Search results for: green ambassador
612 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes
Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali
Abstract:
Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture
Procedia PDF Downloads 54611 Response of Briquettes Application with Different Coating Materials on Yield and Quality of Cucumber [Cucumis sativus (L.)]
Authors: H. B. Torane, M. C. Kasture, S. S. Prabhudesai, P. B. Sanap, V. N. Palsande, J. J. Palkar
Abstract:
The present investigation entitled “Response of briquettes application with different coating materials on yield and quality of Cucumber [Cucumis sativus (L.)]” was conducted at Central Experiment Center, Wakawali during kharif season 2013. The field experiment was laid out in Factorial Randomized Block Design with three replicate. The four coating materials viz., Co – Non coating, C1 – Wax coating, C2 – Jaggary coating, and C3 – Tar coating was applied to Konkan Annapurna Briquette along with three sub treatments of application time i.e B1 – ½ at sowing, B2 - ½ at sowing and ½ at 30 days after sowing and B3 - 1/3 at sowing, 1/3 at 30 days after sowing and 1/3 at 60 days after sowing. It was observed that the application of tar coated Konkan Annapurna Briquettes (KAB) in three times @1/3 quantity of briquettes at sowing time, 1/3 quantity of briquettes at 30 days after sowing and 1/3 quantity of briquettes at 60 days after sowing was found promising to enhancing the cucumber fruit yield, higher vine length, number of fruits vine-1, girth of fruit, length of fruit. It was also observed that the quality of the cucumber fruit increased in terms of ascorbic acid. UB-Godavari forms of briquettes .i.e. are promising source of N, P2O5 and K2O fertilizers as compared to straight fertilizers for enhancing green cucumber fruit yield of Sheetal variety of cucumber in lateritic soil. Amongst the three types of coated briquettes, the tar coated briquettes application was found to be superior for increasing cucumber fruit yield applied in three times @1/3 quantity of briquettes at sowing time, 1/3 quantity of briquettes at 30 days after sowing and 1/3 quantity of briquettes at 60 days after sowing @ 5 briquettes per plant at an interval of 30 days after sowing.Keywords: briquettes, coating, yield, tar, wax and quality
Procedia PDF Downloads 516610 Enabling Community Participation for Social Innovation in the Energy Sector
Authors: Budiman Ibnu
Abstract:
This study investigates about enabling conditions to facilitate social innovation in the energy sector. This is important to support the energy transition in Indonesia. This research provides appropriate project direction, including research (and action) gaps for the energy actors in Indonesia. The actors are allowed to work further with the result of this study to stimulate the energy transition in Indonesia. This report uses systemic change framework which recognizes four drivers of systemic change in a region: 1. transforming political ecologies; 2. configuring green economies; 3. building of adaptive communities; 4. social innovation. These drivers are interconnected, and this report particularly focuses on how social innovation can be supported by other drivers. This study used methods of interview and literature review as the main sources for data collection in this report. There were interviews with eight experts in the related topic which come from different countries which have experienced social innovation in the energy sector. Afterwards, this research reviewed related journal papers from last five years, to check the latest development within the topic, to support the interview result. The result found that the enabling condition can focus on one of the drivers of systemic change, which is building communities by increasing their participation, through several integrated actions. This can be implemented in two types of citizen energy initiatives which are energy cooperatives and sustainable consumption initiatives. This implementation requires study about its related policy and governance support, in order to create complete enabling conditions to facilitate social innovation in the energy transition.Keywords: enabling condition, social innovation, citizen initiatives, community participation
Procedia PDF Downloads 151609 Amperometric Biosensor for Glucose Determination Based on a Recombinant Mn Peroxidase from Corn Cross-linked to a Gold Electrode
Authors: Anahita Izadyar, My Ni Van, Kayleigh Amber Rodriguez, Ilwoo Seok, Elizabeth E. Hood
Abstract:
Using a recombinant enzyme derived from corn and a simple modification, we fabricated a facile, fast, and cost-beneficial biosensor to measure glucose. The Nafion/ Plant Produced Mn Peroxidase (PPMP)– glucose oxidase (GOx)- Bovine serum albumin (BSA) /Au electrode showed an excellent amperometric response to detect glucose. This biosensor is capable of responding to a wide range of glucose—20.0 µM−15.0 mM and has a lower detection limit (LOD) of 2.90µM. The reproducibility response using six electrodes is also very substantial and indicates the high capability of this biosensor to detect a wide range of 3.10±0.19µM to 13.2±1.8 mM glucose concentration. Selectivity of this electrode was investigated in an optimized experimental solution contains 10% diet green tea with citrus containing ascorbic acid (AA), and citric acid (CA) in a wide concentration of glucose at 0.02 to 14.0mM with an LOD of 3.10µM. Reproducibility was also investigated using 4 electrodes in this sample and shows notable results in the wide concentration range of 3.35±0.45µM to of 13.0 ± 0.81 mM. We also used other voltammetry methods to evaluate this biosensor. We applied linear sweep voltammetry (LSV) and this technique shows a wide range of 0.10−15.0 mM to detect glucose with a lower detection limit of 19.5µM. The performance and strength of this enzyme biosensor were the simplicity, wide linear ranges, sensitivities, selectivity, and low limits of detection. We expect that the modified biosensor has the potential for monitoring various biofluids.Keywords: plant-produced manganese peroxidase, enzyme-based biosensors, glucose, modified gold electrode, glucose oxidase
