Search results for: noise estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2973

Search results for: noise estimation

1443 Estimation of Location and Scale Parameters of Extended Exponential Distribution Based on Record Statistics

Authors: E. Krishna

Abstract:

An Extended form of exponential distribution using Marshall and Olkin method is introduced.The location scale family of these distributions is considered. For location scale free family, exact expressions for single and product moments of upper record statistics are derived. The mean, variance and covariance of record values are computed for various values of the shape parameter. Using these the BLUE's of location and scale parameters are derived.The variances and covariance of estimates are obtained.Through Monte Carlo simulation the con dence intervals for location and scale parameters are constructed.The Best liner unbiased Predictor (BLUP) of future records are also discussed.

Keywords: BLUE, BLUP, con dence interval, Marshall-Olkin distribution, Monte Carlo simulation, prediction of future records, record statistics

Procedia PDF Downloads 417
1442 Analysis of Vertical Hall Effect Device Using Current-Mode

Authors: Kim Jin Sup

Abstract:

This paper presents a vertical hall effect device using current-mode. Among different geometries that have been studied and simulated using COMSOL Multiphysics, optimized cross-shaped model displayed the best sensitivity. The cross-shaped model emerged as the optimum plate to fit the lowest noise and residual offset and the best sensitivity. The symmetrical cross-shaped hall plate is widely used because of its high sensitivity and immunity to alignment tolerances resulting from the fabrication process. The hall effect device has been designed using a 0.18-μm CMOS technology. The simulation uses the nominal bias current of 12μA. The applied magnetic field is from 0 mT to 20 mT. Simulation results achieved in COMSOL and validated with respect to the electrical behavior of equivalent circuit for Cadence. Simulation results of the one structure over the 13 available samples shows for the best geometry a current-mode sensitivity of 6.6 %/T at 20mT. Acknowledgment: This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. R7117-16-0165, Development of Hall Effect Semiconductor for Smart Car and Device).

Keywords: vertical hall device, current-mode, crossed-shaped model, CMOS technology

Procedia PDF Downloads 292
1441 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG

Procedia PDF Downloads 182
1440 Poisoning Admission in Pediatrics Benghazi Hospital in Libya: Three Years Review of Medical Record

Authors: Mudafara Bengleil

Abstract:

Estimation of the magnitude and causes of poisoning was the objective of the current study. A retrospective study of medical records of all poisoning children admitted to Benghazi Children Hospital in Libya from January 2008 up to December 2010. Number of children admitted was 244; the age ranged from less than one to 13 years old. Most of cases were admitted with mild symptom and the majority of them were boys. Only few cases admitted to intensive care unit and there was no mortality recorded through the period of study. Age group 1 to 3 years (50.8%) had the highest frequency of admission and the peak of admission was during summer. The most common cause of admission was due to ingestion of medication (53.69%), House hold product exposure (26.64%) was the second causes of admission while, 19.67% of admissions were due to Food poisoning. Almost all admitted cases were accidental and medicines were the most consumed substances in addition, improper storage of toxic agents were the first risk factor of poisoning. Present results indicated that, children poisoning seems to be a common pediatric care problem which need to control and prevent.

Keywords: poisoning, children, hospital, medical

Procedia PDF Downloads 421
1439 Mixed Treatment (Physical-Chemical and Biological) of Ouled Fayet Landfill Leachates

Authors: O. Balamane-Zizi, L. M. Rouidi, A. Boukhrissa, N. Daas, H. Ait-amar

Abstract:

The objective of this study was to test the possibility of a mixed treatment (physical-chemical and biological) of Ouled Fayet leachates which date of 10 years and has a large fraction of hard COD that can be reduced by coagulation-flocculation. Previous batch tests showed the possibility of applying the physical-chemical and biological treatments separately; the removal efficiencies obtained in this case were not interesting. We propose, therefore, to test the possibility of a combined treatment, in order to improve the quality of the leachates. Estimation of the treatment’s effectiveness was done by analysis of some pollution parameters such as COD, suspended solids, and heavy metals (particularly iron and nickel). The main results obtained after the combination of treatments, show reduction rate of about 63% for COD, 73% for suspended solids and 80% for iron and nickel. We also noted an improvement in the turbidity of treated leachates.

