Search results for: inventory classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2898

Search results for: inventory classification

1368 Introduction of the Harmfulness of the Seismic Signal in the Assessment of the Performance of Reinforced Concrete Frame Structures

Authors: Kahil Amar, Boukais Said, Kezmane Ali, Hannachi Naceur Eddine, Hamizi Mohand

Abstract:

The principle of the seismic performance evaluation methods is to provide a measure of capability for a building or set of buildings to be damaged by an earthquake. The common objective of many of these methods is to supply classification criteria. The purpose of this study is to present a method for assessing the seismic performance of structures, based on Pushover method, we are particularly interested in reinforced concrete frame structures, which represent a significant percentage of damaged structures after a seismic event. The work is based on the characterization of seismic movement of the various earthquake zones in terms of PGA and PGD that is obtained by means of SIMQK_GR and PRISM software and the correlation between the points of performance and the scalar characterizing the earthquakes will be developed.

Keywords: seismic performance, pushover method, characterization of seismic motion, harmfulness of the seismic

Procedia PDF Downloads 383
1367 Post-Soviet LULC Analysis of Tbilisi, Batumi and Kutaisi Using of Remote Sensing and Geo Information System

Authors: Lela Gadrani, Mariam Tsitsagi

Abstract:

Human is a part of the urban landscape and responsible for it. Urbanization of cities includes the longest phase; thus none of the environment ever undergoes such anthropogenic impact as the area of large cities. The post-Soviet period is very interesting in terms of scientific research. The changes that have occurred in the cities since the collapse of the Soviet Union have not yet been analyzed best to our knowledge. In this context, the aim of this paper is to analyze the changes in the land use of the three large cities of Georgia (Tbilisi, Kutaisi, Batumi). Tbilisi as a capital city, Batumi as a port city, and Kutaisi as a former industrial center. Data used during the research process are conventionally divided into satellite and supporting materials. For this purpose, the largest topographic maps (1:10 000) of all three cities were analyzed, Tbilisi General Plans (1896, 1924), Tbilisi and Kutaisi historical maps. The main emphasis was placed on the classification of Landsat images. In this case, we have classified the images LULC (LandUse / LandCover) of all three cities taken in 1987 and 2016 using the supervised and unsupervised methods. All the procedures were performed in the programs: Arc GIS 10.3.1 and ENVI 5.0. In each classification we have singled out the following classes: built-up area, water bodies, agricultural lands, green cover and bare soil, and calculated the areas occupied by them. In order to check the validity of the obtained results, additionally we used the higher resolution images of CORONA and Sentinel. Ultimately we identified the changes that took place in the land use in the post-Soviet period in the above cities. According to the results, a large wave of changes touched Tbilisi and Batumi, though in different periods. It turned out that in the case of Tbilisi, the area of developed territory has increased by 13.9% compared to the 1987 data, which is certainly happening at the expense of agricultural land and green cover, in particular, the area of agricultural lands has decreased by 4.97%; and the green cover by 5.67%. It should be noted that Batumi has obviously overtaken the country's capital in terms of development. With the unaided eye it is clear that in comparison with other regions of Georgia, everything is different in Batumi. In fact, Batumi is an unofficial summer capital of Georgia. Undoubtedly, Batumi’s development is very important both in economic and social terms. However, there is a danger that in the uneven conditions of urban development, we will eventually get a developed center - Batumi, and multiple underdeveloped peripheries around it. Analysis of the changes in the land use is of utmost importance not only for quantitative evaluation of the changes already implemented, but for future modeling and prognosis of urban development. Raster data containing the classes of land use is an integral part of the city's prognostic models.

Keywords: analysis, geo information system, remote sensing, LULC

Procedia PDF Downloads 451
1366 Nature-Based Solutions: An Intelligent Method to Enhance Urban Resilience in Response to Climate Change

Authors: Mario Calabrese, Francesca Iandolo, Pietro Vito, Raffaele D'Amore, Francesco Caputo

Abstract:

This article presents a synopsis of Nature-Based Solutions (NBS), a fresh and emerging concept in mitigating and adapting to climate change. It outlines a classification of NBS, from the least intrusive to the most advanced engineering, and provides illustrations of each. Moreover, it gives an overview of the 'Life Metro Adapt' initiative, which dealt with the climatic challenges faced by the Milan Metropolitan City and encouraged the development of climate change adaptation methods using alternative, nature-focused solutions. Lastly, the article emphasizes the necessity of raising awareness about environmental issues to ensure that NBS becomes a regular practice today and can be refined in the future.

