Search results for: oil pollution
318 Assessment of Groundwater Aquifer Impact from Artificial Lagoons and the Reuse of Wastewater in Qatar
Authors: H. Aljabiry, L. Bailey, S. Young
Abstract:
Qatar is a desert with an average temperature 37⁰C, reaching over 40⁰C during summer. Precipitation is uncommon and mostly in winter. Qatar depends on desalination for drinking water and on groundwater and recycled water for irrigation. Water consumption and network leakage per capita in Qatar are amongst the highest in the world; re-use of treated wastewater is extremely limited with only 14% of treated wastewater being used for irrigation. This has led to the country disposing of unwanted water from various sources in lagoons situated around the country, causing concern over the possibility of environmental pollution. Accordingly, our hypothesis underpinning this research is that the quality and quantity of water in lagoons is having an impact on the groundwater reservoirs in Qatar. Lagoons (n = 14) and wells (n = 55) were sampled for both summer and winter in 2018 (summer and winter). Water, adjoining soil and plant samples were analysed for multiple elements by Inductively Coupled Plasma Mass Spectrometry. Organic and inorganic carbon were measured (CN analyser) and the major anions were determined by ion chromatography. Salinization in both the lagoon and the wells was seen with good correlations between Cl⁻, Na⁺, Li, SO₄, S, Sr, Ca, Ti (p-value < 0.05). Association of heavy metals was observed of Ni, Cu, Ag, and V, Cr, Mo, Cd which is due to contamination from anthropological activities such as wastewater disposal or spread of contaminated dust. However, looking at each elements none of them exceeds the Qatari regulation. Moreover, gypsum saturation in the system was observed in both the lagoon and wells water samples. Lagoons and the water of the well are found to be of a saline type as well as Ca²⁺, Cl⁻, SO₄²⁻ type evidencing both gypsum dissolution and salinization in the system. Moreover, Maps produced by Inverse distance weighting showed an increasing level of Nitrate in the groundwater in winter, and decrease chloride and sulphate level, indicating recharge effect after winter rain events. While E. coli and faecal bacteria were found in most of the lagoons, biological analysis for wells needs to be conducted to understand the biological contamination from lagoon water infiltration. As a conclusion, while both the lagoon and the well showed the same results, more sampling is needed to understand the impact of the lagoons on the groundwater.Keywords: groundwater quality, lagoon, treated wastewater, water management, wastewater treatment, wetlands
Procedia PDF Downloads 134317 Unveiling the Potential of MoSe₂ for Toxic Gas Sensing: Insights from Density Functional Theory and Non-equilibrium Green’s Function Calculations
Authors: Si-Jie Ji, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
With the rapid development of industrialization and urbanization, air pollution poses significant global environmental challenges, contributing to acid rain, global warming, and adverse health effects. Therefore, it is necessary to monitor the concentration of toxic gases in the atmospheric environment in real-time and to deploy cost-effective gas sensors capable of detecting their emissions. In this study, we systematically investigated the sensing capabilities of the two-dimensional MoSe₂ for seven key environmental gases (NO, NO₂, CO, CO₂, SO₂, SO₃, and O₂) using density functional theory (DFT) and non-equilibrium Green’s function (NEGF) calculations. We also investigated the impact of H₂O as an interfering gas. Our results indicate that the MoSe₂ monolayer is thermodynamically stable and exhibits strong gas-sensing capabilities. The calculated adsorption energies indicate that these gases can stably adsorb on MoSe₂, with SO₃ exhibiting the strongest adsorption energy (-0.63 eV). Electronic structure analysis, including projected density of states (PDOS) and Bader charge analysis, demonstrates significant changes in the electronic properties of MoSe₂ upon gas adsorption, affecting its conductivity and sensing performance. We find that oxygen (O₂) adsorption notably influenced the deformation of MoSe₂. To comprehensively understand the potential of MoSe₂ as a gas sensor, we used the NEGF method to assess the electronic transport properties of MoSe₂ under gas adsorption, evaluating current-voltage (I-V), resistance-voltage (R-V) characteristics, and transmission spectra to determine sensitivity, selectivity, and recovery time compared to pristine MoSe₂. Sensitivity, selectivity, and recovery time are analyzed at a bias voltage of 1.7V, showing excellent performance of MoSe₂ in detecting SO₃, among other gases. The pronounced changes in electronic transport behavior induced by SO₃ adsorption confirm MoSe₂’s strong potential as a high-performance gas-sensing material. Overall, this theoretical study provides new insights into the development of high-performance gas sensors, demonstrating the potential of MoSe₂ as a gas-sensing material, particularly for gases like SO₃.Keywords: density functional theory, gas sensing, MoSe₂, non-equilibrium Green’s function, SO
Procedia PDF Downloads 20316 An Integrated Approach to Solid Waste Management of Karachi, Pakistan (Waste-to-Energy Options)
Authors: Engineer Dilnawaz Shah
Abstract:
Solid Waste Management (SWM) is perhaps one of the most important elements constituting the environmental health and sanitation of the urban developing sector. The management system has several components that are integrated as well as interdependent; thus, the efficiency and effectiveness of the entire system are affected when any of its functional components fails or does not perform up to the level mark of operation. Sindh Solid Waste Management Board (SSWMB) is responsible for the management of solid waste in the entire city. There is a need to adopt the engineered approach in the redesigning of the existing system. In most towns, street sweeping operations have been mechanized and done by machinery operated by vehicles. Construction of Garbage Transfer Stations (GTS) at a number of locations within the city will cut the cost of transportation of waste to disposal sites. Material processing, recovery of recyclables, compaction, volume reduction, and increase in density will enable transportation of waste to disposal sites/landfills via long vehicles (bulk transport), minimizing transport/traffic and environmental pollution-related issues. Development of disposal sites into proper sanitary landfill sites is mandatory. The transportation mechanism is through garbage vehicles using either hauled or fixed container systems employing crew for mechanical or manual loading. The number of garbage vehicles is inadequate, and due to comparatively long haulage to disposal sites, there are certain problems of frequent vehicular maintenance and high fuel costs. Foreign investors have shown interest in enterprising improvement schemes and proposed operating a solid waste management system in Karachi. The waste to Energy option is being considered to provide a practical answer to be adopted to generate power and reduce waste load – a two-pronged solution for the increasing environmental problem. The paper presents results and analysis of a recent study into waste generation and characterization probing into waste-to-energy options for Karachi City.Keywords: waste to energy option, integrated approach, solid waste management, physical and chemical composition of waste in Karachi
Procedia PDF Downloads 43315 Optimized Parameters for Simultaneous Detection of Cd²⁺, Pb²⁺ and CO²⁺ Ions in Water Using Square Wave Voltammetry on the Unmodified Glassy Carbon Electrode
Authors: K. Sruthi, Sai Snehitha Yadavalli, Swathi Gosh Acharyya
Abstract:
Water is the most crucial element for sustaining life on earth. Increasing water pollution directly or indirectly leads to harmful effects on human life. Most of the heavy metal ions are harmful in their cationic form. These heavy metal ions are released by various activities like disposing of batteries, industrial wastes, automobile emissions, and soil contamination. Ions like (Pb, Co, Cd) are carcinogenic and show many harmful effects when consumed more than certain limits proposed by WHO. The simultaneous detection of the heavy metal ions (Pb, Co, Cd), which are highly toxic, is reported in this study. There are many analytical methods for quantifying, but electrochemical techniques are given high priority because of their sensitivity and ability to detect and recognize lower concentrations. Square wave voltammetry was preferred in electrochemical methods due to the absence of background currents which is interference. Square wave voltammetry was performed on GCE for the quantitative detection of ions. Three electrode system consisting of a glassy carbon electrode as the working electrode (3 mm diameter), Ag/Agcl electrode as the reference electrode, and a platinum wire as the counter electrode was chosen for experimentation. The mechanism of detection was done by optimizing the experimental parameters, namely pH, scan rate, and temperature. Under the optimized conditions, square wave voltammetry was performed for simultaneous detection. Scan rates were varied from 5 mV/s to 100 mV/s and found that at 25 mV/s all the three ions were detected simultaneously with proper peaks at particular stripping potential. The variation of pH from 3 to 8 was done where the optimized pH was taken as pH 5 which holds good for three ions. There was a decreasing trend at starting because of hydrogen gas evolution, and after pH 5 again there was a decreasing trend that is because of hydroxide formation on the surface of the working electrode (GCE). The temperature variation from 25˚C to 45˚C was done where the optimum temperature concerning three ions was taken as 35˚C. Deposition and stripping potentials were given as +1.5 V and -1.5 V, and the resting time of 150 seconds was given. Three ions were detected at stripping potentials of Cd²⁺ at -0.84 V, Pb²⁺ at -0.54 V, and Co²⁺ at -0.44 V. The parameters of detection were optimized on a glassy carbon electrode for simultaneous detection of the ions at lower concentrations by square wave voltammetry.Keywords: cadmium, cobalt, lead, glassy carbon electrode, square wave anodic stripping voltammetry