Keywords: landfill leachates, COD, physical-chemical treatment, biological treatment

Procedia PDF Downloads 474
1438 Measuring Banking Risk

Authors: Mike Tsionas

Abstract:

The paper develops new indices of financial stability based on an explicit model of expected utility maximization by financial institutions subject to the classical technology restrictions of neoclassical production theory. The model can be estimated using standard econometric techniques, like GMM for dynamic panel data and latent factor analysis for the estimation of co-variance matrices. An explicit functional form for the utility function is not needed and we show how measures of risk aversion and prudence (downside risk aversion) can be derived and estimated from the model. The model is estimated using data for Eurozone countries and we focus particularly on (i) the use of the modeling approach as an “early warning mechanism”, (ii) the bank- and country-specific estimates of risk aversion and prudence (downside risk aversion), and (iii) the derivation of a generalized measure of risk that relies on loan-price uncertainty.

Keywords: financial stability, banking, expected utility maximization, sub-prime crisis, financial crisis, eurozone, PIIGS

Procedia PDF Downloads 349
1437 Localization Mobile Beacon Using RSSI

Authors: Sallama Resen, Celal Öztürk

Abstract:

Distance estimation between tow nodes has wide scope of surveillance and tracking applications. This paper suggests a Bluetooth Low Energy (BLE) technology as a media for transceiver and receiver signal in small indoor areas. As an example, BLE communication technologies used in child safety domains. Local network is designed to detect child position in indoor school area consisting Mobile Beacons (MB), Access Points (AP) and Smart Phones (SP) where MBs stuck in children’s shoes as wearable sensors. This paper presents a technique that can detect mobile beacons’ position and help finding children’s location within dynamic environment. By means of bluetooth beacons that are attached to child’s shoes, the distance between the MB and teachers SP is estimated with an accuracy of less than one meter. From the simulation results, it is shown that high accuracy of position coordinates are achieved for multi-mobile beacons in different environments.

Keywords: bluetooth low energy, child safety, mobile beacons, received signal strength

Procedia PDF Downloads 346
1436 Robot Movement Using the Trust Region Policy Optimization

Authors: Romisaa Ali

Abstract:

The Policy Gradient approach is one of the deep reinforcement learning families that combines deep neural networks (DNN) with reinforcement learning RL to discover the optimum of the control problem through experience gained from the interaction between the robot and its surroundings. In contrast to earlier policy gradient algorithms, which were unable to handle these two types of error because of over-or under-estimation introduced by the deep neural network model, this article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.

Keywords: deep neural networks, deep reinforcement learning, proximal policy optimization, state-of-the-art, trust region policy optimization

Procedia PDF Downloads 169
1435 Nonparametric Specification Testing for the Drift of the Short Rate Diffusion Process Using a Panel of Yields

Authors: John Knight, Fuchun Li, Yan Xu

Abstract:

Based on a new method of the nonparametric estimator of the drift function, we propose a consistent test for the parametric specification of the drift function in the short rate diffusion process using observations from a panel of yields. The test statistic is shown to follow an asymptotic normal distribution under the null hypothesis that the parametric drift function is correctly specified, and converges to infinity under the alternative. Taking the daily 7-day European rates as a proxy of the short rate, we use our test to examine whether the drift of the short rate diffusion process is linear or nonlinear, which is an unresolved important issue in the short rate modeling literature. The testing results indicate that none of the drift functions in this literature adequately captures the dynamics of the drift, but nonlinear specification performs better than the linear specification.

Keywords: diffusion process, nonparametric estimation, derivative security price, drift function and volatility function

Procedia PDF Downloads 368
1434 Special Case of Trip Distribution Model and Its Use for Estimation of Detailed Transport Demand in the Czech Republic

Authors: Jiri Dufek

Abstract:

The national model of the Czech Republic has been modified in a detailed way to get detailed travel demand in the municipality level (cities, villages over 300 inhabitants). As a technique for this detailed modelling, three-dimensional procedure for calibrating gravity models, was used. Besides of zone production and attraction, which is usual in gravity models, the next additional parameter for trip distribution was introduced. Usually it is called by “third dimension”. In the model, this parameter is a demand between regions. The distribution procedure involved calculation of appropriate skim matrices and its multiplication by three coefficients obtained by iterative balancing of production, attraction and third dimension. This type of trip distribution was processed in R-project and the results were used in the Czech Republic transport model, created in PTV Vision. This process generated more precise results in local level od the model (towns, villages)

Keywords: trip distribution, three dimension, transport model, municipalities

Procedia PDF Downloads 130
1433 Times2D: A Time-Frequency Method for Time Series Forecasting

Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan

Abstract:

Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.

Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation

Procedia PDF Downloads 42
1432 Estimation of PM2.5 Emissions and Source Apportionment Using Receptor and Dispersion Models

Authors: Swetha Priya Darshini Thammadi, Sateesh Kumar Pisini, Sanjay Kumar Shukla

Abstract:

Source apportionment using Dispersion model depends primarily on the quality of Emission Inventory. In the present study, a CMB receptor model has been used to identify the sources of PM2.5, while the AERMOD dispersion model has been used to account for missing sources of PM2.5 in the Emission Inventory. A statistical approach has been developed to quantify the missing sources not considered in the Emission Inventory. The inventory of each grid was improved by adjusting emissions based on road lengths and deficit in measured and modelled concentrations. The results showed that in CMB analyses, fugitive sources - soil and road dust - contribute significantly to ambient PM2.5 pollution. As a result, AERMOD significantly underestimated the ambient air concentration at most locations. The revised Emission Inventory showed a significant improvement in AERMOD performance which is evident through statistical tests.

Keywords: CMB, GIS, AERMOD, PM₂.₅, fugitive, emission inventory

Procedia PDF Downloads 340
1431 Short and Long Crack Growth Behavior in Ferrite Bainite Dual Phase Steels

Authors: Ashok Kumar, Shiv Brat Singh, Kalyan Kumar Ray

Abstract:

There is growing awareness to design steels against fatigue damage Ferrite martensite dual-phase steels are known to exhibit favourable mechanical properties like good strength, ductility, toughness, continuous yielding, and high work hardening rate. However, dual-phase steels containing bainite as second phase are potential alternatives for ferrite martensite steels for certain applications where good fatigue property is required. Fatigue properties of dual phase steels are popularly assessed by the nature of variation of crack growth rate (da/dN) with stress intensity factor range (∆K), and the magnitude of fatigue threshold (∆Kth) for long cracks. There exists an increased emphasis to understand not only the long crack fatigue behavior but also short crack growth behavior of ferrite bainite dual phase steels. The major objective of this report is to examine the influence of microstructures on the short and long crack growth behavior of a series of developed dual-phase steels with varying amounts of bainite and. Three low carbon steels containing Nb, Cr and Mo as microalloying elements steels were selected for making ferrite-bainite dual-phase microstructures by suitable heat treatments. The heat treatment consisted of austenitizing the steel at 1100°C for 20 min, cooling at different rates in air prior to soaking these in a salt bath at 500°C for one hour, and finally quenching in water. Tensile tests were carried out on 25 mm gauge length specimens with 5 mm diameter using nominal strain rate 0.6x10⁻³ s⁻¹ at room temperature. Fatigue crack growth studies were made on a recently developed specimen configuration using a rotating bending machine. The crack growth was monitored by interrupting the test and observing the specimens under an optical microscope connected to an Image analyzer. The estimated crack lengths (a) at varying number of cycles (N) in different fatigue experiments were analyzed to obtain log da/dN vs. log °∆K curves for determining ∆Kthsc. The microstructural features of these steels have been characterized and their influence on the near threshold crack growth has been examined. This investigation, in brief, involves (i) the estimation of ∆Kthsc and (ii) the examination of the influence of microstructure on short and long crack fatigue threshold. The maximum fatigue threshold values obtained from short crack growth experiments on various specimens of dual-phase steels containing different amounts of bainite are found to increase with increasing bainite content in all the investigated steels. The variations of fatigue behavior of the selected steel samples have been explained with the consideration of varying amounts of the constituent phases and their interactions with the generated microstructures during cyclic loading. Quantitative estimation of the different types of fatigue crack paths indicates that the propensity of a crack to pass through the interfaces depends on the relative amount of the microstructural constituents. The fatigue crack path is found to be predominantly intra-granular except for the ones containing > 70% bainite in which it is predominantly inter-granular.

