywords: postoperative exercise, insulin resistance, bariatric surgery, morbid obesity

Procedia PDF Downloads 289
13840 Review of Hydrologic Applications of Conceptual Models for Precipitation-Runoff Process

Authors: Oluwatosin Olofintoye, Josiah Adeyemo, Gbemileke Shomade

Abstract:

The relationship between rainfall and runoff is an important issue in surface water hydrology therefore the understanding and development of accurate rainfall-runoff models and their applications in water resources planning, management and operation are of paramount importance in hydrological studies. This paper reviews some of the previous works on the rainfall-runoff process modeling. The hydrologic applications of conceptual models and artificial neural networks (ANNs) for the precipitation-runoff process modeling were studied. Gradient training methods such as error back-propagation (BP) and evolutionary algorithms (EAs) are discussed in relation to the training of artificial neural networks and it is shown that application of EAs to artificial neural networks training could be an alternative to other training methods. Therefore, further research interest to exploit the abundant expert knowledge in the area of artificial intelligence for the solution of hydrologic and water resources planning and management problems is needed.

Keywords: artificial intelligence, artificial neural networks, evolutionary algorithms, gradient training method, rainfall-runoff model

Procedia PDF Downloads 454
13839 Correlation Between Political Awareness and Political Participation for University Students: An Applied Study

Authors: Rana Mohamed Abd El Aal

Abstract:

This is an exploratory study that aims to answer the question of whether and to what extent the prevailing political culture with a special focus to the factor of political awareness for Egyptian university students is influential in shaping their participatory behavior; more precisely in four main Universities ;(Cairo University- BaniSwif University- BUE University- Suez Canal University). To ensure the validity of my results, I deployed a number of different data collection methods: the collection, analysis, integration of both quantitative and qualitative methods; for investigating two main hypothesis H1: There is a positive relation between the political awareness level and political participation for university students, H2: There is a positive relation between political values in the society and the level of political participation of university students. The study reveals that though the sample represented the portion of political science students in different Universities, the level of political awareness and political participation was low with a statistically significant relationship; also, the patterns of values in Egyptian culture affects significantly the level of participation in the different universities. Therefore; the study using SWOT analysis recommends some policies for increasing the level of awareness and integrating youth in the political process.

Keywords: political awareness, political participation, civic culture, citizenship, egyptian universities, political knowledge

Procedia PDF Downloads 240
13838 Short Arc Technique for Baselines Determinations

Authors: Gamal F.Attia

Abstract:

The baselines are the distances and lengths of the chords between projections of the positions of the laser stations on the reference ellipsoid. For the satellite geodesy, it is very important to determine the optimal length of orbital arc along which laser measurements are to be carried out. It is clear that for the dynamical methods long arcs (one month or more) are to be used. According to which more errors of modeling of different physical forces such as earth's gravitational field, air drag, solar radiation pressure, and others that may influence the accuracy of the estimation of the satellites position, at the same time the measured errors con be almost completely excluded and high stability in determination of relative coordinate system can be achieved. It is possible to diminish the influence of the errors of modeling by using short-arcs of the satellite orbit (several revolutions or days), but the station's coordinates estimated by different arcs con differ from each other by a larger quantity than statistical zero. Under the semidynamical ‘short arc’ method one or several passes of the satellite in one of simultaneous visibility from both ends of the chord is known and the estimated parameter in this case is the length of the chord. The comparison of the same baselines calculated with long and short arcs methods shows a good agreement and even speaks in favor of the last one. In this paper the Short Arc technique has been explained and 3 baselines have been determined using the ‘short arc’ method.

Keywords: baselines, short arc, dynamical, gravitational field

Procedia PDF Downloads 463
13837 Evaluating the Effects of Microwaves and Polymers on the Quality of Some Iranian Export Products

Authors: Reza Sadeghi

Abstract:

Storage pests with quantitative, qualitative, and hygienic losses to storage products lead to heavy damage to these products. One of the best methods of controlling storage pests is microwave heating, which is an environmentally friendly method and can be used to replace chemical methods to control storage pests. Pistachios and almonds are the most important dried fruit items in Iran, which account for a significant part of Iran's exports every year. In this study, which along with Pistachio and almond samples were exposed to microwave radiation at 320, 720, 900 watts with times of 10, 20, 30 seconds. Qualitative evaluation of product changes due to the above treatments was performed in the form of changes in colorimetric factors and organoleptic properties of the product. The results showed that in microwave treatment, power, and time factors had a significant effect on the taste and overall acceptance of pistachio product, polymer and power interaction, polymer and time, time and power had no significant effect on pistachio product quality. In almond products, the factors of polymer, time, power, interaction of polymer and power, polymer and time, and power had no significant effect on almond quality.