Procedia PDF Downloads 115314 Statistical Modeling of Constituents in Ash Evolved From Pulverized Coal Combustion
Authors: Esam Jassim
Abstract:
Industries using conventional fossil fuels have an interest in better understanding the mechanism of particulate formation during combustion since such is responsible for emission of undesired inorganic elements that directly impact the atmospheric pollution level. Fine and ultrafine particulates have tendency to escape the flue gas cleaning devices to the atmosphere. They also preferentially collect on surfaces in power systems resulting in ascending in corrosion inclination, descending in the heat transfer thermal unit, and severe impact on human health. This adverseness manifests particularly in the regions of world where coal is the dominated source of energy for consumption. This study highlights the behavior of calcium transformation as mineral grains verses organically associated inorganic components during pulverized coal combustion. The influence of existing type of calcium on the coarse, fine and ultrafine mode formation mechanisms is also presented. The impact of two sub-bituminous coals on particle size and calcium composition evolution during combustion is to be assessed. Three mixed blends named Blends 1, 2, and 3 are selected according to the ration of coal A to coal B by weight. Calcium percentage in original coal increases as going from Blend 1 to 3. A mathematical model and a new approach of describing constituent distribution are proposed. Analysis of experiments of calcium distribution in ash is also modeled using Poisson distribution. A novel parameter, called elemental index λ, is introduced as a measuring factor of element distribution. Results show that calcium in ash that originally in coal as mineral grains has index of 17, whereas organically associated calcium transformed to fly ash shown to be best described when elemental index λ is 7. As an alkaline-earth element, calcium is considered the fundamental element responsible for boiler deficiency since it is the major player in the mechanism of ash slagging process. The mechanism of particle size distribution and mineral species of ash particles are presented using CCSEM and size-segregated ash characteristics. Conclusions are drawn from the analysis of pulverized coal ash generated from a utility-scale boiler.Keywords: coal combustion, inorganic element, calcium evolution, fluid dynamics
Procedia PDF Downloads 334313 Phytoextraction of Some Heavy Metals from Artificially Polluted soil
Authors: Kareem Kalo Qassim, Hassan A. M. Mezori
Abstract:
The bioaccumulation of heavy metals in the environment has become a matter of public interest because it persists in the soil longer than other components of the biosphere. Bioremediation has emerged as the ideal alternative environmentally friendly and ecological sound technology for removing pollutants from polluted sites. Phytoremediation is an attractive remediation technology that makes use of plants to remove contaminants from the environment. A pot experiment was conducted under lath house conditions to evaluate the ability of plants (H. Annuus, S. Bicolor, and Z. Mays) to phytoextract heavy metals from artificially polluted soils by different concentrations of Cadmium, Lead, and Copper (0, 100, 200, 200 + EDTA). The Seed germination was influenced by the presence of heavy metals and inhibition increased by increasing the heavy metals concentration. A significant difference was observed in the effect of lead and copper. Generally, the length of root, shoot, and intact plant was reduced by all the concentrations used in the experiments. The root system was affected more than the shoot system of the same plants. All heavy metals concentrations caused a reduction in the dry weight and chlorophyll content of all tested plant species; the reduction was increased by increasing the concentration of all heavy metals, especially when EDTA was added. The Bioaccumulation of heavy metals concentration of all the tested plants increased by increasing the concentration. The highest accumulation of cadmium was (81.77mg kg⁻¹), and copper was ( 65.07 mg kg⁻¹) in S. bicolor, while lead-in H. annuus was (60.74 mg kg⁻¹). The order of accumulation of heavy metals in all the tested plant species in the root system and the intact plant was as follows: H. annuus ˃ S. bicolor ˃ Z. mays and shoot system was: H. annuus ˃ Z. mays ˃ S. bicolor. The highest TF of cadmium was (0.41) in H. annuus; lead was (0.72) in Z. mays and S. bicolor, and copper was (0.44) in Z. mays. The tested plant species varied in their response to the heavy metals and the inhibition was concentration depended. In general, the roots system was more affected by heavy metals toxicity than the shoots system; the roots system accumulated more heavy metals in the roots than the shoots system. The addition of EDTA to the last concentration of heavy metals facilitated the availably and absorption of heavy metals from the polluted soil by all tested plant species.Keywords: phytoextyraction, phytoremediation, translocation, heavy metals, soil pollution
Procedia PDF Downloads 143312 Assessment and Adaptation Strategy of Climate Change to Water Quality in the Erren River and Its Impact to Health
Authors: Pei-Chih Wu, Hsin-Chih Lai, Yung-Lung Lee, Yun-Yao Chi, Ching-Yi Horng, Hsien-Chang Wang
Abstract:
The impact of climate change to health has always been well documented. Amongst them, water-borne infectious diseases, chronic adverse effects or cancer risks due to chemical contamination in flooding or drought events are especially important in river basin. This study therefore utilizes GIS and different models to integrate demographic, land use, disaster prevention, social-economic factors, and human health assessment in the Erren River basin. Therefore, through the collecting of climatic, demographic, health surveillance, water quality and other water monitoring data, potential risks associated with the Erren River Basin are established and to understand human exposure and vulnerability in response to climate extremes. This study assesses the temporal and spatial patterns of melioidosis (2000-2015) and various cancer incidents in Tainan and Kaohsiung cities. The next step is to analyze the spatial association between diseases incidences, climatic factors, land uses, and other demographic factors by using ArcMap and GeoDa. The study results show that amongst all melioidosis cases in Taiwan, 24% cases (115) residence occurred in the Erren River basin. The relationship between the cases and in Tainan and Kaohsiung cities are associated with population density, aging indicator, and residence in Erren River basin. Risks from flooding due to heavy rainfall and fish farms in spatial lag regression are also related. Through liver cancer, the preliminary analysis in temporal and spatial pattern shows an increases pattern in annual incidence without clusters in Erren River basin. Further analysis of potential cancers connected to heavy metal contamination from water pollution in Erren River is established. The final step is to develop an assessment tool for human exposure from water contamination and vulnerability in response to climate extremes for the second year.Keywords: climate change, health impact, health adaptation, Erren River Basin
Procedia PDF Downloads 302311 Status of Physical, Chemical and Biological Attributes of Isheri, Ogun River, in Relation to the Surrounding Anthropogenic Activities of Kara Abattoir, South West Nigeria
Authors: N. B. Ikenweiwe, A. A. Alimi, N. A. Bamidele, A. O. Ewumi, J. Dairo, I. A. Akinnubi, S. O. Otubusin
Abstract:
A study on the physical, chemical and biological parameters of the lower course of Ogun River, Isheri-Olofin was carried out between January and December 2014 in order to determine the effects of the anthropogenic activities of the Kara abattoir and domestic waste depositions on the quality of the water. Water samples were taken twice each month at three selected stations A, B and C (based on characteristic features or activity levels) along the water course. Samples were analysed using standard methods for chemical and biological parameters the same day in the laboratory while physical parameters were determined in-situ with water parameters kit. Generally, results of Transparency, Dissolved Oxygen, Nitrates, TDS and Alkalinity fall below the permissible limits of WHO and FEPA standards for drinking and fish production. Results of phosphates, lead and cadmium were also low but still within the permissible limit. Only Temperature and pH were within limit. Low plankton community, (phytoplankton, zooplankton), which ranges from 3, 5 to 40, 23 were as a result of low levels of DO, transparency and phosphate. The presence of coliform bacteria of public health importance like Escherichia coli, Proteus vulgaris, Aeromonas sp., Shigella sp, Enterobacter aerogenes as well as gram negative bacteria Proteus morganii are mainly indicators of faecal pollution. Fish and other resources obtained from this water stand the risk of being contaminated with these organisms and man is at the receiving end. The results of the physical, chemical and some biological parameters of Isheri, Ogun River, according to this study showed that the live forms of aquatic and fisheries resources there are dwelling under stress as a result of deposition of bones, horns, faecal components, slurry of suspended solids, fat and blood into the water. Government should therefore establish good monitoring system against illegal waste depositions and create education programmes that will enlighten the community on the social, ecological and economic values of the river.Keywords: water parameters, Isheri Ogun river, anthropogenic activities, Kara abattoir
Procedia PDF Downloads 537310 Mongolian Water Quality Problem and Health of Free-Grazing Sheep
Authors: Yu Yoshihara, Chika Tada, Moe Takada, Nyam-Osor Purevdorj, Khorolmaa Chimedtseren, Yutaka Nakai
Abstract:
Water pollution from animal waste and its influence on grazing animals is a current concern regarding Mongolian grazing lands. We allocated 32 free-grazing lambs to four groups and provided each with water from a different source (upper stream, lower stream, well, and pond) for 49 days. We recorded the amount of water consumed by the lambs, as well as their body weight, behavior, white blood cell count, acute phase (haptoglobin) protein level, and fecal condition. We measured the chemical and biological qualities of the four types of water, and we detected enteropathogenic and enterohemorrhagic Escherichia coli in fecal samples by using a genetic approach. Pond water contained high levels of nitrogen and minerals, and well water contained high levels of bacteria. The odor concentration index decreased in order from pond water to upper stream, lower stream, and well. On day 15 of the experiment, the following parameters were the highest in lambs drinking water from the following sources: water intake (pond or lower stream), body weight gain (pond), WBC count (lower stream), haptoglobin concentration (well), and enteropathogenic E. coli infection rate (lower stream). Lambs that drank well water spent more time lying down and less time grazing than the others, and lambs that drank pond water spent more time standing and less time lying down. Lambs given upper or lower stream water exhibited more severe diarrhea on day 15 of the experiment than before the experiment. Mongolian sheep seemed to adapt to chemically contaminated water: their productivity benefited the most from pond water, likely owing to its rich mineral content. Lambs that drank lower stream water showed increases in enteropathogenic E. coli infection, clinical diarrhea, and WBC count. Lambs that drank well water, which was bacteriologically contaminated, had increased serum acute phase protein levels and poor physical condition; they were thus at increased risk of negative health and production effects.Keywords: DNA, Escherichia coli, fecal sample, lower stream, well water
Procedia PDF Downloads 470309 Evaluation of Indoor Radon as Air Pollutant in Schools and Control of Exposure of the Children
Authors: Kremena Ivanona, Bistra Kunovska, Jana Djunova, Desislava Djunakova, Zdenka Stojanovska
Abstract:
In recent decades, the general public has become increasingly interested in the impact of air pollutions on their health. Currently, numerous studies are aimed at identifying pollutants in the indoor environment where they carry out daily activities. Internal pollutants can be of both natural and artificial origin. With regard to natural pollutants, special attention is paid to natural radioactivity. In recent years, radon has been one of the most studied indoor pollutants because it has the greatest contribution to human exposure to natural radionuclides. It is a known fact that lung cancer can be caused by radon radiation and it is the second risk factor after smoking for the onset of the disease. The main objective of the study under the National Science Fund of Bulgaria, in the framework of grant No КП-06-Н23/1/07.12.2018 is to evaluate the indoor radon as an important air pollutant in school buildings in order to reduce the exposure to children. The measurements were performed in 48 schools located in 55 buildings in one Bulgarian administrative district (Kardjaly). The nuclear track detectors (CR-39) were used for measurements. The arithmetic and geometric means of radon concentrations are AM = 140 Bq/m3, and GM = 117 Bq/m3 respectively. In 51 school rooms, the radon levels were greater than 200 Bq/m3, and in 28 rooms, located in 17 school buildings, it exceeded the national reference level of 300 Bq/m3, defined in the Bulgarian ordinance on radiation protection (or 30% of the investigated buildings). The statistically significant difference in the values of radon concentration by municipalities (KW, р < 0.001) obtained showed that the most likely reason for the differences between the groups is the geographical location of the buildings and the possible influence of the geological composition. The combined effect of the year of construction (technical condition of the buildings) and the energy efficiency measures was considered. The values of the radon concentration in the buildings where energy efficiency measures have been implemented are higher than those in buildings where they have not been performed. This result confirms the need for investigation of radon levels before conducting the energy efficiency measures in buildings. Corrective measures for reducing the radon levels have been recommended in school buildings with high radon levels in order to decrease the children's exposure.Keywords: air pollution, indoor radon, children exposure, schools
Procedia PDF Downloads 173308 Impact of Two Xenobiotics in Mosquitofish: Gambusia affinis: Several Approaches
Authors: Chouahda Salima, Soltani Noureddine
Abstract:
The present study is a part of biological control against mosquitoes. It aims to assess the impact of two xenobiotics (a selective insect growth regulator: halofenozide and heavy metals: cadmium, more toxic and widespread in the region) in mosquitofish: Gambusia affinis. Several approaches were examined: Acute toxicity of cadmium and halofenozide: The acute toxicity of cadmium and halofenozide was examined in juvenile and adult males and females of G. affinis at different concentrations, cadmium causes mortality of the species studied with a relation dose-response. In laboratory conditions, the impact of cadmium was determined on two biomarkers of environmental stress: glutathione and acetylcholinesterase. The results show that the juvenile followed by adult males are more susceptible than adult females, while the halofenozide does not have any effect on the mortality of juvenile and adult males and females of G.affinis. Chronic toxicity of cadmium and halofenozide: both xenobiotics were added to the water fish raising at different doses tested in juveniles and adults males and females during two months of experience. Growth and metric indices; results show that halofenozide added to the water juveniles of G. affinis has no effect on their growth (length and weight). On the other side, the cadmium at the dose 5 µg/L shows a higher toxicity against juvenile, where he appears to reduce significantly their linear growth and weight. In females, the both xenobiotics have significant effects on metric indices, but these effects are more important on the hepatosomatic index that the gonadosomatic index and the coefficient of condition. Biomarkers; acetylcholinesterase (AChE), glutathione S-transferase (GST) and glutathione (GSH) used in assessing of environmental stress were measured in juveniles and adults males and females. The response of these biomarkers reveals an inhibition of AChE specific activity, an induction of GST activity, and decrease of GSH rates in juveniles in the end of experiment and during chronic treatment adult males and females. The effect of these biomarkers is more pronounced in females compared to males and juveniles. These different biomarkers have a similar profile for the duration of exposure.Keywords: gambusia affinis, insecticide, heavy metal, morphology, biomarkers, chronic toxicity, acute toxicity, pollution
Procedia PDF Downloads 312307 Vertical and Horizantal Distribution Patterns of Major and Trace Elements: Surface and Subsurface Sediments of Endhorheic Lake Acigol Basin, Denizli Turkey
Authors: M. Budakoglu, M. Karaman
Abstract:
Lake Acıgöl is located in area with limited influences from urban and industrial pollution sources, there is nevertheless a need to understand all potential lithological and anthropogenic sources of priority contaminants in this closed basin. This study discusses vertical and horizontal distribution pattern of major, trace elements of recent lake sediments to better understand their current geochemical analog with lithological units in the Lake Acıgöl basin. This study also provides reliable background levels for the region by the detailed surfaced lithological units data. The detail results of surface, subsurface and shallow core sediments from these relatively unperturbed ecosystems, highlight its importance as conservation area, despite the high-scale industrial salt production activity. While P2O5/TiO2 versus MgO/CaO classification diagram indicate magmatic and sedimentary origin of lake sediment, Log(SiO2/Al2O3) versus Log(Na2O/K2O) classification diagrams express lithological assemblages of shale, iron-shale, vacke and arkose. The plot between TiO2 vs. SiO2 and P2O5/TiO2 vs. MgO/CaO also supports the origin of the primary magma source. The average compositions of the 20 different lithological units used as a proxy for geochemical background in the study area. As expected from weathered rock materials, there is a large variation in the major element content for all analyzed lake samples. The A-CN-K and A-CNK-FM ternary diagrams were used to deduce weathering trends. Surface and subsurface sediments display an intense weathering history according to these ternary diagrams. The most of the sediments samples plot around UCC and TTG, suggesting a low to moderate weathering history for the provenance. The sediments plot in a region clearly suggesting relative similar contents in Al2O3, CaO, Na2O, and K2O from those of lithological samples.Keywords: Lake Acıgöl, recent lake sediment, geochemical speciation of major and trace elements, heavy metals, Denizli, Turkey
Procedia PDF Downloads 410306 Development of a PJWF Cleaning Method for Wet Electrostatic Precipitators
Authors: Hsueh-Hsing Lu, Thi-Cuc Le, Tung-Sheng Tsai, Chuen-Jinn Tsai
Abstract:
This study designed and tested a novel wet electrostatic precipitators (WEP) system featuring a Pulse-Air-Jet-Assisted Water Flow (PJWF) to shorten water cleaning time, reduce water usage, and maintain high particle removal efficiency. The PJWF injected cleaning water tangentially at the cylinder wall, rapidly enhancing the momentum of the water flow for efficient dust cake removal. Each PJWF cycle uses approximately 4.8 liters of cleaning water in 18 seconds. Comprehensive laboratory tests were conducted using a single-tube WEP prototype within a flow rate range of 3.0 to 6.0 cubic meters per minute(CMM), operating voltages between -35 to -55 kV, and high-frequency power supply. The prototype, consisting of 72 sets of double-spike rigid discharge electrodes, demonstrated that with the PJWF, -35 kV, and 3.0 CMM, the PM2.5 collection efficiency remained as high as the initial value of 88.02±0.92% after loading with Al2O3 particles at 35.75± 2.54 mg/Nm3 for 20-hr continuous operation. In contrast, without the PJWF, the PM2.5 collection efficiency drastically dropped from 87.4% to 53.5%. Theoretical modeling closely matched experimental results, confirming the robustness of the system's design and its scalability for larger industrial applications. Future research will focus on optimizing the PJWF system, exploring its performance with various particulate matter, and ensuring long-term operational stability and reliability under diverse environmental conditions. Recently, this WEP was combined with a preceding CT (cooling tower) and a HWS (honeycomb wet scrubber) and pilot-tested (40 CMM) to remove SO2 and PM2.5 emissions in a sintering plant of an integrated steel making plant. Pilot-test results showed that the removal efficiencies for SO2 and PM2.5 emissions are as high as 99.7 and 99.3 %, respectively, with ultralow emitted concentrations of 0.3 ppm and 0.07 mg/m3, respectively, while the white smoke is also eliminated at the same time. These new technologies are being used in the industry and the application in different fields is expected to be expanded to reduce air pollutant emissions substantially for a better ambient air quality.Keywords: wet electrostatic precipitator, pulse-air-jet-assisted water flow, particle removal efficiency, air pollution control
Procedia PDF Downloads 19305 Assessment of Household Livelihood Diversification and Fisheries Conservation Strategies among Fishermen in Coastal Areas of Ogun State, Nigeria
Authors: Adeosun, Festus Idowu; Omoniyi, Isaac Tunde, Adeosun, Olamide Modinat
Abstract:
This study assessed the association between household livelihood diversification and fisheries conservation policies among fishermen in coastal areas of Ogun State, Nigeria by adopting a multistage sampling procedure. The sample size was 90 fishermen from six randomly selected fishing communities (Abureji, Agbalegiyo, Ilamo, Imosan, Iseku and Wharf) along the coastline in Ogun State, Nigeria. Data were collected using pre-validated interview schedule and subjected to descriptive and inferential analytical techniques. Results revealed that majority of the fishermen were married (98.9%), in the age bracket of 41-60 years (71.1%) with mean age of 49 years, had household size of 6-15 persons (91.1%) with mean household size being 9 persons, from extended families (90.0%), either either no formal (43.3%) or only primary education (41.1%), were non-members of social groups (62.2%), and had no other occupations (93.3%). It was also reported that there was generally low level of household livelihood diversification across the fishing communities. Gill nets were the most commonly used fishing gears across the fishing communities (80.0%). This was followed by seine nets (63.3%), traps (56.7%) and trawl nets (53.3%) while fish aggregating devices (35.6%), cast nets (37.8%) and hook and line (24.4%) were the least used fishing gears in the study locations. Results further revealed that coastal fishery was characterised by conflicts among water users (64.4%), absence of protected fishing areas (81.1%), and experience of water pollution (36.7%). Majority (71.1%) of the fishermen across the study locations agreed with closed season policy as a coastal fisheries conservation strategy. This was followed by gear restriction (30.0%). Results of Chi-square analysis revealed that there were significant associations between level of household livelihood diversification and fishermen’s agreement with gear restriction (χ2 = 15.545, df = 5), and closed season (χ2 = 11.214, df = 4). The study concluded that coastal fisheries is in a poor state and that it could be improved through the introduction of gear restriction and closed season policies. The study recommended that youths in the coastal areas should venture into fishing, and that government and non-governmental agencies should organize sensitization programmes on fisheries conservation policies across the coastal areas in Ogun State.Keywords: coastal, fisheries, conservation, livelihood
Procedia PDF Downloads 74304 Assessing the Effect of Urban Growth on Land Surface Temperature: A Case Study of Conakry Guinea
Authors: Arafan Traore, Teiji Watanabe
Abstract:
Conakry, the capital city of the Republic of Guinea, has experienced a rapid urban expansion and population increased in the last two decades, which has resulted in remarkable local weather and climate change, raise energy demand and pollution and treating social, economic and environmental development. In this study, the spatiotemporal variation of the land surface temperature (LST) is retrieved to characterize the effect of urban growth on the thermal environment and quantify its relationship with biophysical indices, a normalized difference vegetation index (NDVI) and a normalized difference built up Index (NDBI). Landsat data TM and OLI/TIRS acquired respectively in 1986, 2000 and 2016 were used for LST retrieval and Land use/cover change analysis. A quantitative analysis based on the integration of a remote sensing and a geography information system (GIS) has revealed an important increased in the LST pattern in the average from 25.21°C in 1986 to 27.06°C in 2000 and 29.34°C in 2016, which was quite eminent with an average gain in surface temperature of 4.13°C over 30 years study period. Additionally, an analysis using a Pearson correlation (r) between (LST) and the biophysical indices, normalized difference vegetation index (NDVI) and a normalized difference built-up Index (NDBI) has revealed a negative relationship between LST and NDVI and a strong positive relationship between LST and NDBI. Which implies that an increase in the NDVI value can reduce the LST intensity; conversely increase in NDBI value may strengthen LST intensity in the study area. Although Landsat data were found efficient in assessing the thermal environment in Conakry, however, the method needs to be refined with in situ measurements of LST in the future studies. The results of this study may assist urban planners, scientists and policies makers concerned about climate variability to make decisions that will enhance sustainable environmental practices in Conakry.Keywords: Conakry, land surface temperature, urban heat island, geography information system, remote sensing, land use/cover change
Procedia PDF Downloads 242303 Photocatalytic Eco-Active Ceramic Slabs to Abate Air Pollution under LED Light
Authors: Claudia L. Bianchi, Giuseppina Cerrato, Federico Galli, Federica Minozzi, Valentino Capucci
Abstract:
At the beginning of the industrial productions, porcelain gres tiles were considered as just a technical material, aesthetically not very beautiful. Today thanks to new industrial production methods, both properties, and beauty of these materials completely fit the market requests. In particular, the possibility to prepare slabs of large sizes is the new frontier of building materials. Beside these noteworthy architectural features, new surface properties have been introduced in the last generation of these materials. In particular, deposition of TiO₂ transforms the traditional ceramic into a photocatalytic eco-active material able to reduce polluting molecules present in air and water, to eliminate bacteria and to reduce the surface dirt thanks to the self-cleaning property. The problem of photocatalytic materials resides in the fact that it is necessary a UV light source to activate the oxidation processes on the surface of the material, processes that are turned off inexorably when the material is illuminated by LED lights and, even more so, when we are in darkness. First, it was necessary a thorough study change the existing plants to deposit the photocatalyst very evenly and this has been done thanks to the advent of digital printing and the development of an ink custom-made that stabilizes the powdered TiO₂ in its formulation. In addition, the commercial TiO₂, which is used for the traditional photocatalytic coating, has been doped with metals in order to activate it even in the visible region and thus in the presence of sunlight or LED. Thanks to this active coating, ceramic slabs are able to purify air eliminating odors and VOCs, and also can be cleaned with very soft detergents due to the self-cleaning properties given by the TiO₂ present at the ceramic surface. Moreover, the presence of dopant metals (patent WO2016157155) also allows the material to work as well as antibacterial in the dark, by eliminating one of the negative features of photocatalytic building materials that have so far limited its use on a large scale. Considering that we are constantly in contact with bacteria, some of which are dangerous for health. Active tiles are 99,99% efficient on all bacteria, from the most common such as Escherichia coli to the most dangerous such as Staphilococcus aureus Methicillin-resistant (MRSA). DIGITALIFE project LIFE13 ENV/IT/000140 – award for best project of October 2017.Keywords: Ag-doped microsized TiO₂, eco-active ceramic, photocatalysis, digital coating
Procedia PDF Downloads 227302 Microfiber Release During Laundry Under Different Rinsing Parameters
Authors: Fulya Asena Uluç, Ehsan Tuzcuoğlu, Songül Bayraktar, Burak Koca, Alper Gürarslan
Abstract:
Microplastics are contaminants that are widely distributed in the environment with a detrimental ecological effect. Besides this, recent research has proved the existence of microplastics in human blood and organs. Microplastics in the environment can be divided into two main categories: primary and secondary microplastics. Primary microplastics are plastics that are released into the environment as microscopic particles. On the other hand, secondary microplastics are the smaller particles that are shed as a result of the consumption of synthetic materials in textile products as well as other products. Textiles are the main source of microplastic contamination in aquatic ecosystems. Laundry of synthetic textiles (34.8%) accounts for an average annual discharge of 3.2 million tons of primary microplastics into the environment. Recently, microfiber shedding from laundry research has gained traction. However, no comprehensive study was conducted from the standpoint of rinsing parameters during laundry to analyze microfiber shedding. The purpose of the present study is to quantify microfiber shedding from fabric under different rinsing conditions and determine the effective rinsing parameters on microfiber release in a laundry environment. In this regard, a parametric study is carried out to investigate the key factors affecting the microfiber release from a front-load washing machine. These parameters are the amount of water used during the rinsing step and the spinning speed at the end of the washing cycle. Minitab statistical program is used to create a design of the experiment (DOE) and analyze the experimental results. Tests are repeated twice and besides the controlled parameters, other washing parameters are kept constant in the washing algorithm. At the end of each cycle, released microfibers are collected via a custom-made filtration system and weighted with precision balance. The results showed that by increasing the water amount during the rinsing step, the amount of microplastic released from the washing machine increased drastically. Also, the parametric study revealed that increasing the spinning speed results in an increase in the microfiber release from textiles.Keywords: front load, laundry, microfiber, microfiber release, microfiber shedding, microplastic, pollution, rinsing parameters, sustainability, washing parameters, washing machine
Procedia PDF Downloads 96301 Buddhism: Its Socio-Economic Relevance in the Present Changing World
Authors: Bandana Bhattacharya
Abstract:
‘Buddhism’, as such signifies the ‘ism’ that is based on Buddha’s life and teachings or that is concerned with the gospel of Buddha as recorded in the literature available in Pali, Sanskrit, Buddhist Sanskrit, Prakrit and even in the other non-Indian languages wherein it has been described a very abstruse, complex and lofty philosophy of life or ‘the way of life’ preached by Him (Buddha). It has another side too, i.e., the applicability of the tenets of Buddha according to the needs of the present society, where human life and outlook has been totally changed. Applied Buddhism signifies the applicability of the Buddha’s noble tenets. Along with the theological exposition and textual criticism of the Buddha’s discourses, it has now become almost obligatory for the Buddhist scholars to re-interpret Buddhism from modern perspectives. Basically Applied Buddhism defined a ‘way of life’ which may transform the higher quality of life or essence of life due to changed circumstances, places and time. Nowadays, if we observe the present situation of the world, we will find the current problems such as health, economic, politic, global warming, population explosion, pollution of all types including cultural scarcity essential commodities and indiscriminate use of human, natural and water resources are becoming more and more pronounced day by day, under such a backdrop of world situation. Applied Buddhism rather Buddhism may be the only instrument left now for mankind to address all such human achievements, lapses, and problems. Buddha’s doctrine is itself called ‘akālika, timeless’. On the eve of the Mahāparinibbāṇa at Kusinara, the Blessed One allows His disciples to change, modify and alter His minor teachings according to the needs of the future, although He has made some utterances, which would eternally remain fresh. Hence Buddhism has been able to occupy a prominent place in modern life, because of its timeless applicability, emanating from a set of eternal values. The logical and scientific outlook of Buddha may be traced in His very first sermon named the Dhammacakkapavattana-Sutta where He suggested to avoid the two extremes, namely, constantly attachment to sensual pleasures (Kāmasukhallikānuyoga) and devotion to self-mortification that is painful as well as unprofitable and asked to adopt Majjhimapaṭipadā, ‘Middle path’, which is very much applicable even today in every spheres of human life; and the absence of which is the root cause of all problems event at present. This paper will be a humble attempt to highlight the relevance of Buddhism in the present society.Keywords: applied Buddhism, ecology, self-awareness, value
Procedia PDF Downloads 124300 Reduction Shrinkage of Concrete without Use Reinforcement
Authors: Martin Tazky, Rudolf Hela, Lucia Osuska, Petr Novosad
Abstract:
Concrete’s volumetric changes are natural process caused by silicate minerals’ hydration. These changes can lead to cracking and subsequent destruction of cementitious material’s matrix. In most cases, cracks can be assessed as a negative effect of hydration, and in all cases, they lead to an acceleration of degradation processes. Preventing the formation of these cracks is, therefore, the main effort. Once of the possibility how to eliminate this natural concrete shrinkage process is by using different types of dispersed reinforcement. For this application of concrete shrinking, steel and polymer reinforcement are preferably used. Despite ordinarily used reinforcement in concrete to eliminate shrinkage it is possible to look at this specific problematic from the beginning by itself concrete mix composition. There are many secondary raw materials, which are helpful in reduction of hydration heat and also with shrinkage of concrete during curing. The new science shows the possibilities of shrinkage reduction also by the controlled formation of hydration products, which could act by itself morphology as a traditionally used dispersed reinforcement. This contribution deals with the possibility of controlled formation of mono- and tri-sulfate which are considered like degradation minerals. Mono- and tri- sulfate's controlled formation in a cementitious composite can be classified as a self-healing ability. Its crystal’s growth acts directly against the shrinking tension – this reduces the risk of cracks development. Controlled formation means that these crystals start to grow in the fresh state of the material (e.g. concrete) but stop right before it could cause any damage to the hardened material. Waste materials with the suitable chemical composition are very attractive precursors because of their added value in the form of landscape pollution’s reduction and, of course, low cost. In this experiment, the possibilities of using the fly ash from fluidized bed combustion as a mono- and tri-sulphate formation additive were investigated. The experiment itself was conducted on cement paste and concrete and specimens were subjected to a thorough analysis of physicomechanical properties as well as microstructure from the moment of mixing up to 180 days. In cement composites, were monitored the process of hydration and shrinkage. In a mixture with the used admixture of fluidized bed combustion fly ash, possible failures were specified by electronic microscopy and dynamic modulus of elasticity. The results of experiments show the possibility of shrinkage concrete reduction without using traditionally dispersed reinforcement.Keywords: shrinkage, monosulphates, trisulphates, self-healing, fluidized fly ash