Keywords: bainite, dual phase steel, fatigue crack growth rate, long crack fatigue threshold, short crack fatigue threshold

Procedia PDF Downloads 204
1430 Dynamic Model Conception of Improving Services Quality in Railway Transport

Authors: Eva Nedeliakova, Jaroslav Masek, Juraj Camaj

Abstract:

This article describes the results of research focused on quality of railway freight transport services. Improvement of these services has a crucial importance in customer considering on the future use of railway transport. Processes filling the customer demands and output quality assessment were defined as a part of the research. In this, contribution is introduced the map of quality planning and the algorithm of applied methodology. It characterises a model which takes into account characters of transportation with linking a perception services quality in ordinary and extraordinary operation. Despite the fact that rail freight transport has its solid position in the transport market, lots of carriers worldwide have been experiencing a stagnation for a couple of years. Therefore, specific results of the research have a significant importance and belong to numerous initiatives aimed to develop and support railway transport not only by creating a single railway area or reducing noise but also by promoting railway services. This contribution is focused also on the application of dynamic quality models which represent an innovative method of evaluation quality services. Through this conception, time factor, expected and perceived quality in each moment of the transportation process can be taken into account.

Keywords: quality, railway, transport, service

Procedia PDF Downloads 445
1429 Estimating Tree Height and Forest Classification from Multi Temporal Risat-1 HH and HV Polarized Satellite Aperture Radar Interferometric Phase Data

Authors: Saurav Kumar Suman, P. Karthigayani

Abstract:

In this paper the height of the tree is estimated and forest types is classified from the multi temporal RISAT-1 Horizontal-Horizontal (HH) and Horizontal-Vertical (HV) Polarised Satellite Aperture Radar (SAR) data. The novelty of the proposed project is combined use of the Back-scattering Coefficients (Sigma Naught) and the Coherence. It uses Water Cloud Model (WCM). The approaches use two main steps. (a) Extraction of the different forest parameter data from the Product.xml, BAND-META file and from Grid-xxx.txt file come with the HH & HV polarized data from the ISRO (Indian Space Research Centre). These file contains the required parameter during height estimation. (b) Calculation of the Vegetation and Ground Backscattering, Coherence and other Forest Parameters. (c) Classification of Forest Types using the ENVI 5.0 Tool and ROI (Region of Interest) calculation.

Keywords: RISAT-1, classification, forest, SAR data

Procedia PDF Downloads 407
1428 Axle Load Estimation of Moving Vehicles Using BWIM Technique

Authors: Changgil Lee, Seunghee Park

Abstract:

Although vehicle driving test for the development of BWIM system is necessary, but it needs much cost and time in addition application of various driving condition. Thus, we need the numerical-simulation method resolving the cost and time problems of vehicle driving test and the way of measuring response of bridge according to the various driving condition. Using the precision analysis model reflecting the dynamic characteristic is contributed to increase accuracy in numerical simulation. In this paper, we conduct a numerical simulation to apply precision analysis model, which reflects the dynamic characteristic of bridge using Bridge Weigh-in-Motion technique and suggest overload vehicle enforcement technology using precision analysis model.

Keywords: bridge weigh-in-motion(BWIM) system, precision analysis model, dynamic characteristic of bridge, numerical simulation

Procedia PDF Downloads 292
1427 Optical Flow Localisation and Appearance Mapping (OFLAAM) for Long-Term Navigation

Authors: Daniel Pastor, Hyo-Sang Shin

Abstract:

This paper presents a novel method to use optical flow navigation for long-term navigation. Unlike standard SLAM approaches for augmented reality, OFLAAM is designed for Micro Air Vehicles (MAV). It uses an optical flow camera pointing downwards, an IMU and a monocular camera pointing frontwards. That configuration avoids the expensive mapping and tracking of the 3D features. It only maps these features in a vocabulary list by a localization module to tackle the loss of the navigation estimation. That module, based on the well-established algorithm DBoW2, will be also used to close the loop and allow long-term navigation in confined areas. That combination of high-speed optical flow navigation with a low rate localization algorithm allows fully autonomous navigation for MAV, at the same time it reduces the overall computational load. This framework is implemented in ROS (Robot Operating System) and tested attached to a laptop. A representative scenarios is used to analyse the performance of the system.