Procedia PDF Downloads 139608 Determinants of Healthcare Team Effectiveness in Subterranean Settings: A Mixed-Methods Study
Authors: Nasra Idilbi, Jalal Tarabeia, Layalleh Masalha, Heiam Shoufani Kassis, Gizell Green
Abstract:
Background: Healthcare professionals working in underground facilities face unique challenges affecting their physical and mental health and team effectiveness. We aimed to examine how an underground work environment affects the physical and mental health and effectiveness of a multi-professional medical team in a medical center under continuous war threats and the contribution of various demographic and professional characteristics. Methods: A cross-sectional survey was disseminated electronically. The questionnaire assessed team effectiveness, the quality of the work, and the health symptoms reported by the team while working in the underground complex. Results: In total, 270 healthcare workers (mean age 40 years, 75.6% females, 88.4% nurses) completed the questionnaire. Women reported statistically significantly higher mean scores of physical strain, fatigue, and eye irritation associated with the work environment compared to men. Multiple regression analysis revealed that psychological distress, noise, and lighting in the underground compound significantly influenced team effectiveness. Conclusions: The underground work environment is crucial in influencing healthcare team effectiveness, with psychological distress, noise, and lighting as key factors. The study highlights the importance of creating a comfortable work environment to foster team efficiency. The findings provide valuable insights for managers in underground healthcare facilities to optimize team performance and well-being.Keywords: team effectiveness, underground settings, healthcare, environmental factors, a mixed-methods study
Procedia PDF Downloads 0607 Electronic Spectral Function of Double Quantum Dots–Superconductors Nanoscopic Junction
Authors: Rajendra Kumar
Abstract:
We study the Electronic spectral density of a double coupled quantum dots sandwich between superconducting leads, where one of the superconducting leads (QD1) are connected with left superconductor lead and (QD1) also connected right superconductor lead. (QD1) and (QD2) are coupling to each other. The electronic spectral density through a quantum dots between superconducting leads having s-wave symmetry of the superconducting order parameter. Such junction is called superconducting –quantum dot (S-QD-S) junction. For this purpose, we have considered a renormalized Anderson model that includes the double coupled of the superconducting leads with the quantum dots level and an attractive BCS-type effective interaction in superconducting leads. We employed the Green’s function technique to obtain superconducting order parameter with the BCS framework and Ambegaoker-Baratoff formalism to analyze the electronic spectral density through such (S-QD-S) junction. It has been pointed out that electronic spectral density through such a junction is dominated by the attractive the paring interaction in the leads, energy of the level on the dot with respect to Fermi energy and also on the coupling parameter of the two in an essential way. On the basis of numerical analysis we have compared the theoretical results of electronic spectral density with the recent transport existing theoretical analysis. QDs is the charging energy that may give rise to effects based on the interplay of Coulomb repulsion and superconducting correlations. It is, therefore, an interesting question to ask how the discrete level spectrum and the charging energy affect the DC and AC Josephson transport between two superconductors coupled via a QD. In the absence of a bias voltage, a finite DC current can be sustained in such an S-QD-S by the DC Josephson effect.Keywords: quantum dots, S-QD-S junction, BCS superconductors, Anderson model
Procedia PDF Downloads 374606 Feeding Habitat of Parrot (Ringed Necked Parakeet) in District Mirpurkhas Sindh Pakistan
Authors: Aisha Liaquat Ali, Ghulam Sarwar Gachal, Muhammad Yusuf Sheikh
Abstract:
The parrot (Rose Ringed) commonly known as tota, belongs to the order ‘psiitaciformes’ and family ‘Psittacidea’, Four species of parakeet inhabits tropical and subtropical regions of Pakistan mostly adopted parks in cities deciduous woodlands, light secondary jungles, semidesert, and scrubland and in orchards and cultivated farmlands. They are mostly feed on citrus fruits, guava, mango, green unripen seed and almond nuts as well as bud and flowers etc. the core aim of the present study was to investigate the Feeding Habitat of Parrot (Ringed Necked Parakeet) in District Mirpurkhas Sindh Pakistan. Sampling was obtained from various adjoining areas of District Mirpurkhas by Non-Random Method, which was conducted from June to Nov 2017. During the present study, a total no: of 84 specimens were collected from different localities of City Mirpurkhas (42.8%) were male ♂ and (57.1%) were female ♀. Maximum population density of Psittaculla Krameri Borealis (50.0%) was collected from Guava (Psidium Guajava) Orchards, Mango (Mangifera Indica) orchard (41.6%), chekoo (Manilkara Zapota) orchard (5.9%) and the Minimum No: of Psittaculla krameri Borealis (2.3%) collected Date (Phoenix Dactylifera) orchard. It was observed that Psittaculla krameri Borealis were highly consumed Guava (Psidium Guajava) and the minimum consume food was Date (Phoenix Dactylifera).Keywords: district Mirpur Khas Sindh Pakistan, feeding, habitat, parrot (ringed necked parakeet)