Keywords: nature-based solutions, urban resilience, climate change adaptation, life metro adapt initiative

Procedia PDF Downloads 113
1365 Economic Stability in a Small Open Economy with Income Effect on Leisure Demand

Authors: Yu-Shan Hsu

Abstract:

This paper studies a two-sector growth model with a technology of social constant returns and with a utility that features either a zero or a positive income effect on the demand for leisure. The purpose is to investigate how the existence of aggregate instability or equilibrium indeterminacy depends on both the intensity of the income effect on the demand for leisure and the value of the labor supply elasticity. The main finding is that when there is a factor intensity reversal between the private perspective and the social perspective, indeterminacy arises even if the utility has a positive income effect on leisure demand. Moreover, we find that a smaller value of the labor supply elasticity increases the range of the income effect on leisure demand and thus increases the possibility of equilibrium indeterminacy. JEL classification: E3; O41

Keywords: indeterminacy, non-separable preferences, income effect, labor supply elasticity

Procedia PDF Downloads 177
1364 Evidence of Scientific-Ness of Scriptures

Authors: Shyam Sunder Gupta

Abstract:

Written scriptures are created out of Words of God, revealed or inspired. This process of conversion, from revealed Words to written scriptures, happens after a long gap of time and with the involvement of a large number of persons, and unintentionally, scientific and other types of errors get into scriptures; otherwise, scriptures are, in reality, truly scientific. Description of Chronology of life in the womb (Fetal Development), Rotation of Universe, spherical shape of the earth, evolution process of non-living matter and living species, classification of species by nature of birth, etc., most convincing prove that scriptures are truly scientific. In fact, there are many facts for which, to date, science has not found answers but are available in scriptures, like the creation of singularity from which the Big Bang took place and the Universe got created innumerable universes, and the most fundamental particle Param-anu. These findings demonstrate that scriptures contain scientific knowledge that predates scientific discoveries.

Keywords: Big Bang, evolution, Param-anu, scientific, scriptures, singularity, universe

Procedia PDF Downloads 33
1363 Musical Instrument Recognition in Polyphonic Audio Through Convolutional Neural Networks and Spectrograms

Authors: Rujia Chen, Akbar Ghobakhlou, Ajit Narayanan

Abstract:

This study investigates the task of identifying musical instruments in polyphonic compositions using Convolutional Neural Networks (CNNs) from spectrogram inputs, focusing on binary classification. The model showed promising results, with an accuracy of 97% on solo instrument recognition. When applied to polyphonic combinations of 1 to 10 instruments, the overall accuracy was 64%, reflecting the increasing challenge with larger ensembles. These findings contribute to the field of Music Information Retrieval (MIR) by highlighting the potential and limitations of current approaches in handling complex musical arrangements. Future work aims to include a broader range of musical sounds, including electronic and synthetic sounds, to improve the model's robustness and applicability in real-time MIR systems.

Keywords: binary classifier, CNN, spectrogram, instrument

Procedia PDF Downloads 77
1362 Impact of Popular Passive Physiological Diversity Drivers on Thermo-Physiology

Authors: Ilango Thiagalingam, Erwann Yvin, Gabriel Crehan, Roch El Khoury

Abstract:

An experimental investigation is carried out in order to evaluate the relevance of a customization approach of the passive thermal mannikin. The promise of this approach consists in the following assumption: physiological differences lead to distinct thermo-physiological responses that explain a part of the thermal appraisal differences between people. Categorizing people and developing an appropriate thermal mannikin for each group would help to reduce the actual dispersion on the subjective thermal comfort perception. The present investigation indicates that popular passive physiological diversity drivers such as sex, age and BMI are not the correct parameters to consider. Indeed, very little or no discriminated global thermo-physiological responses arise from the physiological classification of the population using these parameters.