Keywords: vision, UAV, navigation, SLAM

Procedia PDF Downloads 606
1426 Quality Assurance in Cardiac Disorder Detection Images

Authors: Anam Naveed, Asma Andleeb, Mehreen Sirshar

Abstract:

In the article, Image processing techniques have been applied on cardiac images for enhancing the image quality. Two types of methodologies considers for survey, invasive techniques and non-invasive techniques. Different image processes for improvement of cardiac image quality and reduce the amount of radiation exposure for invasive techniques are explored. Different image processing algorithms for enhancing the noninvasive cardiac image qualities are described. Beside these two methodologies, third methodology has applied on live streaming of heart rate on ECG window for extracting necessary information, removing noise and enhancing quality. Sensitivity analyses have been carried out to investigate the impacts of cardiac images for diagnosis of cardiac arteries disease and how the enhancement on images will help the cardiologist to diagnoses disease. The paper evaluates strengths and weaknesses of different techniques applied for improved the image quality and draw a conclusion. Some specific limitations must be considered for whole survey, like the patient heart beat must be 70-75 beats/minute while doing the angiography, similarly patient weight and exposure radiation amount has some limitation.

Keywords: cardiac images, CT angiography, critical analysis, exposure radiation, invasive techniques, invasive techniques, non-invasive techniques

Procedia PDF Downloads 352
1425 The Competitive Newsvendor Game with Overestimated Demand

Authors: Chengli Liu, C. K. M. Lee

Abstract:

The tradition competitive newsvendor game assumes decision makers are rational. However, there are behavioral biases when people make decisions, such as loss aversion, mental accounting and overconfidence. Overestimation of a subject’s own performance is one type of overconfidence. The objective of this research is to analyze the impact of the overestimated demand in the newsvendor competitive game with two players. This study builds a competitive newsvendor game model where newsvendors have private information of their demands, which is overestimated. At the same time, demands of each newsvendor forecasted by a third party institution are available. This research shows that the overestimation leads to demand steal effect, which reduces the competitor’s order quantity. However, the overall supply of the product increases due to overestimation. This study illustrates the boundary condition for the overestimated newsvendor to have the equilibrium order drop due to the demand steal effect from the other newsvendor. A newsvendor who has higher critical fractile will see its equilibrium order decrease with the drop of estimation level from the other newsvendor.

Keywords: bias, competing newsvendor, Nash equilibrium, overestimation

Procedia PDF Downloads 261
1424 Hyperspectral Mapping Methods for Differentiating Mangrove Species along Karachi Coast

Authors: Sher Muhammad, Mirza Muhammad Waqar

Abstract:

It is necessary to monitor and identify mangroves types and spatial extent near coastal areas because it plays an important role in coastal ecosystem and environmental protection. This research aims at identifying and mapping mangroves types along Karachi coast ranging from 24.79 to 24.85 degree in latitude and 66.91 to 66.97 degree in longitude using hyperspectral remote sensing data and techniques. Image acquired during February, 2012 through Hyperion sensor have been used for this research. Image preprocessing includes geometric and radiometric correction followed by Minimum Noise Fraction (MNF) and Pixel Purity Index (PPI). The output of MNF and PPI has been analyzed by visualizing it in n-dimensions for end-member extraction. Well-distributed clusters on the n-dimensional scatter plot have been selected with the region of interest (ROI) tool as end members. These end members have been used as an input for classification techniques applied to identify and map mangroves species including Spectral Angle Mapper (SAM), Spectral Feature Fitting (SFF), and Spectral Information Diversion (SID). Only two types of mangroves namely Avicennia Marina (white mangroves) and Avicennia Germinans (black mangroves) have been observed throughout the study area.

Keywords: mangrove, hyperspectral, hyperion, SAM, SFF, SID

Procedia PDF Downloads 362
1423 Diffusion Adaptation Strategies for Distributed Estimation Based on the Family of Affine Projection Algorithms

Authors: Mohammad Shams Esfand Abadi, Mohammad Ranjbar, Reza Ebrahimpour

Abstract:

This work presents the distributed processing solution problem in a diffusion network based on the adapt then combine (ATC) and combine then adapt (CTA)selective partial update normalized least mean squares (SPU-NLMS) algorithms. Also, we extend this approach to dynamic selection affine projection algorithm (DS-APA) and ATC-DS-APA and CTA-DS-APA are established. The purpose of ATC-SPU-NLMS and CTA-SPU-NLMS algorithm is to reduce the computational complexity by updating the selected blocks of weight coefficients at every iteration. In CTA-DS-APA and ATC-DS-APA, the number of the input vectors is selected dynamically. Diffusion cooperation strategies have been shown to provide good performance based on these algorithms. The good performance of introduced algorithm is illustrated with various experimental results.