Procedia PDF Downloads 181605 Predatory Potential of Coccinella septempunctata Linnaeus and Coccinella undecimpunctata Linnaeus on Different Prey Species
Authors: Adnan A. E. Darwish
Abstract:
The predatory potential and preference of both larvae and adult of seven-spot ladybird, Coccinella septempunctata Linnaeus and the eleven-spot ladybird, Coccinella undecimpunctata Linnaeus to the green peach aphid, Myzus persicae (Sulzer), the cotton aphid, Aphis gossypii Glover, the bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus) and onion thrips, Thrips tabaci Lindeman were investigated under laboratory conditions at varying prey densities at faculty of Agriculture, Damanhour university, Egypt. There were significant differences between the consumed numbers of the four different species by the two different lady beetle species. The most consumed prey by C. septempunctata was the A. gossypii followed by R. padi then M. persicae and finally T. tabaci and these results were repeated in case of C. undecimpunctata. As the grubs of C. septempunctata and C. undecimpunctata developed from 1st to 4th larval instars, the consumption rate from aphid species and thrips increased. The consumption rate of M. persicae, A. gossypii, R. padi and T. tabaci significantly increased with the advancement in the larval stage of the predator. The forth larval instar of C. septempunctata and C. undecimpunctata exhibited the highest predatory potential comparing to the first, second and third larval instars. The number of prey eaten by adult stage or different instars of larvae of the two predators increased significantly with prey density, reaching the maximum value when 150 preys were provided compared with 50 and 100 preys.Keywords: predatory potential, Coccinella septempunctata, Coccinella undecimpunctata, Thrips tabaci, Myzus persicae, Aphis gossypii, Rhopalosiphum padi
Procedia PDF Downloads 145604 Antioxidant Effects of C-Phycocyanin on Oxidized Astrocyte in Brain Injury Using 2D and 3D Neural Nanofiber Tissue Model
Authors: Seung Ju Yeon, Seul Ki Min, Jun Sang Park, Yeo Seon Kwon, Hoo Cheol Lee, Hyun Jung Shim, Il-Doo Kim, Ja Kyeong Lee, Hwa Sung Shin
Abstract:
In brain injury, depleting oxidative stress is the most effective way to reduce the brain infarct size. C-phycocyanin (C-Pc) is a well-known antioxidant protein that has neuroprotective effects obtained from green microalgae. Astrocyte is glial cell that supports the nerve cell such as neuron, which account for a large portion of the brain. In brain injury, such as ischemia and reperfusion, astrocyte has an important rule that overcomes the oxidative stress and protect from brain reactive oxygen species (ROS) injury. However little is known about how C-Pc regulates the anti-oxidants effects of astrocyte. In this study, when the C-Pc was treated in oxidized astrocyte, we confirmed that inflammatory factors Interleukin-6 and Interleukin-3 were increased and antioxidants enzyme, Superoxide dismutase (SOD) and catalase was upregulated, and neurotrophic factors, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) was alleviated. Also, it was confirmed to reduce infarct size of the brain in ischemia and reperfusion because C-Pc has anti-oxidant effects in middle cerebral artery occlusion (MCAO) animal model. These results show that C-Pc can help astrocytes lead neuroprotective activities in the oxidative stressed environment of the brain. In summary, the C-PC protects astrocytes from oxidative stress and has anti-oxidative, anti-inflammatory, neurotrophic effects under ischemic situations.Keywords: c-phycocyanin, astrocyte, reactive oxygen species, ischemia and reperfusion, neuroprotective effect
Procedia PDF Downloads 320603 Therapeutical Role of Copper Oxide Nanoparticles (CuO NPs) for Breast Cancer Therapy
Authors: Dipranjan Laha, Parimal Karmakar
Abstract:
Metal oxide nanoparticles are well known to generate oxidative stress and deregulate normal cellular activities. Among these, transition metals copper oxide nanoparticles (CuO NPs) are more compelling than others and able to modulate different cellular responses. In this work, we have synthesized and characterized CuO NPs by various biophysical methods. These CuO NPs (~30 nm) induce autophagy in human breast cancer cell line, MCF7 in a time and dose-dependent manner. Cellular autophagy was tested by MDC staining, induction of green fluorescent protein light chain 3 (GFP-LC3B) foci by confocal microscopy, transfection of pBABE-puro mCherry-EGFP-LC3B plasmid and western blotting of autophagy marker proteins LC3B, beclin1, and ATG5. Further, inhibition of autophagy by 3-Methyladenine (3-MA) decreased LD50 doses of CuO NPs. Such cell death was associated with the induction of apoptosis as revealed by FACS analysis, cleavage of PARP, dephosphorylation of Bad and increased cleavage product of caspase3. siRNA-mediated inhibition of autophagy-related gene beclin1 also demonstrated similar results. Finally, induction of apoptosis by 3-MA in CuO NPs treated cells were observed by TEM. This study indicates that CuO NPs are a potent inducer of autophagy which may be a cellular defense against the CuO NPs mediated toxicity and inhibition of autophagy switches the cellular response into apoptosis. A combination of CuO NPs with the autophagy inhibitor is essential to induce apoptosis in breast cancer cells. Acknowledgments: The authors would like to acknowledge for financial support for this research work to the Department of Biotechnology (No. BT/PR14661/NNT/28/494/2010), Government of India.Keywords: nanoparticle, autophagy, apoptosis, siRNA-mediated inhibition