Keywords: thermal comfort, thermo-physiology, customization, thermal mannikin

Procedia PDF Downloads 100
1361 The Inhibition of Sexual Pleasure and Its Associations with Cultural Messages

Authors: Fabiola Trejo Perez, Rolando Diaz Loving

Abstract:

Sexual pleasure consists of the positively valued feelings induced by sexual stimuli, but it is also weighed down by pop-psychological baggage, and subjected to cross-cultural and cross-historical variation. Social and individual interpretations of what can or can’t be considered as pleasurable are intertwined with culture’s predominant values, norms and beliefs. For each culture, sexual norms work as a guide to be followed in order to model socially accepted behaviors. Therefore, cultural messages regarding sexuality are usually directed to restrict men and women from enjoyment, sexual satisfaction and specifically orgasm. Given that sexual pleasure hasn’t been recognized as an accepted topic of open discussion, particularly for women, people have to eventually complement their knowledge using their own experience filling in the blanks from what little has been said. Thus, this research aims to identify which are the particular social messages associated with the easing or inhibition of sexual pleasure. Three hundred Mexican men and women ages 25 to 35 years old answered a self-report survey composed by the Inventory of facilitators and inhibitors of sexual pleasure and the Sexual premises questionnaire via pencil-paper and online. Results show a high endorsement to double standard messages associated with higher levels of sexual pleasure inhibitors like feeling pressured to have sexual activity, guilt and inability to reach orgasm, in contrast with people who endorse more permissive norms and beliefs, feeling connected to their sexual partners and confident with themselves. These results illustrate that the shaping of sexuality, from experience to society, is comprised of an important relationship between culture and sexual pleasure.

Keywords: culture, sexual double standard, sexual norms and beliefs, sexual pleasure

Procedia PDF Downloads 222
1360 An Ontology Model for Systems Engineering Derived from ISO/IEC/IEEE 15288: 2015: Systems and Software Engineering - System Life Cycle Processes

Authors: Lan Yang, Kathryn Cormican, Ming Yu

Abstract:

ISO/IEC/IEEE 15288: 2015, Systems and Software Engineering - System Life Cycle Processes is an international standard that provides generic top-level process descriptions to support systems engineering (SE). However, the processes defined in the standard needs improvement to lift integrity and consistency. The goal of this research is to explore the way by building an ontology model for the SE standard to manage the knowledge of SE. The ontology model gives a whole picture of the SE knowledge domain by building connections between SE concepts. Moreover, it creates a hierarchical classification of the concepts to fulfil different requirements of displaying and analysing SE knowledge.

Keywords: knowledge management, model-based systems engineering, ontology modelling, systems engineering ontology

Procedia PDF Downloads 425
1359 Examining the Factors That Mediate the Effects of Mindfulness on Conflict Resolution Strategies

Authors: Franco Ceasar Agbalog, Shintaro Yukawa

Abstract:

Mindfulness is increasingly being used as a method for resolving conflict. However, less is known about how its positive outcome develops. To better understand the underlying effects of mindfulness on conflict resolution strategies, this study examines the potential mediating factors between them. The researchers hypothesized that Emotional Intelligence (EI) mediates the effects of mindfulness on conflict resolution strategies due to its similar components to the benefits of mindfulness, such as awareness and control of one’s emotions, awareness and understanding of other’s emotions, and cultivation of compassion and empathy. Using a random sampling, 157 participants completed three questionnaires: Five Facet Mindfulness Questionnaire (FFMQ), Trait Emotional Intelligence Questionnaire-Short Form (TEIQue-SF), and Rahim Organizational Conflict Inventory-II (ROCI-II). Utilizing the SPSS Process, results showed a significant relationship between mindfulness and EI. However, among the five approaches to conflict resolution, only the integrating style was significantly related to EI. Following the principle of Mediation Analysis, mindfulness has an indirect effect on integrating style. Moreover, mindfulness and conflict resolution strategies were not significantly related. This is a rather surprising result because research literature has always indicated a positive relationship between the two variables. These findings imply that although integrating style is generally considered the best approach in handling conflict, each style may be appropriate depending on the situation. Mindfulness allows practitioners to have a holistic view of the conflict situation and choose the approach they think best for that specific situation. This could explain why statistically, there is no direct effect of mindfulness on conflict resolution strategies. This work provides basis for the necessity to investigate the factors of conflict instead of the conflict resolution strategies; factors that can be manipulated and may be directly influenced by mindfulness.