Keywords: selective partial update, affine projection, dynamic selection, diffusion, adaptive distributed networks

Procedia PDF Downloads 707
1422 Looking for a Connection between Oceanic Regions with Trends in Evaporation with Continental Ones with Trends in Precipitation through a Lagrangian Approach

Authors: Raquel Nieto, Marta Vázquez, Anita Drumond, Luis Gimeno

Abstract:

One of the hot spots of climate change is the increment of ocean evaporation. The best estimation of evaporation, OAFlux data, shows strong increasing trends in evaporation from the oceans since 1978, with peaks during the hemispheric winter and strongest along the paths of the global western boundary currents and any inner Seas. The transport of moisture from oceanic sources to the continents is the connection between evaporation from the ocean and precipitation over the continents. A key question is to try to relate evaporative source regions over the oceans where trends have occurred in the last decades with their sinks over the continents to check if there have been also any trends in the precipitation amount or its characteristics. A Lagrangian approach based on FLEXPART and ERA-interim data is used to establish this connection. The analyzed period was 1980 to 2012. Results show that there is not a general pattern, but a significant agreement was found in important areas of climate interest.

Keywords: ocean evaporation, Lagrangian approaches, contiental precipitation, Europe

Procedia PDF Downloads 256
1421 The Impact of a Leadership Change on Individuals' Behaviour and Incentives: Evidence from the Top Tier Italian Football League

Authors: Kaori Narita, Juan de Dios Tena Horrillo, Claudio Detotto

Abstract:

Decisions on replacement of leaders are of significance and high prevalence in any organization, and concerns many of its stakeholders, whether it is a leader in a political party or a CEO of a firm, as indicated by high media coverage of such events. This merits an investigation into the consequences and implications of a leadership change on the performances and behavior of organizations and their workers. Sport economics provides a fruitful field to explore these issues due to the high frequencies of managerial changes in professional sports clubs and the transparency and regularity of observations of team performance and players’ abilities. Much of the existing research on managerial change focuses on how this affects the performance of an organization. However, there is scarcely attention paid to the consequences of such events on the behavior of individuals within the organization. Changes in behavior and attitudes of a group of workers due to a managerial change could be of great interest in management science, psychology, and operational research. On the other hand, these changes cannot be observed in the final outcome of the organization, as this is affected by many other unobserved shocks, for example, the stress level of workers with the need to deal with a difficult situation. To fill this gap, this study shows the first attempt to evaluate the impact of managerial change on players’ behaviors such as attack intensity, aggressiveness, and efforts. The data used in this study is from the top tier Italian football league (“Serie A”), where an average of 13 within season replacements of head coaches were observed over the period of seasons from 2000/2001 to 2017/18. The preliminary estimation employs Pooled Ordinary Least Square (POLS) and club-season Fixed Effect (FE) in order to assess the marginal effect of having a new manager on the number of shots, corners and red/yellow cards after controlling for a home-field advantage, ex ante abilities and current positions in the league of a team and their opponent. The results from this preliminary estimation suggest that the teams do not show a significant difference in their behaviors before and after the managerial change. To build on these preliminary results, other methods, including propensity score matching and non-linear model estimates, will be used. Moreover, the study will further investigate these issues by considering other measurements of attack intensity, aggressiveness, and efforts, such as possessions, a number of fouls and the athletic performance of players, respectively. Finally, the study is going to investigate whether these results vary over the characteristics of a new head coach, for example, their age and experience as a manager and a player. Thus far, this study suggests that certain behaviours of individuals in an organisation are not immediately affected by a change in leadership. To confirm this preliminary finding and lead to a more solid conclusion, further investigation will be conducted in the aforementioned manner, and the results will be elaborated in the conference.

