Search results for: water consumption prediction
11862 Low Temperature Biological Treatment of Chemical Oxygen Demand for Agricultural Water Reuse Application Using Robust Biocatalysts
Authors: Vedansh Gupta, Allyson Lutz, Ameen Razavi, Fatemeh Shirazi
Abstract:
The agriculture industry is especially vulnerable to forecasted water shortages. In the fresh and fresh-cut produce sector, conventional flume-based washing with recirculation exhibits high water demand. This leads to a large water footprint and possible cross-contamination of pathogens. These can be alleviated through advanced water reuse processes, such as membrane technologies including reverse osmosis (RO). Water reuse technologies effectively remove dissolved constituents but can easily foul without pre-treatment. Biological treatment is effective for the removal of organic compounds responsible for fouling, but not at the low temperatures encountered at most produce processing facilities. This study showed that the Microvi MicroNiche Engineering (MNE) technology effectively removes organic compounds (> 80%) at low temperatures (6-8 °C) from wash water. The MNE technology uses synthetic microorganism-material composites with negligible solids production, making it advantageously situated as an effective bio-pretreatment for RO. A preliminary technoeconomic analysis showed 60-80% savings in operation and maintenance costs (OPEX) when using the Microvi MNE technology for organics removal. This study and the accompanying economic analysis indicated that the proposed technology process will substantially reduce the cost barrier for adopting water reuse practices, thereby contributing to increased food safety and furthering sustainable water reuse processes across the agricultural industry.Keywords: biological pre-treatment, innovative technology, vegetable processing, water reuse, agriculture, reverse osmosis, MNE biocatalysts
Procedia PDF Downloads 12911861 Radish Sprout Growth Dependency on LED Color in Plant Factory Experiment
Authors: Tatsuya Kasuga, Hidehisa Shimada, Kimio Oguchi
Abstract:
Recent rapid progress in ICT (Information and Communication Technology) has advanced the penetration of sensor networks (SNs) and their attractive applications. Agriculture is one of the fields well able to benefit from ICT. Plant factories control several parameters related to plant growth in closed areas such as air temperature, humidity, water, culture medium concentration, and artificial lighting by using computers and AI (Artificial Intelligence) is being researched in order to obtain stable and safe production of vegetables and medicinal plants all year anywhere, and attain self-sufficiency in food. By providing isolation from the natural environment, a plant factory can achieve higher productivity and safe products. However, the biggest issue with plant factories is the return on investment. Profits are tenuous because of the large initial investments and running costs, i.e. electric power, incurred. At present, LED (Light Emitting Diode) lights are being adopted because they are more energy-efficient and encourage photosynthesis better than the fluorescent lamps used in the past. However, further cost reduction is essential. This paper introduces experiments that reveal which color of LED lighting best enhances the growth of cultured radish sprouts. Radish sprouts were cultivated in the experimental environment formed by a hydroponics kit with three cultivation shelves (28 samples per shelf) each with an artificial lighting rack. Seven LED arrays of different color (white, blue, yellow green, green, yellow, orange, and red) were compared with a fluorescent lamp as the control. Lighting duration was set to 12 hours a day. Normal water with no fertilizer was circulated. Seven days after germination, the length, weight and area of leaf of each sample were measured. Electrical power consumption for all lighting arrangements was also measured. Results and discussions: As to average sample length, no clear difference was observed in terms of color. As regards weight, orange LED was less effective and the difference was significant (p < 0.05). As to leaf area, blue, yellow and orange LEDs were significantly less effective. However, all LEDs offered higher productivity per W consumed than the fluorescent lamp. Of the LEDs, the blue LED array attained the best results in terms of length, weight and area of leaf per W consumed. Conclusion and future works: An experiment on radish sprout cultivation under 7 different color LED arrays showed no clear difference in terms of sample size. However, if electrical power consumption is considered, LEDs offered about twice the growth rate of the fluorescent lamp. Among them, blue LEDs showed the best performance. Further cost reduction e.g. low power lighting remains a big issue for actual system deployment. An automatic plant monitoring system with sensors is another study target.Keywords: electric power consumption, LED color, LED lighting, plant factory
Procedia PDF Downloads 18811860 Study of Environmental Impact
Authors: Houmame Benbouali
Abstract:
The risks, in general, exist in any project; one can hardly carry out a project without taking risks. The hydraulic works are rather complex projects in their design, realization and exploitation, and are often subjected at the multiple risks being able to influence with their good performance, and can have an negative impact on their environment. The present study was carried out to quote the impacts caused by purification plant STEP Chlef on the environment, it aims has studies the environmental impacts during construction and when designing this STEP, it is divided into two parts: The first part results from a research task bibliographer which contain three chapters (-cleansing of water worn-general information on water worn-proceed of purification of waste water). The second part is an experimental part which is divided into four chapters (detailed state initial-description of the station of purification-evaluation of the impacts of the project analyzes measurements and recommendations).Keywords: treatment plant, waste water, waste water treatment, environmental impact
Procedia PDF Downloads 51111859 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objetives
Authors: Mingyu Xie, Mietek Brdys
Abstract:
The paper develops a non-linear model predictive control (NMPC) of water quality in drinking water distribution systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives
Procedia PDF Downloads 31711858 Prediction of Compressive Strength of Concrete from Early Age Test Result Using Design of Experiments (Rsm)
Authors: Salem Alsanusi, Loubna Bentaher
Abstract:
Response Surface Methods (RSM) provide statistically validated predictive models that can then be manipulated for finding optimal process configurations. Variation transmitted to responses from poorly controlled process factors can be accounted for by the mathematical technique of propagation of error (POE), which facilitates ‘finding the flats’ on the surfaces generated by RSM. The dual response approach to RSM captures the standard deviation of the output as well as the average. It accounts for unknown sources of variation. Dual response plus propagation of error (POE) provides a more useful model of overall response variation. In our case, we implemented this technique in predicting compressive strength of concrete of 28 days in age. Since 28 days is quite time consuming, while it is important to ensure the quality control process. This paper investigates the potential of using design of experiments (DOE-RSM) to predict the compressive strength of concrete at 28th day. Data used for this study was carried out from experiment schemes at university of Benghazi, civil engineering department. A total of 114 sets of data were implemented. ACI mix design method was utilized for the mix design. No admixtures were used, only the main concrete mix constituents such as cement, coarse-aggregate, fine aggregate and water were utilized in all mixes. Different mix proportions of the ingredients and different water cement ratio were used. The proposed mathematical models are capable of predicting the required concrete compressive strength of concrete from early ages.Keywords: mix proportioning, response surface methodology, compressive strength, optimal design
Procedia PDF Downloads 26711857 Impure Water, a Future Disaster: A Case Study of Lahore Ground Water Quality with GIS Techniques
Authors: Rana Waqar Aslam, Urooj Saeed, Hammad Mehmood, Hameed Ullah, Imtiaz Younas
Abstract:
This research has been conducted to assess the water quality in and around Lahore Metropolitan area on the basis of three different land uses, i.e. residential, commercial, and industrial land uses. For this, 29 sample sites have been selected on the basis of simple random sampling technique. Samples were collected at the source (WASA tube wells). The criteria for selecting sample sites are to have a maximum concentration of population in the selected land uses. The results showed that in the residential land use the proportion of nitrate and turbidity is at their highest level in the areas of Allama Iqbal Town and Samanabad Town. Commercial land use of Gulberg and Data Gunj Bakhsh Town have highest level of proportion of chlorides, calcium, TDS, pH, Mg, total hardness, arsenic and alkalinity. Whereas in industrial type of land use in Ravi and Wahga Town have the proportion of arsenic, Mg, nitrate, pH, and turbidity are at their highest level. The high rate of concentration of these parameters in these areas is basically due to the old and fractured pipelines that allow bacterial as well as physiochemical contaminants to contaminate the portable water at the sources. Furthermore, it is seen in most areas that waste water from domestic, industrial, as well as municipal sources may get easy discharge into open spaces and water bodies, like, cannels, rivers, lakes that seeps and become a part of ground water. In addition, huge dumps located in Lahore are becoming the cause of ground water contamination as when the rain falls, the water gets seep into the ground and impures the ground water quality. On the basis of the derived results with the help of Geo-spatial technology ACRGIS 9.3 Interpolation (IDW), it is recommended that water filtration plants must be installed with specific parameter control. A separate team for proper inspection has to be made for water quality check at the source. Old water pipelines must be replaced with the new pipelines, and safe water depth must be ensured at the source end.Keywords: GIS, remote sensing, pH, nitrate, disaster, IDW
Procedia PDF Downloads 22511856 A Review of the Future of Sustainable Urban Water Supply in South Africa
Authors: Jeremiah Mutamba
Abstract:
Water is a critical resource for sustainable economic growth and social development. It enables societies to thrive and influences every urban center’s future. Thus, water must always be available in the right quantity and quality. However, in South Africa - a known physically water scarce nation – the future of sustainable urban supply of water may be in jeopardy. The country facing a water crisis influenced by insufficient infrastructure investment and maintenance, recurrent droughts and climate variation, human induced water quality deterioration, as well as growing lack of technical capacity in water institutions, particularly local municipalities. Aside of the eight metropolitan municipalities for the country, most municipalities struggle with provision of reliable water to their citizens. These municipalities contend with having now capable engineers, aging infrastructure with concomitant high system water losses (of 30% and upwards), coupled with growing water demand from expanding industries and population growth. Also, a significant portion (44%) of national water treatment plants are in critically poor condition, requiring urgent rehabilitation. Municipalities also struggle to raise funding to instate projects. All these factors militate against sustainable urban water supply in the country. Urgent mitigation measures are required. This paper seeks to review the extent of the current water supply challenges in South Africa’s urban centers, including searching for practical and cost-effective measures. The study followed a qualitative approach, combining desktop literature research, interviews with key sector stakeholders, and a workshop. Phenomenological data analysis technique was used to study and examine interview data and secondary desktop data. Preliminary findings established the building of technical or engineering capacity, reversal of the high physical water losses, rehabilitation of poor condition and dysfunctional water treatment works, diversification of water resource mix, and water scarcity awareness programs as possible practical solutions. Other proposed solutions include the use of performance-based or value-based contracting to fund initiatives to reduce high system water losses. Out-come based arrangements for revenue increasing water loss reduction projects were considered more practical in funding-stressed local municipalities. If proactively implemented in an integrated manner, these proposed solutions are likely to ensure sustainable urban water supply in South African urban centers in the future.Keywords: sustainable, water scarcity, water supply, South Africa
Procedia PDF Downloads 12311855 Fluoride Removal from Groundwater in the East Nile Area (Sudan) Using Locally Available Charcoal
Authors: Motwkel M. Alhaj, Bashir M. Elhassan
Abstract:
The East Nile area is located in Khartoum state. The main source of drinking water in the East Nile Area (Sudan) is groundwater. However, fluoride concentration in the water is more than the maximum allowable dose, which is 1.5 mg/l. This study aims to demonstrate and innovative, affordable, and efficient filter to remove fluoride from drinking water. Many researchers have found that aluminum oxide-coated adsorbent is the most affordable technology for fluoride removal. However, adsorption is pH-dependent, and the water pH in the East Nile area is relatively high (around 8), which is hindering the adsorption process. Locally available charcoal was crushed, sieved, and coated with aluminum oxide. Then, different coating configurations were tested in order to produce an adsorbent with a high pH point of zero charge pH PZC in order to overcome the effect of high pH of water. Moreover, different methods were used to characterize the adsorbent, including: Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), Brunauer - Emmett - Teller (BET) method, and pH point of zero charge pH PZC. The produced adsorbent has pH PZC of 8.5, which is essential in enhancing the fluoride adsorption process. A pilot household fluoride filter was also designed and installed in a house that has water with 4.34 mg/l F- and pH of 8.4. The filter was operated at a flow rate 250 cm³/min. The total cost of treating one cubic meter was about 0.63$, while the cost for the same water before adsorbent coating modification was 2.33$⁄cm³.Keywords: water treatment, fluoride, adsorption, charcoal, Sudan
Procedia PDF Downloads 11611854 An Experimental Study on the Temperature Reduction of Exhaust Gas at a Snorkeling of Submarine
Authors: Seok-Tae Yoon, Jae-Yeong Choi, Gyu-Mok Jeon, Yong-Jin Cho, Jong-Chun Park
Abstract:
Conventional submarines obtain propulsive force by using an electric propulsion system consisting of a diesel generator, battery, motor, and propeller. In the underwater, the submarine uses the electric power stored in the battery. After that, when a certain amount of electric power is consumed, the submarine floats near the sea water surface and recharges the electric power by using the diesel generator. The voyage carried out while charging the power is called a snorkel, and the high-temperature exhaust gas from the diesel generator forms a heat distribution on the sea water surface. The heat distribution is detected by weapon system equipped with thermo-detector and that is the main cause of reducing the survivability of the submarine. In this paper, an experimental study was carried out to establish optimal operating conditions of a submarine for reduction of infrared signature radiated from the sea water surface. For this, a hot gas generating system and a round acrylic water tank with adjustable water level were made. The control variables of the experiment were set as the mass flow rate, the temperature difference between the water and the hot gas in the water tank, and the water level difference between the air outlet and the water surface. The experimental instrumentation used a thermocouple of T-type to measure the released air temperature on the surface of the water, and a thermography system to measure the thermal energy distribution on the water surface. As a result of the experiment study, we analyzed the correlation between the final released temperature of the exhaust pipe exit in a submarine and the depth of the snorkel, and presented reasonable operating conditions for the infrared signature reduction of submarine.Keywords: experiment study, flow rate, infrared signature, snorkeling, thermography