Procedia PDF Downloads 185299 Studies on the Effect of Bio-Methanated Distillery Spentwash on Soil Properties and Crop Yields
Authors: S. K. Gali
Abstract:
Spentwash, An effluent of distillery is an environmental pollutant because of its high load of pollutants (pH: 2-4; BOD>40,000 mg/l, COD>100,000mg/l and TDS >70,000mg/l). But However, after subjecting it to primary treatment (bio-methanation), Its pollutant load gets drastically reduced (pH: 7.5-8.5, BOD<10,000 mg/l) and could be disposed off safely as a source of organic matter and plant nutrients for crop production. With the consent of State Pollution Control Board, the distilleries in Karnataka are taking up ‘one time controlled land application’ of bio-methanated spentwash in farmers’ fields. A monitoring study was undertaken in Belgaum district of Karnataka State with an objective of studying the effect of land application of bio-methanated spent wash of a distillery on soil properties and crop growth. The treated spentwash was applied uniformly to the fallow dry lands in different farmers’ fields during summer, 2012 at recommended rate (based on nitrogen requirement of crops). The application was made at least a fortnight before sowing/planting operations. The analysis of soils collected before land application of spentwash and after harvest of crops revealed that there was no adverse effect of applied spentwash on soil characteristics. A slight build up in soluble salts was observed but, however all the soils recorded EC of less than 2.0 dSm-1. An increase in soil organic carbon (SOC) and available nitrogen (N) by about 10 to 30 % was observed in the spentwash applied soils. The presence of good amount of biodegradable organics in the treated spentwash (BOD of 6550 mg/l) contributed for increase in SOC and N. A substantial build up in available potassium (K) status (50 to 200%) was observed due to spentwash application. This was attributed to the high K content in spentwash (6950 mg/l). The growth of crops in the spentwash applied fields was higher and farmers could get nearly 10 to 20 per cent higher yields, especially in sugarcane and corn. The analysis of ground water samples showed that the quality of water was not affected due to land application of treated spentwash. Apart from realizing higher crop yields, the farmers were able to save money on N and K fertilisers as the applied spentwash met the crop requirement. Hence, it could be concluded that the bio-methanated distillery spentwash can be gainfully utilized in crop production without polluting the environment.Keywords: bio-methanation, pollutant, potassium status, soil organic carbon
Procedia PDF Downloads 391298 Improving Climate Awareness and the Knowledge Related to Climate Change's Health Impacts on Medical Schools
Authors: Abram Zoltan
Abstract:
Over the past hundred years, human activities, particularly the burning of fossil fuels, have released enough carbon dioxide and other greenhouse gases to dissipate additional heat into the lower atmosphere and affect the global climate. Climate change affects many social and environmental determinants of health: clean air, safe drinking water, and adequate food. Our aim is to draw attention to the effects of climate change on the health and health care system. Improving climate awareness and the knowledge related to climate change's health impacts are essential among medical students and practicing medical doctors. Therefore, in their everyday practice, they also need some assistance and up-to-date knowledge of how climate change can endanger human health and deal with these novel health problems. Our activity, based on the cooperation of more universities, aims to develop new curriculum outlines and learning materials on climate change's health impacts for medical schools. Special attention is intended to pay to the possible preventative measures against these impacts. For all of this, the project plans to create new curriculum outlines and learning materials for medical students, elaborate methodological guidelines and create training materials for medical doctors' postgraduate learning programs. The target groups of the project are medical students, educational staff of medical schools and universities, practicing medical doctors with special attention to the general practitioners and family doctors. We had searched various surveys, domestic and international studies about the effects of climate change and statistical estimation of the possible consequences. The health effects of climate change can be measured only approximately by considering only a fraction of the potential health effects and assuming continued economic growth and health progress. We can estimate that climate change is expected to cause about 250,000 more deaths. We conclude that climate change is one of the most serious problems of the 21st century, affecting all populations. In the short- to medium-term, the health effects of climate change will be determined mainly by human vulnerability. In the longer term, the effects depend increasingly on the extent to which transformational action is taken now to reduce emissions. We can contribute to reducing environmental pollution by raising awareness and by educating the population.Keywords: climate change, health impacts, medical students, education
Procedia PDF Downloads 125297 Sorghum Resilience and Sustainability under Limiting and Non-limiting Conditions of Water and Nitrogen
Authors: Muhammad Tanveer Altaf, Mehmet Bedir, Waqas Liaqat, Gönül Cömertpay, Volkan Çatalkaya, Celaluddin Barutçular, Nergiz Çoban, Ibrahim Cerit, Muhammad Azhar Nadeem, Tolga Karaköy, Faheem Shehzad Baloch
Abstract:
Food production needs to be almost double by 2050 in order to feed around 9 billion people around the Globe. Plant production mostly relies on fertilizers, which also have one of the main roles in environmental pollution. In addition to this, climatic conditions are unpredictable, and the earth is expected to face severe drought conditions in the future. Therefore, water and fertilizers, especially nitrogen are considered as main constraints for future food security. To face these challenges, developing integrative approaches for germplasm characterization and selecting the resilient genotypes performing under limiting conditions is very crucial for effective breeding to meet the food requirement under climatic change scenarios. This study is part of the European Research Area Network (ERANET) project for the characterization of the diversity panel of 172 sorghum accessions and six hybrids as control cultivars under limiting (+N/-H2O, -N/+H2O) and non-limiting conditions (+N+H2O). This study was planned to characterize the sorghum diversity in relation to resource Use Efficiency (RUE), with special attention on harnessing the interaction between genotype and environment (GxE) from a physiological and agronomic perspective. Experiments were conducted at Adana, a Mediterranean climate, with augmented design, and data on various agronomic and physiological parameters were recorded. Plentiful diversity was observed in the sorghum diversity panel and significant variations were seen among the limiting water and nitrogen conditions in comparison with the control experiment. Potential genotypes with the best performance are identified under limiting conditions. Whole genome resequencing was performed for whole germplasm under investigation for diversity analysis. GWAS analysis will be performed using genotypic and phenotypic data and linked markers will be identified. The results of this study will show the adaptation and improvement of sorghum under climate change conditions for future food security.Keywords: germplasm, sorghum, drought, nitrogen, resources use efficiency, sequencing
Procedia PDF Downloads 75296 Probing Environmental Sustainability via Brownfield Remediation: A Framework to Manage Brownfields in Ethiopia Lesson to Africa
Authors: Mikiale Gebreslase Gebremariam, Chai Huaqi, Tesfay Gebretsdkan Gebremichael, Dawit Nega Bekele
Abstract:
In recent years, brownfield redevelopment projects (BRPs) have contributed to the overarching paradigm of the United Nations 2030 agendas. In the present circumstance, most developed nations adopted BRPs, an efficacious urban policy tool. However, in developing and some advanced countries, BRPs are lacking due to limitations of awareness, policy tools, and financial capability for cleaning up brownfield sites. For example, the growth and development of Ethiopian cities were achieved at the cost of poor urban planning, including no community consultations and excessive urbanization for future growth. The demand for land resources is more and more urgent as the result of an intermigration to major cities and towns for socio-economic reasons and population growth. In the past, the development mode of spreading major cities has made horizontal urbanizations stretching outwards. Expansion in search of more land resources, while the outer cities are growing, the inner cities are polluted by environmental pollution. It is noteworthy that the rapid development of cities has not brought about an increase in people's happiness index. Thus, the proposed management framework for managing brownfields in Ethiopia as a lesson to the developing nation facing similar challenges and growth will add immense value in solving the problems and give insights into brownfield land utilization. Under the umbrella of the grey incidence decision-making model and with the consideration of multiple stakeholders and tight environmental and economic constraints, the proposed management framework integrates different criteria from economic, social, environmental, technical, and risk aspects into the grey incidence decision-making model and gives useful guidance to manage brownfields in Ethiopia. Furthermore, it will contribute to the future development of the social economy and the missions of the 2030 UN sustainable development goals.Keywords: Brownfields, environmental sustainability, Ethiopia, grey-incidence decision-making, sustainable urban development
Procedia PDF Downloads 89295 Permeable Reactive Pavement for Controlling the Transport of Benzene, Toluene, Ethyl-Benzene, and Xylene (BTEX) Contaminants
Authors: Shengyi Huang, Chenju Liang
Abstract:
Volatile organic compounds such as benzene, toluene, ethyl-benzene, and xylene (BTEX) are common contaminants in environment, which could come from asphalt concrete or exhaust emissions of vehicles. The BTEX may invade to the subsurface environment via wet and dry atmospheric depositions. If there aren’t available ways for controlling contaminants’ fate and transport, they would extensively harm natural environment. In the 1st phase of this study, various adsorbents were screened for a suitable one to be an additive in the porous asphalt mixture. In the 2nd phase, addition of the selected adsorbent was incorporated with the design of porous asphalt concrete (PAC) to produce the permeable reactive pavement (PRP), which was subsequently tested for the potential of adsorbing aqueous BTEX as compared to the PAC, in the 3rd phase. The PRP was prepared according to the following steps: firstly, the suitable adsorbent was chosen based on the analytical results of specific surface area analysis, thermal-gravimetric analysis, adsorption kinetics and isotherms, and thermal dynamics analysis; secondly, the materials of coarse aggregate, fine aggregate, filler, asphalt, and fiber were tested in order to meet regulated specifications (e.g., water adsorption, soundness, viscosity etc.) for preparing the PRP; thirdly, the amount of adsorbent additive was determined in the PRP; fourthly, the prepared PAC and PRP were examined for their physical properties (e.g., abrasion loss, drain-down loss, Marshall stability, Marshall flow, dynamic stability etc.). As a result of comparison between PRP and PAC, the PRP showed better physical performance than the traditional PAC. At last, the Marshall Specimen column tests were conducted to explore the adsorption capacities of PAC and PRPs. The BTEX adsorption capacities of PRPs are higher than those obtained from traditional PAC. In summary, PRPs showed superior physical performance and adsorption capacities, which exhibit the potential of PRP to be applied as a replacement of PAC for better controlling the transport of non-point source pollutants.Keywords: porous asphalt concrete, volatile organic compounds, permeable reactive pavement, non-point source pollution
Procedia PDF Downloads 210294 Bio-Remediation of Lead-Contaminated Water Using Adsorbent Derived from Papaya Peel
Authors: Sahar Abbaszadeh, Sharifah Rafidah Wan Alwi, Colin Webb, Nahid Ghasemi, Ida Idayu Muhamad
Abstract:
Toxic heavy metal discharges into environment due to rapid industrialization is a serious pollution problem that has drawn global attention towards their adverse impacts on both the structure of ecological systems as well as human health. Lead as toxic and bio-accumulating elements through the food chain, is regularly entering to water bodies from discharges of industries such as plating, mining activities, battery manufacture, paint manufacture, etc. The application of conventional methods to degrease and remove Pb(II) ion from wastewater is often restricted due to technical and economic constrains. Therefore, the use of various agro-wastes as low-cost bioadsorbent is found to be attractive since they are abundantly available and cheap. In this study, activated carbon of papaya peel (AC-PP) (as locally available agricultural waste) was employed to evaluate its Pb(II) uptake capacity from single-solute solutions in sets of batch mode experiments. To assess the surface characteristics of the adsorbents, the scanning electron microscope (SEM) coupled with energy disperse X-ray (EDX), and Fourier transform infrared spectroscopy (FT-IR) analysis were utilized. The removal amount of Pb(II) was determined by atomic adsorption spectrometry (AAS). The effects of pH, contact time, the initial concentration of Pb(II) and adsorbent dosage were investigated. The pH value = 5 was observed as optimum solution pH. The optimum initial concentration of Pb(II) in the solution for AC-PP was found to be 200 mg/l where the amount of Pb(II) removed was 36.42 mg/g. At the agitating time of 2 h, the adsorption processes using 100 mg dosage of AC-PP reached equilibrium. The experimental results exhibit high capability and metal affinity of modified papaya peel waste with removal efficiency of 93.22 %. The evaluation results show that the equilibrium adsorption of Pb(II) was best expressed by Freundlich isotherm model (R2 > 0.93). The experimental results confirmed that AC-PP potentially can be employed as an alternative adsorbent for Pb(II) uptake from industrial wastewater for the design of an environmentally friendly yet economical wastewater treatment process.Keywords: activated carbon, bioadsorption, lead removal, papaya peel, wastewater treatment
Procedia PDF Downloads 284293 Ingenious Eco-Technology for Transforming Food and Tanneries Waste into a Soil Bio-Conditioner and Fertilizer Product Used for Recovery and Enhancement of the Productive Capacity of the Soil
Authors: Petre Voicu, Mircea Oaida, Radu Vasiu, Catalin Gheorghiu, Aurel Dumitru
Abstract:
The present work deals with the way in which food and tobacco waste can be used in agriculture. As a result of the lack of efficient technologies for their recycling, we are currently faced with the appearance of appreciable quantities of residual organic residues that find their use only very rarely and only after long storage in landfills. The main disadvantages of long storage of organic waste are the unpleasant smell, the high content of pathogenic agents, and the high content in the water. The release of these enormous amounts imperatively demands the finding of solutions to ensure the avoidance of environmental pollution. The measure practiced by us consists of the processing of this waste in special installations, testing in pilot experimental perimeters, and later administration on agricultural lands without harming the quality of the soil, agricultural crops, and the environment. The current crisis of raw materials and energy also raises special problems in the field of organic waste valorization, an activity that takes place with low energy consumption. At the same time, their composition recommends them as useful secondary sources in agriculture. The transformation of food scraps and other residues concentrated organics thus acquires a new orientation, in which these materials are seen as important secondary resources. The utilization of food and tobacco waste in agriculture is also stimulated by the increasing lack of chemical fertilizers and the continuous increase in their price, under the conditions that the soil requires increased amounts of fertilizers in order to obtain high, stable, and profitable production. The need to maintain and increase the humus content of the soil is also taken into account, as an essential factor of its fertility, as a source and reserve of nutrients and microelements, as an important factor in increasing the buffering capacity of the soil, and the more reserved use of chemical fertilizers, improving the structure and permeability for water with positive effects on the quality of agricultural works and preventing the excess and/or deficit of moisture in the soil.Keywords: ecology, soil, organic waste, fertility
Procedia PDF Downloads 78292 Application of a Theoretical framework as a Context for a Travel Behavior Change Policy Intervention
Authors: F. Moghtaderi, M. Burke, J. Troelsen
Abstract:
There has been a significant decline in active travel as well as the massive increase use of car-dependent travel mode in many countries during past two decades. Evidential risks for people’s physical and mental health problems are followed by this increased use of motorized travel mode. These problems range from overweight and obesity to increasing air pollution. In response to these rising concerns, local councils and other interested organizations around the world have introduced a variety of initiatives regarding reduce the dominance of cars for the daily journeys. However, the nature of these kinds of interventions, which related to the human behavior, make lots of complexities. People’s travel behavior and changing this behavior, has two different aspects. People’s attitudes and perceptions toward the sustainable and healthy modes of travel, and motorized travel modes (especially private car use) is one these two aspects. The other one related to people’s behavior change processes. There are no comprehensive model in order to guide policy interventions to increase the level of succeed of such interventions. A comprehensive theoretical framework is required in accordance to facilitate and guide the processes of data collection and analysis to achieve the best possible guidelines for policy makers. Regarding this gaps in the travel behavior change research, this paper attempted to identify and suggest a multidimensional framework in order to facilitate planning interventions. A structured mixed-method is suggested regarding the expand the scope and improve the analytic power of the result according to the complexity of human behavior. In order to recognize people’s attitudes, a theory with the focus on people’s attitudes towards a particular travel behavior was needed. The literature around the theory of planned behavior (TPB) was the most useful, and had been proven to be a good predictor of behavior change. Another aspect of the research, related to the people’s decision-making process regarding explore guidelines for the further interventions. Therefore, a theory was needed to facilitate and direct the interventions’ design. The concept of the transtheoretical model of behavior change (TTM) was used regarding reach a set of useful guidelines for the further interventions with the aim to increase active travel and sustainable modes of travel. Consequently, a combination of these two theories (TTM and TPB) had presented as an appropriate concept to identify and design implemented travel behavior change interventions.Keywords: behavior change theories, theoretical framework, travel behavior change interventions, urban research
Procedia PDF Downloads 373291 Preliminary Study of Gold Nanostars/Enhanced Filter for Keratitis Microorganism Raman Fingerprint Analysis
Authors: Chi-Chang Lin, Jian-Rong Wu, Jiun-Yan Chiu
Abstract:
Myopia, ubiquitous symptom that is necessary to correct the eyesight by optical lens struggles many people for their daily life. Recent years, younger people raise interesting on using contact lens because of its convenience and aesthetics. In clinical, the risk of eye infections increases owing to the behavior of incorrectly using contact lens unsupervised cleaning which raising the infection risk of cornea, named ocular keratitis. In order to overcome the identification needs, new detection or analysis method with rapid and more accurate identification for clinical microorganism is importantly needed. In our study, we take advantage of Raman spectroscopy having unique fingerprint for different functional groups as the distinct and fast examination tool on microorganism. As we know, Raman scatting signals are normally too weak for the detection, especially in biological field. Here, we applied special SERS enhancement substrates to generate higher Raman signals. SERS filter we designed in this article that prepared by deposition of silver nanoparticles directly onto cellulose filter surface and suspension nanoparticles - gold nanostars (AuNSs) also be introduced together to achieve better enhancement for lower concentration analyte (i.e., various bacteria). Research targets also focusing on studying the shape effect of synthetic AuNSs, needle-like surface morphology may possible creates more hot-spot for getting higher SERS enhance ability. We utilized new designed SERS technology to distinguish the bacteria from ocular keratitis under strain level, and specific Raman and SERS fingerprint were grouped under pattern recognition process. We reported a new method combined different SERS substrates can be applied for clinical microorganism detection under strain level with simple, rapid preparation and low cost. Our presenting SERS technology not only shows the great potential for clinical bacteria detection but also can be used for environmental pollution and food safety analysis.Keywords: bacteria, gold nanostars, Raman spectroscopy surface-enhanced Raman scattering filter
Procedia PDF Downloads 165290 Biodiesel Production from Edible Oil Wastewater Sludge with Bioethanol Using Nano-Magnetic Catalysis
Authors: Wighens Ngoie Ilunga, Pamela J. Welz, Olewaseun O. Oyekola, Daniel Ikhu-Omoregbe
Abstract:
Currently, most sludge from the wastewater treatment plants of edible oil factories is disposed to landfills, but landfill sites are finite and potential sources of environmental pollution. Production of biodiesel from wastewater sludge can contribute to energy production and waste minimization. However, conventional biodiesel production is energy and waste intensive. Generally, biodiesel is produced from the transesterification reaction of oils with alcohol (i.e., Methanol, ethanol) in the presence of a catalyst. Homogeneously catalysed transesterification is the conventional approach for large-scale production of biodiesel as reaction times are relatively short. Nevertheless, homogenous catalysis presents several challenges such as high probability of soap. The current study aimed to reuse wastewater sludge from the edible oil industry as a novel feedstock for both monounsaturated fats and bioethanol for the production of biodiesel. Preliminary results have shown that the fatty acid profile of the oilseed wastewater sludge is favourable for biodiesel production with 48% (w/w) monounsaturated fats and that the residue left after the extraction of fats from the sludge contains sufficient fermentable sugars after steam explosion followed by an enzymatic hydrolysis for the successful production of bioethanol [29% (w/w)] using a commercial strain of Saccharomyces cerevisiae. A novel nano-magnetic catalyst was synthesised from mineral processing alkaline tailings, mainly containing dolomite originating from cupriferous ores using a modified sol-gel. The catalyst elemental chemical compositions and structural properties were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR) and the BET for the surface area with 14.3 m²/g and 34.1 nm average pore diameter. The mass magnetization of the nano-magnetic catalyst was 170 emu/g. Both the catalytic properties and reusability of the catalyst were investigated. A maximum biodiesel yield of 78% was obtained, which dropped to 52% after the fourth transesterification reaction cycle. The proposed approach has the potential to reduce material costs, energy consumption and water usage associated with conventional biodiesel production technologies. It may also mitigate the impact of conventional biodiesel production on food and land security, while simultaneously reducing waste.Keywords: biodiesel, bioethanol, edible oil wastewater sludge, nano-magnetism
Procedia PDF Downloads 144289 Organic Fertilizers Mitigate Microplastics Toxicity in Agricultural Soil
Authors: Ghulam Abbas Shah, Maqsood Sadiq, Ahsan Yasin
Abstract:
Massive global plastic production, combined with poor degradation and recycling, leads to significant environmental pollution from microplastics, whose effects on plants in the soil remain understudied. Besides, effective mitigation strategies and their impact on ammonia (NH₃) emissions under varying fertilizer management practices remains sketchy. Therefore, the objectives of the study were (i) to determine the impact of organic fertilizers on the toxicity of microplastics in sorghum and physicochemical characteristics of microplastics-contaminated soil and (ii) to assess the impacts of these fertilizers on NH₃ emissions from this soil. A field experiment was conducted using sorghum as a test crop. Treatments were: (i) Control (C), (ii) Microplastics (MP), (iii) Inorganic fertilizer (IF), (iv) MPIF, (v) Farmyard manure (FM), (vi) MPFM, (vii) Biochar (BC), and (viii) MPBC, arranged in a randomized complete block design (RCBD) with three replicates. Microplastics of polyvinyl chloride (PVC) were applied at a rate of 1.5 tons ha-¹, and all fertilizers were applied at the recommended dose of 90 kg N ha-¹. Soil sampling was done before sowing and after harvesting the sorghum, with samples analyzed for chemical properties and microbial biomass. Crop growth and yield attributes were measured. In a parallel pot experiment, NH₃ emissions were measured using passive flux samplers over 72 hours following the application of treatments similar to those used in the field experiment. Application of MPFM, MPBC and MPIF reduced soil mineral nitrogen by 8, 20 and 38% compared to their sole treatments, respectively. Microbial biomass carbon (MBC) was reduced by 19, 25 and 59% in MPIF, MPBC and MPFM as compared to their sole application, respectively. Similarly, the respective reduction in microbial biomass nitrogen (MBN) was 10, 27 and 66%. The toxicity of microplastics was mitigated by MPFM and MPBC, each with only a 5% reduction in grain yield of sorghum relative to their sole treatments. The differences in nitrogen uptake between BC vs. MPBC, FM vs. MPFM, and IF vs. MPIF were 8, 10, and 12 kg N ha-¹, respectively, indicating that organic fertilizers mitigate microplastic toxicity in the soil. NH₃ emission was reduced by 5, 11 and 20% after application of MPFM, MPBC and MPIF than their sole treatments, respectively. The study concludes that organic fertilizers such as FM and BC can effectively mitigate the toxicity of microplastics in soil, leading to improved crop growth and yield.Keywords: microplastics, soil characteristics, crop n uptake, biochar, NH₃ emissions
Procedia PDF Downloads 38