Keywords: behaviour, effort, manager characteristics, managerial change, sport economics

Procedia PDF Downloads 134
1420 Estimation of the Acute Toxicity of Halogenated Phenols Using Quantum Chemistry Descriptors

Authors: Khadidja Bellifa, Sidi Mohamed Mekelleche

Abstract:

Phenols and especially halogenated phenols represent a substantial part of the chemicals produced worldwide and are known as aquatic pollutants. Quantitative structure–toxicity relationship (QSTR) models are useful for understanding how chemical structure relates to the toxicity of chemicals. In the present study, the acute toxicities of 45 halogenated phenols to Tetrahymena Pyriformis are estimated using no cost semi-empirical quantum chemistry methods. QSTR models were established using the multiple linear regression technique and the predictive ability of the models was evaluated by the internal cross-validation, the Y-randomization and the external validation. Their structural chemical domain has been defined by the leverage approach. The results show that the best model is obtained with the AM1 method (R²= 0.91, R²CV= 0.90, SD= 0.20 for the training set and R²= 0.96, SD= 0.11 for the test set). Moreover, all the Tropsha’ criteria for a predictive QSTR model are verified.

Keywords: halogenated phenols, toxicity mechanism, hydrophobicity, electrophilicity index, quantitative stucture-toxicity relationships

Procedia PDF Downloads 301
1419 Spontaneous Message Detection of Annoying Situation in Community Networks Using Mining Algorithm

Authors: P. Senthil Kumari

Abstract:

Main concerns in data mining investigation are social controls of data mining for handling ambiguity, noise, or incompleteness on text data. We describe an innovative approach for unplanned text data detection of community networks achieved by classification mechanism. In a tangible domain claim with humble secrecy backgrounds provided by community network for evading annoying content is presented on consumer message partition. To avoid this, mining methodology provides the capability to unswervingly switch the messages and similarly recover the superiority of ordering. Here we designated learning-centered mining approaches with pre-processing technique to complete this effort. Our involvement of work compact with rule-based personalization for automatic text categorization which was appropriate in many dissimilar frameworks and offers tolerance value for permits the background of comments conferring to a variety of conditions associated with the policy or rule arrangements processed by learning algorithm. Remarkably, we find that the choice of classifier has predicted the class labels for control of the inadequate documents on community network with great value of effect.

Keywords: text mining, data classification, community network, learning algorithm

Procedia PDF Downloads 508
1418 γ-Irradiation of Oat β- Glucan: Effect on Antioxidant and Antiproliferative Properties

Authors: Asima Shah, F. A. Masoodi, Adil Gani, Bilal Ahmad Ashwar

Abstract:

The present study was designed to evaluate the effect of γ-rays on the antioxidant and antiproliferative potential of β-glucan isolated from oats. The β-glucan was irradiated with 0, 2, 6, and 10 kGy by gamma ray. The samples were characterized by FT-IR, GPC, and quantitative estimation by Megazyme β-glucan assay kit. The average molecular weight of non-irradiated β-glucan was 199 kDa that decreased to 70 kDa at 10 kGy. Both FT-IR spectrum and chemical analysis revealed that the extracted β-glucan was pure having minor impurities. Antioxidant activity was evaluated by DPPH, lipid peroxidation, reducing power, metal chelating ability and oxidative DNA damage assays. Results revealed that the antioxidant activity of β-glucan increased with the increase in irradiation dose. Irradiated β-glucan also exhibited dose dependent cancer cell growth inhibition with irradiation doses. The study revealed that low molecular weight β-glucan with enhanced antioxidant and antiproliferative activities can be produced by a simple irradiation method.

Keywords: γ-irradiation, antioxidant activity, antiproliferative activity, β-glucan, oats

Procedia PDF Downloads 457
1417 The Implementation of the Javanese Lettered-Manuscript Image Preprocessing Stage Model on the Batak Lettered-Manuscript Image

Authors: Anastasia Rita Widiarti, Agus Harjoko, Marsono, Sri Hartati

Abstract:

This paper presents the results of a study to test whether the Javanese character manuscript image preprocessing model that have been more widely applied, can also be applied to segment of the Batak characters manuscripts. The treatment process begins by converting the input image into a binary image. After the binary image is cleaned of noise, then the segmentation lines using projection profile is conducted. If unclear histogram projection is found, then the smoothing process before production indexes line segments is conducted. For each line image which has been produced, then the segmentation scripts in the line is applied, with regard of the connectivity between pixels which making up the letters that there is no characters are truncated. From the results of manuscript preprocessing system prototype testing, it is obtained the information about the system truth percentage value on pieces of Pustaka Batak Podani Ma AjiMamisinon manuscript ranged from 65% to 87.68% with a confidence level of 95%. The value indicates the truth percentage shown the initial processing model in Javanese characters manuscript image can be applied also to the image of the Batak characters manuscript.