Procedia PDF Downloads 35211853 Effluent from Royal LERD Wastewater Treatment Systems to Furnish Nutrients for Phytoplankton to Generate the Abundance of Hard Clam (Meretrix spp.) on Muddy Beach
Authors: O. Phewnil, S. Khowhit, W. Inkapatanakul, A. Boutson, K. Chunkao, O. Chueawong, T. Pattamapitoon, N. Chanwong, C. Nimpee
Abstract:
The King’s Royally Initiated Laem Phak Bia Environmental Research and Development Project (“the Royal LERD Project”) is located in Laem Phak Bia Sub-District, Ban Laem District, Phetchaburi Province, Thailand. Phetchaburi municipal wastewater was treated with a simple technology by using aquatic plants, constructed wetland, oxidation ponds through a nature-by-nature process. The effluent from the Royal LERD Project was discharged into Laem Phak Bia muddy beach. The soil sediment samples were collected from two zones (200 and 600 meters from the coast of the beach), and tested for cation-exchange capacity (CEC), pH and organic matter and soil particles content. The marine water samples were also collected from the beach in wet and dry seasons and analyzed for its quality and compositions, including but not limited to, biochemical oxygen demand (BOD), dissolved oxygen (DO), suspended solids (SS), nutrients, heavy metals (As, Cd, Cr, Hg, and Pb), and phytoplankton at high and low tides. The soil texture was sandy loam with high concentration of calcium and magnesium which showed a property of base (pH 8). The marine water was qualified with the standard limits of coastal water quality. A dominant species was Coscinodiscus sp. It was found approximately 70.46% of total phytoplankton species in Meretrix casta gastrointestinal tract. The concentration of the heavy metals (As, Cd, Cr, Hg, Ni and Pb) in the tissues and water content of two species of hard clams indicated that heavy metals in Meretrix casta were higher than those in Meretrix meretrix. However, the heavy metals in both species were under the standard limits and safe for consumption. It can be concluded that nutrients in effluent from the wastewater treatment systems play important role in promoting the growth of phytoplankton and generating abundance of hard clams on muddy beach.Keywords: wastewater, phytoplankton, hard clam (Meretrix spp.), muddy beach
Procedia PDF Downloads 30711852 Performance Analysis of Modified Solar Water Heating System for Climatic Condition of Allahabad, India
Authors: Kirti Tewari, Rahul Dev
Abstract:
Solar water heating is a thermodynamic process of heating water using sunlight with the help of solar water heater. Thus, solar water heater is a device used to harness solar energy. In this paper, a modified solar water heating system (MSWHS) has been proposed over flat plate collector (FPC) and Evacuated tube collector (ETC). The modifications include selection of materials other than glass, and glass wool which are conventionally used for fabricating FPC and ETC. Some modifications in design have also been proposed. Its collector is made of double layer of semi-cylindrical acrylic tubes and fibre reinforced plastic (FRP) insulation base. Water tank is made of double layer of acrylic sheet except base and north wall. FRP is used in base and north wall of the water tank. A concept of equivalent thickness has been utilised for calculating the dimensions of collector plate, acrylic tube and tank. A thermal model for the proposed design of MSWHS is developed and simulation is carried out on MATLAB for the capacity of 200L MSWHS having collector area of 1.6 m2, length of acrylic tubes of 2m at an inclination angle 25° which is taken nearly equal to the latitude of the given location. Latitude of Allahabad is 24.45° N. The results show that the maximum temperature of water in tank and tube has been found to be 71.2°C and 73.3°C at 17:00hr and 16:00hr respectively in March for the climatic data of Allahabad. Theoretical performance analysis has been carried out by varying number of tubes of collector, the tank capacity and climatic data for given months of winter and summer.Keywords: acrylic, fibre reinforced plastic, solar water heating, thermal model, conventional water heaters
Procedia PDF Downloads 33711851 'CardioCare': A Cutting-Edge Fusion of IoT and Machine Learning to Bridge the Gap in Cardiovascular Risk Management
Authors: Arpit Patil, Atharav Bhagwat, Rajas Bhope, Pramod Bide
Abstract:
This research integrates IoT and ML to predict heart failure risks, utilizing the Framingham dataset. IoT devices gather real-time physiological data, focusing on heart rate dynamics, while ML, specifically Random Forest, predicts heart failure. Rigorous feature selection enhances accuracy, achieving over 90% prediction rate. This amalgamation marks a transformative step in proactive healthcare, highlighting early detection's critical role in cardiovascular risk mitigation. Challenges persist, necessitating continual refinement for improved predictive capabilities.Keywords: cardiovascular diseases, internet of things, machine learning, cardiac risk assessment, heart failure prediction, early detection, cardio data analysis