Keywords: conflict resolution strategies, emotional intelligence, mindfulness and conflict, ROCI-II integrating style

Procedia PDF Downloads 363
1358 SEMCPRA-Sar-Esembled Model for Climate Prediction in Remote Area

Authors: Kamalpreet Kaur, Renu Dhir

Abstract:

Climate prediction is an essential component of climate research, which helps evaluate possible effects on economies, communities, and ecosystems. Climate prediction involves short-term weather prediction, seasonal prediction, and long-term climate change prediction. Climate prediction can use the information gathered from satellites, ground-based stations, and ocean buoys, among other sources. The paper's four architectures, such as ResNet50, VGG19, Inception-v3, and Xception, have been combined using an ensemble approach for overall performance and robustness. An ensemble of different models makes a prediction, and the majority vote determines the final prediction. The various architectures such as ResNet50, VGG19, Inception-v3, and Xception efficiently classify the dataset RSI-CB256, which contains satellite images into cloudy and non-cloudy. The generated ensembled S-E model (Sar-ensembled model) provides an accuracy of 99.25%.

Keywords: climate, satellite images, prediction, classification

Procedia PDF Downloads 73
1357 The Role of the Method of Conception in Description of Intensity and Type of Motivation for Parenthood

Authors: Mila Radovanovic, Jovana Jestrovic, Ivana Mihic

Abstract:

Deciding whether to have a child is a complex psychological process, and the child's birth is an everlasting change in the life of the family. Researchers from all over the world have been recognized the importance of the motivation for parenthood in latter family life, but there is no very clear picture of factors which make the difference in this motivation. One of these factors can be the method of conception and results of the earlier studies are different- some showed the differences, but the others did not. The aim of this study was to determine the type and intensity of motivation for parenting among women in Serbia and to examine whether there are differences in motivation depend on the method of conception. The total sample consisted of 94 women- 57 pregnant women who conceive naturally and the same number of women in the process of in vitro fertilization, who still haven’t known the final result of the process- are they pregnant or no. The Child Study Inventory, which estimates four types of motivation for parenthood- altruistic, instrumental, narcissistic and fatalistic-was used for this purpose. Multivariate analysis of variance was used to answer the main question of the study. The results indicate that there is no statistically significant difference between the two groups of women, while the most common is the altruistic motivation that emphasizes the psychological value of the child, and sees the motivation for parenting as a desire to give love to the child. The results are encouraging because altruistic motivation is intrinsic one and the protective factor for latter family relations and care about child and sensitivity of parents. Altruistic motivation is showed like a good predictor in developing stable emotional relationship between mother and her baby but also is correlated with the higher satisfaction with marriage.

Keywords: development of parental role, in vitro fertilization, motivation for parenthood, pregnancy

Procedia PDF Downloads 217
1356 Using Non-Negative Matrix Factorization Based on Satellite Imagery for the Collection of Agricultural Statistics

Authors: Benyelles Zakaria, Yousfi Djaafar, Karoui Moussa Sofiane

Abstract:

Agriculture is fundamental and remains an important objective in the Algerian economy, based on traditional techniques and structures, it generally has a purpose of consumption. Collection of agricultural statistics in Algeria is done using traditional methods, which consists of investigating the use of land through survey and field survey. These statistics suffer from problems such as poor data quality, the long delay between collection of their last final availability and high cost compared to their limited use. The objective of this work is to develop a processing chain for a reliable inventory of agricultural land by trying to develop and implement a new method of extracting information. Indeed, this methodology allowed us to combine data from remote sensing and field data to collect statistics on areas of different land. The contribution of remote sensing in the improvement of agricultural statistics, in terms of area, has been studied in the wilaya of Sidi Bel Abbes. It is in this context that we applied a method for extracting information from satellite images. This method is called the non-negative matrix factorization, which does not consider the pixel as a single entity, but will look for components the pixel itself. The results obtained by the application of the MNF were compared with field data and the results obtained by the method of maximum likelihood. We have seen a rapprochement between the most important results of the FMN and those of field data. We believe that this method of extracting information from satellite data leads to interesting results of different types of land uses.

Keywords: blind source separation, hyper-spectral image, non-negative matrix factorization, remote sensing

Procedia PDF Downloads 423
1355 Burden of Cardiovascular Diseases in Dubrovnik- Neretva County 2018-2021

Authors: Tarnai Tena, Strinić Dean

Abstract:

Chronic non-communicable diseases are today the leading cause of mortality, morbidity and mortality disability at the world level and in Croatia. Among them are the most represented precisely cardiovascular diseases (CVD), so today we are talking about their global card epidemic. From 2018 to 2021, cardiovascular diseases are the leading cause of death for both women and men in the Dubrovnik- Neretva County. With regard to the COVID-19 pandemic, which has taken over, without forgetting how much these patients are additionally affected, we are still talking about the primary cause of sickness and death in the population of this county and region. In this record, we present collected data processed according to gender and disease classification. We also bring a kind of overview because, for years, we have been following how the population of one of the origins of the Mediterranean diet has been struggling with cardiovascular diseases.