Keywords: connected component, preprocessing, manuscript image, projection profiles

Procedia PDF Downloads 400
1416 Numerical Computation of Specific Absorption Rate and Induced Current for Workers Exposed to Static Magnetic Fields of MRI Scanners

Authors: Sherine Farrag

Abstract:

Currently-used MRI scanners in Cairo City possess static magnetic field (SMF) that varies from 0.25 up to 3T. More than half of them possess SMF of 1.5T. The SMF of the magnet determine the diagnostic power of a scanner, but not worker's exposure profile. This research paper presents an approach for numerical computation of induced electric fields and SAR values by estimation of fringe static magnetic fields. Iso-gauss line of MR was mapped and a polynomial function of the 7th degree was generated and tested. Induced current field due to worker motion in the SMF and SAR values for organs and tissues have been calculated. Results illustrate that the computation tool used permits quick accurate MRI iso-gauss mapping and calculation of SAR values which can then be used for assessment of occupational exposure profile of MRI operators.

Keywords: MRI occupational exposure, MRI safety, induced current density, specific absorption rate, static magnetic fields

Procedia PDF Downloads 430
1415 Regionalization of IDF Curves, by Interpolating Intensity and Adjustment Parameters - Application to Boyacá, Colombia

Authors: Pedro Mauricio Acosta, Carlos Andrés Caro

Abstract:

This research presents the regionalization of IDF curves for the department of Boyacá, Colombia, which comprises 16 towns, including the provincial capital, Tunja. For regionalization adjustment parameters (U and alpha) of the IDF curves stations referred to in the studied area were used. Similar regionalization is used by the interpolation of intensities. In the case of regionalization by parameters found by the construction of the curves intensity, duration and frequency estimation methods using ordinary moments and maximum likelihood. Regionalization and interpolation of data were performed with the assistance of Arcgis software. Within the development of the project the best choice to provide a level of reliability such as to determine which of the options and ways to regionalize is best sought. The resulting isolines maps were made in the case of regionalization intensities, each map is associated with a different return period and duration in order to build IDF curves in the studied area. In the case of the regionalization maps parameters associated with each parameter were performed last.

Keywords: intensity duration, frequency curves, regionalization, hydrology

Procedia PDF Downloads 325
1414 Red Blood Cells Deformability: A Chaotic Process

Authors: Ana M. Korol, Bibiana Riquelme, Osvaldo A. Rosso

Abstract:

Since erythrocyte deformability analysis is mostly qualitative, the development of quantitative nonlinear methods is crucial for restricting subjectivity in the study of cell behaviour. An electro-optic mechanic system called erythrodeformeter has been developed and constructed in our laboratory in order to evaluate the erythrocytes' viscoelasticity. A numerical method formulated on the basis of fractal approximation for ordinary (OBM) and fractionary Brownian motion (FBM), as well as wavelet transform analysis, are proposed to distinguish chaos from noise based on the assumption that diffractometric data involves both deterministic and stochastic components, so it could be modelled as a system of bounded correlated random walk. Here we report studies on 25 donors: 4 alpha thalassaemic patients, 11 beta thalassaemic patients, and 10 healthy controls non-alcoholic and non-smoker individuals. The Correlation Coefficient, a nonlinear parameter, showed evidence of the changes in the erythrocyte deformability; the Wavelet Entropy could quantify those differences which are detected by the light diffraction patterns. Such quantifiers allow a good deal of promise and the possibility of a better understanding of the rheological erythrocytes aspects and also could help in clinical diagnosis.

Keywords: red blood cells, deformability, nonlinear dynamics, chaos theory, wavelet trannsform

Procedia PDF Downloads 59