Procedia PDF Downloads 1211850 Democratising Rivers: Local River Conflicts in Rajasthan
Authors: Renu Sisodia
Abstract:
This paper attempted to explore and explain the local level river water conflicts in the larger context of state - society relations. This study also covered causes of local level river water conflicts in the catchment area of Bandi and Arvari river of Rajasthan. The focus of the study was on the emergence of community driven, decentralised management of river water bodies and strategies used by local communities to protect and manage river water conflicts. The research is conducted through the process of designing a framework based on essential theoretical and practical findings supported by primary and secondary data. Two in depth case study is conducted to understand the phenomenon in depth. The first field site is Bandi River of Pali district, which is about the struggle between textile industries, community and the State government in which water pollution is said to be one of the driving force of the conflict. Finding shows that the state is supporting textile industries in Pali district have not been adherent to the environmental ethics. Present legal infrastructure and local institutions fail to resolve the serious problem of water pollution in Bandi River and its adverse impact on the local community as a result local community resistance against the local administration and the state government. The second case illustrates the plight of Arvari River in Alwar district. Tussle for the ownership of fisheries between local community, the private fish contractor and State government has been the main bone of contestation. To resolve this conflict local community formed conflict management mechanism named as Arvari Parliament. Arvari Parliament has its own principle and rules to resolve water conflicts related to ownership of the river and use of the river water. The research findings also highlight the co-existence between conventional and modern practices in resolving conflicts.Keywords: water, water pollution, water conflicts, water scarcity, conflict resolution, local community
Procedia PDF Downloads 48611849 Learning to Recommend with Negative Ratings Based on Factorization Machine
Authors: Caihong Sun, Xizi Zhang
Abstract:
Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.Keywords: factorization machines, feature engineering, negative ratings, recommendation systems
Procedia PDF Downloads 24211848 Global Emission Inventories of Air Pollutants from Combustion Sources
Authors: Shu Tao
Abstract:
Based on a global fuel consumption data product (PKU-FUEL-2007) compiled recently and a series of databases for emission factors of various sources, global emission inventories of a number of greenhouse gases and air pollutants, including CO2, CO, SO2, NOx, primary particulate matter (total, PM 10, and PM 2.5), black carbon, organic carbon, mercury, volatile organic carbons, and polycyclic aromatic hydrocarbons, from combustion sources have been developed. The inventories feather high spatial and sectorial resolutions. The spatial resolution of the inventories are 0.1 by 0.1 degree, based on a sub-national disaggregation approach to reduce spatial bias due to uneven distribution of per person fuel consumption within countries. The finely resolved inventories provide critical information for chemical transport modeling and exposure modeling. Emissions from more than 60 sources in energy, industry, agriculture, residential, transportation, and wildfire sectors were quantified in this study. With the detailed sectorial information, the inventories become an important tool for policy makers. For residential sector, a set of models were developed to simulate temporal variation of fuel consumption, consequently pollutant emissions. The models can be used to characterize seasonal as well as inter-annual variations in the emissions in history and to predict future changes. The models can even be used to quantify net change of fuel consumption and pollutant emissions due to climate change. The inventories has been used for model ambient air quality, population exposure, and even health effects. A few examples of the applications are discussed.Keywords: air pollutants, combustion, emission inventory, sectorial information
Procedia PDF Downloads 36911847 Alternatives to the Disposal of Sludge from Water and Wastewater Treatment Plants
Authors: Lima Priscila, Gianotto Raiza, Arruda Leonan, Magalhães Filho Fernando
Abstract:
Industrialization and especially the accentuated population growth in developing countries and the lack of drainage, public cleaning, water and sanitation services has caused concern about the need for expansion of water treatment units and sewage. However, these units have been generating by-products, such as the sludge. This paper aims to investigate aspects of operation and maintenance of sludge from a wastewater treatment plant (WWTP - 90 L.s-1) and two water treatment plants (WTPs; 1.4 m3.s-1 and 0.5 m3.s-1) for the purpose of proper disposal and reuse, evaluating their qualitative and quantitative characteristics, the Brazilian legislation and standards. It was concluded that the sludge from the water treatment plants is directly related to the quality of raw water collected, and it becomes feasible for use in construction materials, and to dispose it in the sewage system, improving the efficiency of the WWTP regarding precipitation of phosphorus (35% of removal). The WTP Lageado had 55,726 kg/month of sludge production, more than WTP Guariroba (29,336 kg/month), even though the flow of WTP Guariroba is 1,400 L.s-1 and the WTP Lagedo 500 L.s-1, being explained by the quality that influences more than the flow. The WWTP sludge have higher concentrations of organic materials due to their origin and could be used to improve the fertility of the soil, crop production and recovery of degraded areas. The volume of sludge generated at the WWTP was 1,760 ton/month, with 5.6% of solid content in the raw sludge and in the dewatered sludge it increased its content to 23%.Keywords: disposal, sludge, water treatment, wastewater treatment