Procedia PDF Downloads 440602 Al-Ti-W Metallic Glass Thin Films Deposited by Magnetron Sputtering Technology to Protect Steel Against Hydrogen Embrittlement
Authors: Issam Lakdhar, Akram Alhussein, Juan Creus
Abstract:
With the huge increase in world energy consumption, researchers are working to find other alternative sources of energy instead of fossil fuel one causing many environmental problems as the production of greenhouse effect gases. Hydrogen is considered a green energy source, which its combustion does not cause environmental pollution. The transport and the storage of the gas molecules or the other products containing this smallest chemical element in metallic structures (pipelines, tanks) are crucial issues. The dissolve and the permeation of hydrogen into the metal lattice lead to the formation of hydride phases and the embrittlement of structures. To protect the metallic structures, a surface treatment could be a good solution. Among the different techniques, magnetron sputtering is used to elaborate micrometric coatings capable of slowing down or stop hydrogen permeation. In the plasma environment, the deposition parameters of new thin-film metallic glasses Al-Ti-W were optimized and controlled in order to obtain, hydrogen barrier. Many characterizations were carried out (SEM, XRD and Nano-indentation…) to control the composition and understand the influence of film microstructure and chemical composition on the hydrogen permeation through the coatings. The coating performance was evaluated under two hydrogen production methods: chemical and electrochemical (cathodic protection) techniques. The hydrogen quantity absorbed was experimentally determined using the Thermal-Desorption Spectroscopy method (TDS)). An ideal ATW thin film was developed and showed excellent behavior against the diffusion of hydrogen.Keywords: thin films, hydrogen, PVD, plasma technology, electrochemical properties
Procedia PDF Downloads 184601 The Impact of a Sustainable Solar Heating System on the Growth of Strawberry Plants in an Agricultural Greenhouse
Authors: Ilham Ihoume, Rachid Tadili, Nora Arbaoui
Abstract:
The use of solar energy is a crucial tactic in the agricultural industry's plan to decrease greenhouse gas emissions. This clean source of energy can greatly lower the sector's carbon footprint and make a significant impact in the fight against climate change. In this regard, this study examines the effects of a solar-based heating system, in a north-south oriented agricultural greenhouse on the development of strawberry plants during winter. This system relies on the circulation of water as a heat transfer fluid in a closed circuit installed on the greenhouse roof to store heat during the day and release it inside at night. A comparative experimental study was conducted in two greenhouses, one experimental with the solar heating system and the other for control without any heating system. Both greenhouses are located on the terrace of the Solar Energy and Environment Laboratory of the Mohammed V University in Rabat, Morocco. The developed heating system consists of a copper coil inserted in double glazing and placed on the roof of the greenhouse, a water pump circulator, a battery, and a photovoltaic solar panel to power the electrical components. This inexpensive and environmentally friendly system allows the greenhouse to be heated during the winter and improves its microclimate system. This improvement resulted in an increase in the air temperature inside the experimental greenhouse by 6 °C and 8 °C, and a reduction in its relative humidity by 23% and 35% compared to the control greenhouse and the ambient air, respectively, throughout the winter. For the agronomic performance, it was observed that the production was 17 days earlier than in the control greenhouse.Keywords: sustainability, thermal energy storage, solar energy, agriculture greenhouse
Procedia PDF Downloads 87600 Analyzing the Effect of Materials’ Selection on Energy Saving and Carbon Footprint: A Case Study Simulation of Concrete Structure Building
Authors: M. Kouhirostamkolaei, M. Kouhirostami, M. Sam, J. Woo, A. T. Asutosh, J. Li, C. Kibert
Abstract:
Construction is one of the most energy consumed activities in the urban environment that results in a significant amount of greenhouse gas emissions around the world. Thus, the impact of the construction industry on global warming is undeniable. Thus, reducing building energy consumption and mitigating carbon production can slow the rate of global warming. The purpose of this study is to determine the amount of energy consumption and carbon dioxide production during the operation phase and the impact of using new shells on energy saving and carbon footprint. Therefore, a residential building with a re-enforced concrete structure is selected in Babolsar, Iran. DesignBuilder software has been used for one year of building operation to calculate the amount of carbon dioxide production and energy consumption in the operation phase of the building. The primary results show the building use 61750 kWh of energy each year. Computer simulation analyzes the effect of changing building shells -using XPS polystyrene and new electrochromic windows- as well as changing the type of lighting on energy consumption reduction and subsequent carbon dioxide production. The results show that the amount of energy and carbon production during building operation has been reduced by approximately 70% by applying the proposed changes. The changes reduce CO2e to 11345 kg CO2/yr. The result of this study helps designers and engineers to consider material selection’s process as one of the most important stages of design for improving energy performance of buildings.Keywords: construction materials, green construction, energy simulation, carbon footprint, energy saving, concrete structure, designbuilder