Keywords: cardiovascular disease, burden, COVID-19, epidemiology, ishemic heart disease, cardiovascular medicine

Procedia PDF Downloads 83
1354 Real Time Multi Person Action Recognition Using Pose Estimates

Authors: Aishrith Rao

Abstract:

Human activity recognition is an important aspect of video analytics, and many approaches have been recommended to enable action recognition. In this approach, the model is used to identify the action of the multiple people in the frame and classify them accordingly. A few approaches use RNNs and 3D CNNs, which are computationally expensive and cannot be trained with the small datasets which are currently available. Multi-person action recognition has been performed in order to understand the positions and action of people present in the video frame. The size of the video frame can be adjusted as a hyper-parameter depending on the hardware resources available. OpenPose has been used to calculate pose estimate using CNN to produce heap-maps, one of which provides skeleton features, which are basically joint features. The features are then extracted, and a classification algorithm can be applied to classify the action.

Keywords: human activity recognition, computer vision, pose estimates, convolutional neural networks

Procedia PDF Downloads 139
1353 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments

Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda

Abstract:

In this work we present an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods: the parameters of distribution, the moments centered of the different projections and the Barr features. It should be noted that these methods are applied on segments gotten after the division of the binary image of the word in six segments. The classification is achieved by a multi layers perceptron. Detailed experiments are carried and satisfactory recognition results are reported.

Keywords: handwritten word recognition, neural networks, image processing, pattern recognition, features extraction

Procedia PDF Downloads 513
1352 Hidden Populations and Women: New Political, Methodological and Ethical Challenges

Authors: Renée Fregosi

Abstract:

The contribution presently proposed will report on the beginnings of a Franco-Chilean study to be launched in 2015 by a multidisciplinary team of Renée Fregosi Political Science University Paris 3 / CECIEC, Norma Muñoz Public Policies University of Santiago of Chile, Jean-Daniel Lelievre, Medicine Paris 11 University, Marcelo WOLFF Medicine University of Chile, Cecilia Blatrix Political Science University Paris-Tech, Ernesto OTTONE, Political Science University of Chile, Paul DENY Medicine Paris 13 University, Rafael Bugueno Medicine Hospital Urgencia Pública of Santiago, Eduardo CARRASCO Political Science Paris 3 University. The problem of hidden populations challenges some criteria and concepts to re-examine: in particular the concept of target population, sampling methods to "snowball" and the cost-effectiveness criterion that shows the connection of political and scientific fields. Furthermore, if the pattern of homosexual transmission still makes up the highest percentage of the modes of infection with HIV, there is a continuous increase in the number of people infected through heterosexual sex, including women and persons aged 50 years and older. This group can be described as " unknown risk people." Access to these populations is a major challenge and raises methodological, ethical and political issues of prevention, particularly on the issue of screening. This paper proposes an inventory of these types of problems and their articulation, to define a new phase in the prevention against HIV refocused on women.

Keywords: HIV testing, hidden populations, difficult to reach PLWHA, women, unknown risk people

Procedia PDF Downloads 522
1351 Prospective Study to Determine the Efficacy of Day Hospital Care to Improve Treatment Adherence for Hospitalized Schizophrenic Patients

Authors: Jin Hun Choi, So Hyun Ahn, Seong Keun Wang, Ik-Seung Chee, Jung Lan Kim, Sun Woo Lee

Abstract:

Objectives: The purpose of the study is to investigate the effects of day hospital care in hospitalized schizophrenic patients in terms of treatment adherence and treatment outcomes. Methods: Among schizophrenic patients hospitalized between 2011 and 2012, 23 day hospital care patient and 40 control subjects were included in the study. All candidates underwent Beck Cognitive Insight Scale, Drug Attitude Inventory, World Health Organization Quality of Life Assessment and Psychological Well-Being Scale when their symptoms were stabilized during hospitalization, and after being discharged, 23 patients received day hospital care for two months and then changed to out-patient care while 40 patients received out-patient care immediately after discharge. At the point of two months of out-patient care, the treatment adherence of the two groups was evaluated; tracking observation was performed until February, 2013, and survival rates were compared between the two groups. Results: Treatment adherence was higher in the day hospital care group than in the control group. Kaplan-Meier survival analysis showed a higher survival rate for the day hospital care group compared to the control group. Levels of cognitive insight and quality of life were higher after day hospital care than before day hospital care in the day hospital care group. Conclusions: Through the study, it was confirmed that when hospitalized schizophrenic patients received continuous day hospital care after being discharged, they received further out-patient care more faithfully. The study is considered to aid in the understanding regarding schizophrenic patients’ treatment adherence issues and improvement of treatment outcomes.

Keywords: schizophrenia, day hospital care, adherence, outcomes

Procedia PDF Downloads 353
1350 Singularization: A Technique for Protecting Neural Networks

Authors: Robert Poenaru, Mihail Pleşa

Abstract:

In this work, a solution that addresses the protection of pre-trained neural networks is developed: Singularization. This method involves applying permutations to the weight matrices of a pre-trained model, introducing a form of structured noise that obscures the original model’s architecture. These permutations make it difficult for an attacker to reconstruct the original model, even if the permuted weights are obtained. Experimental benchmarks indicate that the application of singularization has a profound impact on model performance, often degrading it to the point where retraining from scratch becomes necessary to recover functionality, which is particularly effective for securing intellectual property in neural networks. Moreover, unlike other approaches, singularization is lightweight and computationally efficient, which makes it well suited for resource-constrained environments. Our experiments also demonstrate that this technique performs efficiently in various image classification tasks, highlighting its broad applicability and practicality in real-world scenarios.

Keywords: machine learning, ANE, CNN, security

Procedia PDF Downloads 14
1349 Strategies of Spatial Optimization for Open Space in the Old-Age Friendly City: An Investigation of the Behavior of the Elderly in Xicheng Square in Hangzhou

Authors: Yunxiang Fang

Abstract:

With the aging trend continuing to accelerate, open space is important for the daily life of the elderly, and its old-age friendliness is worthy of attention. Based on behavioral observation and literature research, this paper studies the behavior of the elderly in urban open space. Through the investigation, classification and quantitative analysis of the activity types, time characteristics and spatial behavior order of the elderly in Xicheng Square in Hangzhou, it summarizes the square space suitable for the psychological needs, physiology and activity needs of the elderly, combined with the basis of literature research. Finally, the suggestions for the improvement of the old-age friendship of Xicheng Square are put forward, from the aspects of microclimate, safety and accessibility, space richness and service facility quality.

Keywords: behavior characteristics, old-age friendliness, open space, square

Procedia PDF Downloads 169
1348 Depression and Associated Factors among Adolescent Females in Riyadh, Kingdom of Saudi Arabia: A Cross‑Sectional Study

Authors: Hafsa Raheel

Abstract:

Background: Adolescents who suffer from depression early in life, have an increase in suicidal tendency, anxiety, conduct disorders, substance abuse, and continue to be depressed, later on in life. This study was conducted to identify the prevalence and correlates of depression among adolescent girls in Riyadh city in order to carry out early intervention. Methods: A cross‑sectional, school‑based survey was conducted among 1028 adolescent girls aged 15–19 years in secondary schools of Riyadh city. Riyadh was divided into clusters and within each cluster, both public and private schools were enrolled. From the selected schools students from grade 10–12 were surveyed. Survey was conducted using a structured questionnaire including the beck depression inventory‑II, and questions exploring the correlates of depression. Results: About 30% of participants were found to be depressed. Depression was more prevalent among female adolescents whose household income was inferior to 12,000 Saudi Riyal/month (odds ratio [OR] 2.17, confidence interval [CI] 0.97–6.84), did not have a good relationship with peers and family members (OR 4.63, CI 2.56–8.41), lived with single parent or alone (OR 1.77, CI 0.97–3.23), had been emotionally abused (OR 3.45, CI 2.56–8.41), and those who had been subjected to physical violence at least once (OR 3.34, CI 1.89–5.91). Conclusions: Strategies need to be developed to identify early signs and symptoms of depression among Saudi female adolescents. Training can be given to groups of students to help their peers, and also to the teachers to identify, and help students identify early signs of depression and provide them with better‑coping strategies to combat progression of depression and anxiety among such adolescents.