Procedia PDF Downloads 32111846 The Effect of Soil Surface Slope on Splash Distribution under Water Drop Impact
Authors: H. Aissa, L. Mouzai, M. Bouhadef
Abstract:
The effects of down slope steepness on soil splash distribution under a water drop impact have been investigated in this study. The equipment used are the burette to simulate a water drop, a splash cup filled with sandy soil which forms the source area and a splash board to collect the ejected particles. The results found in this study have shown that the apparent mass increased with increasing downslope angle following a linear regression equation with high coefficient of determination. In the same way, the radial soil splash distribution over the distance has been analyzed statistically, and an exponential function was the best fit of the relationship for the different slope angles. The curves and the regressions equations validate the well known FSDF and extend the theory of Van Dijk.Keywords: splash distribution, water drop, slope steepness, soil detachment
Procedia PDF Downloads 33811845 Regulation of Water Balance of the Plant from the Different Geo-Environmental Locations
Authors: Astghik R. Sukiasyan
Abstract:
Under the drought stress condition, the plants would grow slower. Temperature is one of the most important abiotic factors which suppress the germination processes. However, the processes of transpiration are regulated directly by the cell water, which followed to an increase in volume of vacuoles. During stretching under the influence of water pressure, the cell goes into the state of turgor. In our experiments, lines of the semi-dental sweet maize of Armenian population from various zones of growth under mild and severe drought stress were tested. According to results, the value of the water balance of the plant cells may reflect the ability of plants to adapt to drought stress. It can be assumed that the turgor allows evaluating the number of received dissolved substance in cell.Keywords: turgor, drought stress, plant growth, Armenian Zea Maize Semidentata
Procedia PDF Downloads 25711844 Proposing an Optimal Pattern for Evaluating the Performance of the Staff Management of the Water and Sewage Organization in Western Azerbaijan Province, Iran
Authors: Tohid Eskandarzadeh, Nader Bahlouli, Turaj Behnam, Azra Jafarzadeh
Abstract:
The purpose of the study reported in this paper was to propose an optimal pattern to evaluate the staff management performance of the water and sewage organization. The performance prism-model was used to evaluate the following significant dimensions of performance: organizational strategies, organizational processes, organization capabilities, stakeholders’ partnership and satisfaction. In the present study, a standard, valid and reliable questionnaire was used to obtain data about the five dimensions of the performance prism model. 169 sample respondents were used for responding the questionnaire who were selected from the staff of water and waste-water organization in western Azerbaijan, Iran. Also, Alpha coefficient was used to check the reliability of the data-collection instrument which was measured to be beyond 0.7. The obtained data were statistically analyzed by means of SPSS version 18. The results obtained from the data analysis indicated that the performance of the staff management of the water and waste-water organization in western Azerbaijan was acceptable in terms of organizational strategies, organizational process, stakeholders’ partnership and satisfaction. Nevertheless, it was found that the performance of the staff management with respect to organizational abilities was average. Indeed, the researchers drew the conclusion that the current performance of the staff management in this organization in western Azerbaijan was less than ideal performance.Keywords: performance evaluation, performance prism model, water, waste-water organization
Procedia PDF Downloads 32811843 Suspended Sediment Sources Fingerprinting in Ashebeka River Catchment, Assela, Central Ethiopia
Authors: Getachew Mekaa, Bezatu Mengisteb, Tena Alamirewc
Abstract:
Ashebeka River is the main source of drinking water supply for Assela City and its surrounding inhabitants. Apart from seasonal water reliability disruption, the cost of treating water downstream of the river has been increasing over time due to increased pollutants and suspended sediments. Therefore, this research aimed to identify geo-location and prioritize suspended sediment sources in the Ashebeka River catchment using sediment fingerprinting. We collected 58 composite soil samples and a river water sample for suspended sediment samples from the outlet, which were then filtered using Whatman filter paper. The samples were quantified for geochemical tracers with multi-element capability, and inductively coupled plasma-optical emission spectrometry (ICP-OES). Tracers with significant p-value and that passed the Kruskal-Wallis (KW) test were analyzed for stepwise discriminant function analysis (DFA). The DFA results revealed tracers with good discrimination were subsequently used for the mixed model analysis. The relative significant sediment source contributions from sub-catchments (km2): 3, 4, 1, and 2 were estimated as 49.31% (8), 26.71% (5), 23.65% (5.6), and 0.33% (28.4) respectively. The findings of this study will help the water utilities to prioritize areas of intervention, and the approach used could be followed for catchment prioritization in water safety plan development. Moreover, the findings of this research shed light on the integration of sediment fingerprinting into water safety plans to ensure the reliability of drinking water supplies.Keywords: disruption of drinking water reliability, ashebeka river catchment, sediment fingerprinting, sediment source contribution, mixed model