Procedia PDF Downloads 198599 Study of Pipes Scaling of Purified Wastewater Intended for the Irrigation of Agadir Golf Grass
Authors: A. Driouiche, S. Mohareb, A. Hadfi
Abstract:
In Morocco’s Agadir region, the reuse of treated wastewater for irrigation of green spaces has faced the problem of scaling of the pipes of these waters. This research paper aims at studying the phenomenon of scaling caused by the treated wastewater from the Mzar sewage treatment plant. These waters are used in the irrigation of golf turf for the Ocean Golf Resort. Ocean Golf, located about 10 km from the center of the city of Agadir, is one of the most important recreation centers in Morocco. The course is a Belt Collins design with 27 holes, and is quite open with deep challenging bunkers. The formation of solid deposits in the irrigation systems has led to a decrease in their lifetime and, consequently, a loss of load and performance. Thus, the sprinklers used in golf turf irrigation are plugged in the first weeks of operation. To study this phenomenon, the wastewater used for the irrigation of the golf turf was taken and analyzed at various points, and also samples of scale formed in the circuits of the passage of these waters were characterized. This characterization of the scale was performed by X-ray fluorescence spectrometry, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and scanning electron microscopy (SEM). The results of the physicochemical analysis of the waters show that they are full of bicarbonates (653 mg/L), chloride (478 mg/L), nitrate (412 mg/L), sodium (425 mg/L) and calcium (199mg/L). Their pH is slightly alkaline. The analysis of the scale reveals that it is rich in calcium and phosphorus. It is formed of calcium carbonate (CaCO₃), silica (SiO₂), calcium silicate (Ca₂SiO₄), hydroxylapatite (Ca₁₀P₆O₂₆), calcium carbonate and phosphate (Ca₁₀(PO₄) 6CO₃) and silicate calcium and magnesium (Ca₅MgSi₃O₁₂).Keywords: Agadir, irrigation, scaling water, wastewater
Procedia PDF Downloads 120598 Tolerance of Some Warm Season Turfgrasses to Compaction under Shade and Sunlight Conditions of Riyadh, Saudi Arabia
Authors: Mohammed A. Al-Yafrsi, Fahed A. Al-Mana
Abstract:
A study was conducted to evaluate the compaction-tolerance ability of some warm season turfgrasses under shade and sunlight conditions in Riyadh, Saudi Arabia. Hybrid bermudagrass (Cynodon dactylon): 'Tifway' and 'Tifsport', seashore paspalum (Paspalum vaginatum) and its cultivar 'Sea Isle 2000' were used. The study area was divided into two sections where one was exposed to sunlight and the other one was maintained under shade using green plastic grille (shade 70%). Turfgrasses were planted by sods in beds containing a mixture of sand, silt, and peat moss (4: 1: 1, v/v). The soil compaction was applied using a locally-made cylindrical roll (weighing 250 kg), passing four times over the growing turfgrasses for 3 days/week. The results revealed that compaction treatment led to a decrease in grass height, and it was the lowest (4.0 cm) for paspalum 'Sea Isle 2000' in February. At the shaded area, paspalum turfgrasses retained its high quality degree (4.0) in April, May, and June. In the sunlight area, the grass quality degree was the greatest (4.0) in 'Sea Isle 2000' and the lowest (3.0) in 'Tifsport'. Paspalum turfgrasses gave higher color degree (4) than bermuda grasses (2.5) in April, May, and June. The compaction also led to a decline in leaf area, fresh and dry weights of all grown turfgrasses. The grass density was high for paspalum turfgrasses indicating that their resistance to compaction was greater than bermudagrasses. It can be concluded that the best compaction and shade tolerant turfgrasses are 'Sea Isle 2000' and seashore paspalum.Keywords: hybrid bermudagrass, seashore paspalum, soil compaction, shade area, sunlight condition
Procedia PDF Downloads 120597 In vitro Protein Folding and Stability Using Thermostable Exoshells
Authors: Siddharth Deshpande, Nihar Masurkar, Vallerinteavide Mavelli Girish, Malan Desai, Chester Drum
Abstract:
Folding and stabilization of recombinant proteins remain a consistent challenge for industrial and therapeutic applications. Proteins derived from thermophilic bacteria often have superior expression and stability qualities. To develop a generalizable approach to protein folding and stabilization, we tested the hypothesis that wrapping a thermostable exoshell around a protein substrate would aid folding and impart thermostable qualities to the internalized substrate. To test the effect of internalizing a protein within a thermostable exoshell (tES), we tested in vitro folding and stability using green fluorescent protein (GFPuv), horseradish peroxidase (HRP) and renilla luciferase (rLuc). The 8nm interior volume of a thermostable ferritin assembly was engineered to accommodate foreign proteins and either present a positive, neutral or negative interior charge environment. We further engineered the tES complex to reversibly assemble and disassemble with pH titration. Template proteins were expressed as inclusion bodies and an in vitro folding protocol was developed that forced proteins to fold inside a single tES. Functional yield was improved 100-fold, 100-fold and 150-fold with use of tES for GFPuv, HRP and rLuc respectively and was highly dependent on the internal charge environment of the tES. After folding, functional proteins could be released from the tES folding cavity using size exclusion chromatography at pH 5.8. Internalized proteins were tested for improved stability against thermal, organic, urea and guanidine denaturation. Our results demonstrated that thermostable exoshells can efficiently refold and stabilize inactive aggregates into functional proteins.Keywords: thermostable shell, in vitro folding, stability, functional yield