Keywords: adolescents, depression, Saudi Arabia, mental health

Procedia PDF Downloads 303
1347 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus

Authors: J. K. Alhassan, B. Attah, S. Misra

Abstract:

Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. medical dataset is a vital ingredient used in predicting patients health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. The evaluations was done using weka software and found out that DTA performed better than ANN. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. The Root Mean Squared Error (RMSE) of MLP is 0.3913,that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.

Keywords: artificial neural network, classification, decision tree algorithms, diabetes mellitus

Procedia PDF Downloads 408
1346 Self-Supervised Learning for Hate-Speech Identification

Authors: Shrabani Ghosh

Abstract:

Automatic offensive language detection in social media has become a stirring task in today's NLP. Manual Offensive language detection is tedious and laborious work where automatic methods based on machine learning are only alternatives. Previous works have done sentiment analysis over social media in different ways such as supervised, semi-supervised, and unsupervised manner. Domain adaptation in a semi-supervised way has also been explored in NLP, where the source domain and the target domain are different. In domain adaptation, the source domain usually has a large amount of labeled data, while only a limited amount of labeled data is available in the target domain. Pretrained transformers like BERT, RoBERTa models are fine-tuned to perform text classification in an unsupervised manner to perform further pre-train masked language modeling (MLM) tasks. In previous work, hate speech detection has been explored in Gab.ai, which is a free speech platform described as a platform of extremist in varying degrees in online social media. In domain adaptation process, Twitter data is used as the source domain, and Gab data is used as the target domain. The performance of domain adaptation also depends on the cross-domain similarity. Different distance measure methods such as L2 distance, cosine distance, Maximum Mean Discrepancy (MMD), Fisher Linear Discriminant (FLD), and CORAL have been used to estimate domain similarity. Certainly, in-domain distances are small, and between-domain distances are expected to be large. The previous work finding shows that pretrain masked language model (MLM) fine-tuned with a mixture of posts of source and target domain gives higher accuracy. However, in-domain performance of the hate classifier on Twitter data accuracy is 71.78%, and out-of-domain performance of the hate classifier on Gab data goes down to 56.53%. Recently self-supervised learning got a lot of attention as it is more applicable when labeled data are scarce. Few works have already been explored to apply self-supervised learning on NLP tasks such as sentiment classification. Self-supervised language representation model ALBERTA focuses on modeling inter-sentence coherence and helps downstream tasks with multi-sentence inputs. Self-supervised attention learning approach shows better performance as it exploits extracted context word in the training process. In this work, a self-supervised attention mechanism has been proposed to detect hate speech on Gab.ai. This framework initially classifies the Gab dataset in an attention-based self-supervised manner. On the next step, a semi-supervised classifier trained on the combination of labeled data from the first step and unlabeled data. The performance of the proposed framework will be compared with the results described earlier and also with optimized outcomes obtained from different optimization techniques.

Keywords: attention learning, language model, offensive language detection, self-supervised learning

Procedia PDF Downloads 105
1345 Inquiry on the Improvement Teaching Quality in the Classroom with Meta-Teaching Skills

Authors: Shahlan Surat, Saemah Rahman, Saadiah Kummin

Abstract:

When teachers reflect and evaluate whether their teaching methods actually have an impact on students’ learning, they will adjust their practices accordingly. This inevitably improves their students’ learning and performance. The approach in meta-teaching can invigorate and create a passion for teaching. It thus helps to increase the commitment and love for the teaching profession. This study was conducted to determine the level of metacognitive thinking of teachers in the process of teaching and learning in the classroom. Metacognitive thinking teachers include the use of metacognitive knowledge which consists of different types of knowledge: declarative, procedural and conditional. The ability of the teachers to plan, monitor and evaluate the teaching process can also be determined. This study was conducted on 377 graduate teachers in Klang Valley, Malaysia. The stratified sampling method was selected for the purpose of this study. The metacognitive teaching inventory consisting of 24 items is called InKePMG (Teacher Indicators of Effectiveness Meta-Teaching). The results showed the level of mean is high for two components of metacognitive knowledge; declarative knowledge (mean = 4.16) and conditional (mean = 4.11) whereas, the mean of procedural knowledge is 4.00 (moderately high). Similarly, the level of knowledge in monitoring (mean = 4.11), evaluating (mean = 4.00) which indicate high score and planning (mean = 4.00) are moderately high score among teachers. In conclusion, this study shows that the planning and procedural knowledge is an important element in improving the quality of teachers teaching in the classroom. Thus, the researcher recommended that further studies should focus on training programs for teachers on metacognitive skills and also on developing creative thinking among teachers.