Procedia PDF Downloads 2411842 Design of Wireless and Traceable Sensors for Internally Illuminated Photoreactors
Authors: Alexander Sutor, David Demetz
Abstract:
We present methods for developing wireless and traceable sensors for photobioreactors or photoreactors in general. The main focus of application are reactors which are wirelessly powered. Due to the promising properties of the propagation of magnetic fields under water we implemented an inductive link with an on/off switched hartley-oscillator as transmitter and an LC-tank as receiver. For this inductive link we used a carrier frequency of 298 kHz. With this system we performed measurements to demonstrate the independence of the magnetic field from water or salty water. In contrast we showed the strongly reduced range of RF-transmitter-receiver systems at higher frequencies (433 MHz and 2.4 GHz) in water and in salty water. For implementing the traceability of the sensors, we performed measurements to show the well defined orientation of the magnetic field of a coil. This information will be used in future work for implementing an inductive link based traceability system for our sensors.Keywords: wireless sensors, photoreactor, internal illumination, wireless power
Procedia PDF Downloads 15111841 Power Management in Wireless Combustible Gas Sensors
Authors: Denis Spirjakin, Alexander Baranov, Saba Akbari, Natalia Kalenova, Vladimir Sleptsov
Abstract:
In this paper we propose the approach to power management in wireless combustible gas sensors. This approach makes possible drastically prolong sensor nodes autonomous lifetime. That is necessary to tie battery replacement to every year technical service procedures which are claimed by safety standards. Using this approach the current consumption of the wireless combustible gas sensor node was decreased from 80 mA to less than 2 mA and the power consumption from more than 220 mW to 4.6 mW. These values provide autonomous lifetime of the node more than one year.Keywords: Gas sensors, power management, wireless sensor network
Procedia PDF Downloads 72411840 A Review on Stormwater Harvesting and Reuse
Authors: Fatema Akram, Mohammad G. Rasul, M. Masud K. Khan, M. Sharif I. I. Amir
Abstract:
Australia is a country of some 7,700 million square kilometres with a population of about 22.6 million. At present water security is a major challenge for Australia. In some areas the use of water resources is approaching and in some parts it is exceeding the limits of sustainability. A focal point of proposed national water conservation programs is the recycling of both urban storm-water and treated wastewater. But till now it is not widely practiced in Australia, and particularly storm-water is neglected. In Australia, only 4% of storm-water and rainwater is recycled, whereas less than 1% of reclaimed wastewater is reused within urban areas. Therefore, accurately monitoring, assessing and predicting the availability, quality and use of this precious resource are required for better management. As storm-water is usually of better quality than untreated sewage or industrial discharge, it has better public acceptance for recycling and reuse, particularly for non-potable use such as irrigation, watering lawns, gardens, etc. Existing storm-water recycling practice is far behind of research and no robust technologies developed for this purpose. Therefore, there is a clear need for using modern technologies for assessing feasibility of storm-water harvesting and reuse. Numerical modelling has, in recent times, become a popular tool for doing this job. It includes complex hydrological and hydraulic processes of the study area. The hydrologic model computes storm-water quantity to design the system components, and the hydraulic model helps to route the flow through storm-water infrastructures. Nowadays water quality module is incorporated with these models. Integration of Geographic Information System (GIS) with these models provides extra advantage of managing spatial information. However for the overall management of a storm-water harvesting project, Decision Support System (DSS) plays an important role incorporating database with model and GIS for the proper management of temporal information. Additionally DSS includes evaluation tools and Graphical user interface. This research aims to critically review and discuss all the aspects of storm-water harvesting and reuse such as available guidelines of storm-water harvesting and reuse, public acceptance of water reuse, the scopes and recommendation for future studies. In addition to these, this paper identifies, understand and address the importance of modern technologies capable of proper management of storm-water harvesting and reuse.Keywords: storm-water management, storm-water harvesting and reuse, numerical modelling, geographic information system, decision support system, database