Procedia PDF Downloads 248596 A Mixed 3D Finite Element for Highly Deformable Thermoviscoplastic Materials Under Ductile Damage
Authors: João Paulo Pascon
Abstract:
In this work, a mixed 3D finite element formulation is proposed in order to analyze thermoviscoplastic materials under large strain levels and ductile damage. To this end, a tetrahedral element of linear order is employed, considering a thermoviscoplastic constitutive law together with the neo-Hookean hyperelastic relationship and a nonlocal Gurson`s porous plasticity theory The material model is capable of reproducing finite deformations, elastoplastic behavior, void growth, nucleation and coalescence, thermal effects such as plastic work heating and conductivity, strain hardening and strain-rate dependence. The nonlocal character is introduced by means of a nonlocal parameter applied to the Laplacian of the porosity field. The element degrees of freedom are the nodal values of the deformed position, the temperature and the nonlocal porosity field. The internal variables are updated at the Gauss points according to the yield criterion and the evolution laws, including the yield stress of matrix, the equivalent plastic strain, the local porosity and the plastic components of the Cauchy-Green stretch tensor. Two problems involving 3D specimens and ductile damage are numerically analyzed with the developed computational code: the necking problem and a notched sample. The effect of the nonlocal parameter and the mesh refinement is investigated in detail. Results indicate the need of a proper nonlocal parameter. In addition, the numerical formulation can predict ductile fracture, based on the evolution of the fully damaged zone.Keywords: mixed finite element, large strains, ductile damage, thermoviscoplasticity
Procedia PDF Downloads 95595 Sustainable Resource Use as a Means of Preserving the Integrity of the Eco-System and Environment
Authors: N. Hedayat, E. Karamifar
Abstract:
Sustainable food and fiber production is emerging as an irresistible option in agrarian planning. Although one should not underestimate the successes of the Green Revolution in enhancing crop production, its adverse environmental and ecosystem consequences have also been remarkable. The aim of this paper is to identify ways of improving crop production to ensure agricultural sustainability and environmental integrity. Systematic observations are used for data collection on intensive farming, deforestation and the environmental implications of industrial pollutants on agricultural sustainability at national and international levels. These were achieved within a comparative analytical model of data interpretation. Results show that while multiple factors enhance yield, they have a simultaneous effect in undermining the ecosystem and environmental integrity. Results show that application of excessive agrichemical have been one of the major cause of polluting the surface and underground water bodies as well as soil layers in affected croplands. Results consider rapid deforestation in the tropical regions has been the underlying cause of impairing the integrity of biodiversity and oxygen-generation regime. These, coupled with production of greenhouse gasses, have contributed to global warming and hydrological irregularities. Continuous production of pollutants and effluents has affected marine and land biodiversity arising from acid rains generated by modern farming and deforestation. Continuous production of greenhouse gases has also been instrumental in affecting climatic behavior manifested in recurring draughts and contraction of lakes and ponds as well as emergence of potential flooding of waterways and floodplains in the future.Keywords: agricultural sustainability, environmental integrity, pollution, eco-system
Procedia PDF Downloads 401594 Chitosan Coated Liposome Incorporated Cyanobacterial Pigment for Nasal Administration in the Brain Stroke
Authors: Kyou Hee Shim, Hwa Sung Shin
Abstract:
When a thrombolysis agent is administered to treat ischemic stroke, excessive reactive oxygen species are generated due to a sudden provision of oxygen and occurs secondary damage cell necrosis. Thus, it is necessary to administrate adjuvant as well as thrombolysis agent to protect and reduce damaged tissue. As cerebral blood vessels have specific structure called blood-brain barrier (BBB), it is not easy to transfer substances from blood to tissue. Therefore, development of a drug carrier is required to increase drug delivery efficiency to brain tissue. In this study, cyanobacterial pigment from the blue-green algae known for having neuroprotective effect as well as antioxidant effect was nasally administrated for bypassing BBB. In order to deliver cyanobacterial pigment efficiently, the nano-sized liposome was used as a carrier. Liposomes were coated with a positive charge of chitosan since negative residues are present at the nasal mucosa the first gateway of nasal administration. Characteristics of liposome including morphology, size and zeta potential were analyzed by transmission electron microscope (TEM) and zeta analyzer. As a result of cytotoxic test, the liposomes were not harmful. Also, being administered a drug to the ischemic stroke animal model, we could confirm that the pharmacological effect of the pigment delivered by chitosan coated liposome was enhanced compared to that of non-coated liposome. Consequently, chitosan coated liposome could be considered as an optimized drug delivery system for the treatment of acute ischemic stroke.Keywords: ischemic stroke, cyanobacterial pigment, liposome, chitosan, nasal administration