Keywords: microwave, qualitative, pistachio, almond

Procedia PDF Downloads 6
13836 Numerical Solution of Portfolio Selecting Semi-Infinite Problem

Authors: Alina Fedossova, Jose Jorge Sierra Molina

Abstract:

SIP problems are part of non-classical optimization. There are problems in which the number of variables is finite, and the number of constraints is infinite. These are semi-infinite programming problems. Most algorithms for semi-infinite programming problems reduce the semi-infinite problem to a finite one and solve it by classical methods of linear or nonlinear programming. Typically, any of the constraints or the objective function is nonlinear, so the problem often involves nonlinear programming. An investment portfolio is a set of instruments used to reach the specific purposes of investors. The risk of the entire portfolio may be less than the risks of individual investment of portfolio. For example, we could make an investment of M euros in N shares for a specified period. Let yi> 0, the return on money invested in stock i for each dollar since the end of the period (i = 1, ..., N). The logical goal here is to determine the amount xi to be invested in stock i, i = 1, ..., N, such that we maximize the period at the end of ytx value, where x = (x1, ..., xn) and y = (y1, ..., yn). For us the optimal portfolio means the best portfolio in the ratio "risk-return" to the investor portfolio that meets your goals and risk ways. Therefore, investment goals and risk appetite are the factors that influence the choice of appropriate portfolio of assets. The investment returns are uncertain. Thus we have a semi-infinite programming problem. We solve a semi-infinite optimization problem of portfolio selection using the outer approximations methods. This approach can be considered as a developed Eaves-Zangwill method applying the multi-start technique in all of the iterations for the search of relevant constraints' parameters. The stochastic outer approximations method, successfully applied previously for robotics problems, Chebyshev approximation problems, air pollution and others, is based on the optimal criteria of quasi-optimal functions. As a result we obtain mathematical model and the optimal investment portfolio when yields are not clear from the beginning. Finally, we apply this algorithm to a specific case of a Colombian bank.

Keywords: outer approximation methods, portfolio problem, semi-infinite programming, numerial solution

Procedia PDF Downloads 309
13835 The Findings EEG-LORETA about Epilepsy

Authors: Leila Maleki, Ahmad Esmali Kooraneh, Hossein Taghi Derakhshi

Abstract:

Neural activity in the human brain starts from the early stages of prenatal development. This activity or signals generated by the brain are electrical in nature and represent not only the brain function but also the status of the whole body. At the present moment, three methods can record functional and physiological changes within the brain with high temporal resolution of neuronal interactions at the network level: the electroencephalogram (EEG), the magnet oencephalogram (MEG), and functional magnetic resonance imaging (fMRI); each of these has advantages and shortcomings. EEG recording with a large number of electrodes is now feasible in clinical practice. Multichannel EEG recorded from the scalp surface provides a very valuable but indirect information about the source distribution. However, deep electrode measurements yield more reliable information about the source locations، Intracranial recordings and scalp EEG are used with the source imaging techniques to determine the locations and strengths of the epileptic activity. As a source localization method, Low Resolution Electro-Magnetic Tomography (LORETA) is solved for the realistic geometry based on both forward methods, the Boundary Element Method (BEM) and the Finite Difference Method (FDM). In this paper, we review The findings EEG- LORETA about epilepsy.

Keywords: epilepsy, EEG, EEG-LORETA

Procedia PDF Downloads 545
13834 Mine Project Evaluations in the Rising of Uncertainty: Real Options Analysis

Authors: I. Inthanongsone, C. Drebenstedt, J. C. Bongaerts, P. Sontamino

Abstract:

The major concern in evaluating the value of mining projects related to the deficiency of the traditional discounted cash flow (DCF) method. This method does not take uncertainties into account and, hence it does not allow for an economic assessment of managerial flexibility and operational adaptability, which are increasingly determining long-term corporate success. Such an assessment can be performed with the real options valuation (ROV) approach, since it allows for a comparative evaluation of unforeseen uncertainties in a project life cycle. This paper presents an economic evaluation model for open pit mining projects based on real options valuation approach. Uncertainties in the model are caused by metal prices and cost uncertainties and the system dynamics (SD) modeling method is used to structure and solve the real options model. The model is applied to a case study. It can be shown that that managerial flexibility reacting to uncertainties may create additional value to a mining project in comparison to the outcomes of a DCF method. One important insight for management dealing with uncertainty is seen in choosing the optimal time to exercise strategic options.

Keywords: DCF methods, ROV approach, system dynamics modeling methods, uncertainty

Procedia PDF Downloads 501