Procedia PDF Downloads 37211839 Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method
Authors: Mohammed T. Hayajneh
Abstract:
Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al2O3 particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life.Keywords: composite, fuzzy, tool life, wear
Procedia PDF Downloads 29511838 Resilence and Adaptation to Water Scarcity in San Martín de las Palmas, Santiago Tilantongo, Nochixtlán Oaxaca
Authors: E. Montesinos-Pedro, L. G. Toscano-Flores, N. Domínguez-Ramírez
Abstract:
Water scarcity is a worldwide issue, coupled with climate change is a relevant problem, that affect not only large cities, but also rural areas. The Municipality of Santiago Tilantongo belongs to the district of Nochixtlán Oaxaca, it’s built up from 14 communities, one of them San Martin de las Palmas. This community was founded in 1900, at that time the inhabitants were supplied with water through rivers of the region which were abundant (they used containers filled in the river for that purpose); However, over the years the level of the rivers began to drop and in 1994 specific wells were located to store water and at the same time make it drinkable, this whit support of the state of Oaxaca and the program Procampo. By the year 2000 the shortage of water in the supply sources was notorious, the community requested support from the Oaxaca State government to solve the problem. The government’s response consisted in the implementation of ferro-cement tanks (2005) and water wells (2010), both for rainwater collection, Hower, it was not enough. Now days the community has a population of 60 inhabitants who have resisted and adapted to water scarcity, not only with the programs implemented by the government, but they also have implemented important structural analysis strategies. The objective of this research is to know the adaptation strategies used by the community to analyze them and propose improvements for water conservation and mitigation of this scarcity.Keywords: adaptation, climate change, mitigation, resiliencia
Procedia PDF Downloads 9711837 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization
Authors: Soheila Sadeghi
Abstract:
Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction
Procedia PDF Downloads 6011836 Real Time Detection, Prediction and Reconstitution of Rain Drops
Authors: R. Burahee, B. Chassinat, T. de Laclos, A. Dépée, A. Sastim
Abstract:
The purpose of this paper is to propose a solution to detect, predict and reconstitute rain drops in real time – during the night – using an embedded material with an infrared camera. To prevent the system from needing too high hardware resources, simple models are considered in a powerful image treatment algorithm reducing considerably calculation time in OpenCV software. Using a smart model – drops will be matched thanks to a process running through two consecutive pictures for implementing a sophisticated tracking system. With this system drops computed trajectory gives information for predicting their future location. Thanks to this technique, treatment part can be reduced. The hardware system composed by a Raspberry Pi is optimized to host efficiently this code for real time execution.Keywords: reconstitution, prediction, detection, rain drop, real time, raspberry, infrared
Procedia PDF Downloads 41911835 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus
Authors: J. K. Alhassan, B. Attah, S. Misra
Abstract:
Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. medical dataset is a vital ingredient used in predicting patients health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. The evaluations was done using weka software and found out that DTA performed better than ANN. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. The Root Mean Squared Error (RMSE) of MLP is 0.3913,that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.Keywords: artificial neural network, classification, decision tree algorithms, diabetes mellitus
Procedia PDF Downloads 40811834 Application of Response Surface Methodology (RSM) for Optimization of Fluoride Removal by Using Banana Peel
Authors: Pallavi N., Gayatri Jadhav
Abstract:
Good quality water is of prime importance for a healthy living. Fluoride is one such mineral present in water which causes many health problems in humans and specially children. Fluoride is said to be a double edge sword because lesser and higher concentration of fluoride in drinking water can cause both dental and skeletal fluorosis. Fluoride is one of the important mineral usually present at a higher concentration in ground water. There are many researches being carried out for defluoridation method. In the present research, fluoride removal is demonstrated using banana peel which is a biowaste as a biocoagulant. Response Surface Methodology (RSM) is a statistical design tool which is used to design the experiment. Central Composite Design (CCD) was used to determine the influence of the pH and dosage of the coagulant on the optimal removal of fluoride from a simulated water sample. 895 of fluoride removal were obtained in a acidic pH range of 4 – 9 and bio coagulant dosage of dosage of 18 – 20mg/L.Keywords: Fluoride, Response Surface Methodology, Dosage, banana peel
Procedia PDF Downloads 16011833 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.Keywords: deregulated energy market, forecasting, machine learning, system marginal price
Procedia PDF Downloads 215