Keywords: metacognitive thinking skills, procedural knowledge, conditional knowledge, meta-teaching and regulation of cognitive

Procedia PDF Downloads 409
1344 Optimal Mother Wavelet Function for Shoulder Muscles of Upper Limb Amputees

Authors: Amanpreet Kaur

Abstract:

Wavelet transform (WT) is a powerful statistical tool used in applied mathematics for signal and image processing. The different mother, wavelet basis function, has been compared to select the optimal wavelet function that represents the electromyogram signal characteristics of upper limb amputees. Four different EMG electrode has placed on different location of shoulder muscles. Twenty one wavelet functions from different wavelet families were investigated. These functions included Daubechies (db1-db10), Symlets (sym1-sym5), Coiflets (coif1-coif5) and Discrete Meyer. Using mean square error value, the significance of the mother wavelet functions has been determined for teres, pectorals, and infraspinatus around shoulder muscles. The results show that the best mother wavelet is the db3 from the Daubechies family for efficient classification of the signal.

Keywords: Daubechies, upper limb amputation, shoulder muscles, Symlets, Coiflets

Procedia PDF Downloads 235
1343 Analysis of Spatial and Temporal Data Using Remote Sensing Technology

Authors: Kapil Pandey, Vishnu Goyal

Abstract:

Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.

Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing

Procedia PDF Downloads 433
1342 Supply Chain Optimisation through Geographical Network Modeling

Authors: Cyrillus Prabandana

Abstract:

Supply chain optimisation requires multiple factors as consideration or constraints. These factors are including but not limited to demand forecasting, raw material fulfilment, production capacity, inventory level, facilities locations, transportation means, and manpower availability. By knowing all manageable factors involved and assuming the uncertainty with pre-defined percentage factors, an integrated supply chain model could be developed to manage various business scenarios. This paper analyse the utilisation of geographical point of view to develop an integrated supply chain network model to optimise the distribution of finished product appropriately according to forecasted demand and available supply. The supply chain optimisation model shows that small change in one supply chain constraint is possible to largely impact other constraints, and the new information from the model should be able to support the decision making process. The model was focused on three areas, i.e. raw material fulfilment, production capacity and finished products transportation. To validate the model suitability, it was implemented in a project aimed to optimise the concrete supply chain in a mining location. The high level of operations complexity and involvement of multiple stakeholders in the concrete supply chain is believed to be sufficient to give the illustration of the larger scope. The implementation of this geographical supply chain network modeling resulted an optimised concrete supply chain from raw material fulfilment until finished products distribution to each customer, which indicated by lower percentage of missed concrete order fulfilment to customer.

Keywords: decision making, geographical supply chain modeling, supply chain optimisation, supply chain

Procedia PDF Downloads 346
1341 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris

Authors: Piyush Samant, Ravinder Agarwal

Abstract:

Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.

Keywords: complementary and alternative medicine, classification, iridology, iris, feature extraction, disease prediction

Procedia PDF Downloads 407
1340 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features

Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi

Abstract:

Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.

Keywords: causal realtion extraction, relation extracton, convolutional neural network, text representation

Procedia PDF Downloads 732
1339 Research on Urban Thermal Environment Climate Map Based on GIS: Taking Shapingba District, Chongqing as an Example

Authors: Zhao Haoyue

Abstract:

Due to the combined effects of climate change, urban expansion, and population growth, various environmental issues, such as urban heat islands and pollution, arise. Therefore, reliable information on urban environmental climate is needed to address and mitigate the negative effects. The emergence of urban climate maps provides a practical basis for urban climate regulation and improvement. This article takes Shapingba District, Chongqing City, as an example to study the construction method of urban thermal environment climate maps based on GIS spatial analysis technology. The thermal load, ventilation potential analysis map, and thermal environment comprehensive analysis map were obtained. Based on the classification criteria obtained from the climate map, corresponding protection and planning mitigation measures have been proposed.

Keywords: urban climate, GIS, heat island analysis, urban thermal environment

Procedia PDF Downloads 113