Procedia PDF Downloads 227593 Object Recognition System Operating from Different Type Vehicles Using Raspberry and OpenCV
Authors: Maria Pavlova
Abstract:
In our days, it is possible to put the camera on different vehicles like quadcopter, train, airplane and etc. The camera also can be the input sensor in many different systems. That means the object recognition like non separate part of monitoring control can be key part of the most intelligent systems. The aim of this paper is to focus of the object recognition process during vehicles movement. During the vehicle’s movement the camera takes pictures from the environment without storage in Data Base. In case the camera detects a special object (for example human or animal), the system saves the picture and sends it to the work station in real time. This functionality will be very useful in emergency or security situations where is necessary to find a specific object. In another application, the camera can be mounted on crossroad where do not have many people and if one or more persons come on the road, the traffic lights became the green and they can cross the road. In this papers is presented the system has solved the aforementioned problems. It is presented architecture of the object recognition system includes the camera, Raspberry platform, GPS system, neural network, software and Data Base. The camera in the system takes the pictures. The object recognition is done in real time using the OpenCV library and Raspberry microcontroller. An additional feature of this library is the ability to display the GPS coordinates of the captured objects position. The results from this processes will be sent to remote station. So, in this case, we can know the location of the specific object. By neural network, we can learn the module to solve the problems using incoming data and to be part in bigger intelligent system. The present paper focuses on the design and integration of the image recognition like a part of smart systems.Keywords: camera, object recognition, OpenCV, Raspberry
Procedia PDF Downloads 218592 Toehold Mediated Shape Transition of Nucleic Acid Nanoparticles
Authors: Emil F. Khisamutdinov
Abstract:
Development of functional materials undergoing structural transformations in response to an external stimulus such as environmental changes (pH, temperature, etc.), the presence of particular proteins, or short oligonucleotides are of great interest for a variety of applications ranging from medicine to electronics. The dynamic operations of most nucleic acid (NA) devices, including circuits, nano-machines, and biosensors, rely on networks of NA strand displacement processes in which an external or stimulus strand displaces a target strand from a DNA or RNA duplex. The rate of strand displacement can be greatly increased by the use of “toeholds,” single-stranded regions of the target complex to which the invading strand can bind to initiate the reaction, forming additional base pairs that provide a thermodynamic driving force for transformation. Herein, we developed a highly robust nanoparticle shape transition, sequentially transforming DNA polygons from one shape to another using the toehold-mediated DNA strand displacement technique. The shape transformation was confirmed by agarose gel electrophoresis and atomic force microscopy. Furthermore, we demonstrate that our approach is applicable for RNA shape transformation from triangle to square, which can be detected by fluorescence emission from malachite green binding RNA aptamer. Using gel-shift and fluorescence assays, we demonstrated efficient transformation occurs at isothermal conditions (37°C) that can be implemented within living cells as reporter molecules. This work is intended to provide a simple, cost-effective, and straightforward model for the development of biosensors and regulatory devices in nucleic acid nanotechnology.Keywords: RNA nanotechnology, bionanotechnology, toehold mediated DNA switch, RNA split fluorogenic aptamers
Procedia PDF Downloads 79591 Optimum Performance of the Gas Turbine Power Plant Using Adaptive Neuro-Fuzzy Inference System and Statistical Analysis
Authors: Thamir K. Ibrahim, M. M. Rahman, Marwah Noori Mohammed
Abstract:
This study deals with modeling and performance enhancements of a gas-turbine combined cycle power plant. A clean and safe energy is the greatest challenges to meet the requirements of the green environment. These requirements have given way the long-time governing authority of steam turbine (ST) in the world power generation, and the gas turbine (GT) will replace it. Therefore, it is necessary to predict the characteristics of the GT system and optimize its operating strategy by developing a simulation system. The integrated model and simulation code for exploiting the performance of gas turbine power plant are developed utilizing MATLAB code. The performance code for heavy-duty GT and CCGT power plants are validated with the real power plant of Baiji GT and MARAFIQ CCGT plants the results have been satisfactory. A new technology of correlation was considered for all types of simulation data; whose coefficient of determination (R2) was calculated as 0.9825. Some of the latest launched correlations were checked on the Baiji GT plant and apply error analysis. The GT performance was judged by particular parameters opted from the simulation model and also utilized Adaptive Neuro-Fuzzy System (ANFIS) an advanced new optimization technology. The best thermal efficiency and power output attained were about 56% and 345MW respectively. Thus, the operation conditions and ambient temperature are strongly influenced on the overall performance of the GT. The optimum efficiency and power are found at higher turbine inlet temperatures. It can be comprehended that the developed models are powerful tools for estimating the overall performance of the GT plants.Keywords: gas turbine, optimization, ANFIS, performance, operating conditions
Procedia PDF Downloads 425590 H₆P₂W₁₈O₆₂.14H₂O Catalyzed Synthesis and X-Ray Study of α-Aminophosphonates
Authors: Sarra Boughaba
Abstract:
The α-aminophosphonates have received considerable attention in organic and medicinal chemistry because of their structural resemblance with α-amino acids. They are used as antitumor agents, anti-inflammatory and antibiotics. As a result, a number of procedures have been developed for their synthesis. However, many of these methods suffer from some disadvantages such as long reaction times, environmental pollution caused by utilization of organic solvents, and expensive catalyst. On the other hand, thiazole components, particularly 2-aminothiazole is an important class of heterocyclic compounds. They appear in the structure of natural products and biologically actives compounds, thiamine (vitamin-B), and some antibiotics drugs (penicillin, micrococcin). In the past few years, heteropolyacids have received great attention as environmentally benign catalysts for organic synthetic processes, they possess unique physicochemical properties, such as super-acidity, high thermal and chemical stability, ability to accept and release electrons and high proton mobility, and the possibility of varying their acidity and oxidizing potential. In this study, an efficient and eco-friendly process has been developed for the synthesis of α-aminophosphonates containing aminothiazole moiety via Kabachnik-Field reaction catalyzed by H₆P₂W₁₈O₆₂.14H₂O as reusable catalyst, by condensation of aromatic aldehydes, 2-aminothiazole and triethylphosphite under free conditions. The X-ray crystallographic data of obtained compounds were provided. The main advantages of our protocol include the absence of solvent in the reaction, easy work-up, short reaction time, atom-economy and reusability of catalyst without significant loss of its activity.Keywords: aminophosphonates, green synthesis, H₆P₂W₁₈O₆₂.14H₂O catalyst, x-ray study
Procedia PDF Downloads 113589 Assessment of Phytoremediation of Pb-Anthracene Co-Contaminated Soils Using Vetiveira zizanioides, Heianthus annuus L., Zea mays and Glycine max
Authors: O. U. Nwosu, C. O. Osuagwu, N. Nnawugwu, C. T. Amanze
Abstract:
Phytoremediation is a green and sustainable approach to decontaminate and restore contaminated sites while maintaining the biological activity and physical structure of soils. A pot experiment was conducted for a period of 70 days to evaluate the remediation potentials of Vetiveira zizanioides, Heianthus annuus L., Zea mays, and Glycine max in concurrent removal of anthracene and Pb in co-contaminated soil. Sandy loam soils were polluted with Pb chloride salt and anthracene at three different levels (50mg/kg of Pb, 100mg/kg of Pb, and 100mg/kg of Pb+100mg/kg of anthracene) and laid out in a completely randomized design with three replicates. Shoot dry matter weight was significantly reduced (p≤0.05) in comparison to control treatments by 33%, 32%, 40%, and 6.7% when exposed to 100mg kg⁻¹ of Pb, respectively in G.max, H.annuus, Z.mays, and vetiver. There was 42%, 41%, 48%, and 7.1% growth inhibition of shoot dry matter weight of G.max, H.annuus, Z.mays, and vetiver relative to control treatments when 100 mg Pb kg⁻¹ was mixed with 100 mgkg⁻¹ anthracene. Root and shoot metal concentration in G.max, H.annuus, Z.mays, and vetiver increased with increasing concentration of Pb. Translocation factor (TF < 1) obtained for G.max, Z.mays, and vetiver suggests that these plant species predominantly retain Pb in the root portion, while the TF value (TF≥1) obtained for H.annuus suggests that it predominantly retains Pb in the shoot portion. The extractable anthracene decreased significantly (p ≤ 0.05) in soil planted with G.max, H.annuus, Z.mays, and vetiver, as well as in pots without plants. This accounted for 53% to 71% of anthracene dissipation in planted soil and 40% dissipation in unplanted soil. This result suggested that the plant species used are a promising candidate for phytoremediation.Keywords: phytoremediation, heavy metals, polyaromatic hydrocarbon, co-contaminated soil
Procedia PDF Downloads 121588 Effect of Alkaline Activator, Water, Superplasticiser and Slag Contents on the Compressive Strength and Workability of Slag-Fly Ash Based Geopolymer Mortar Cured under Ambient Temperature
Authors: M. Al-Majidi, A. Lampropoulos, A. Cundy
Abstract:
Geopolymer (cement-free) concrete is the most promising green alternative to ordinary Portland cement concrete and other cementitious materials. While a range of different geopolymer concretes have been produced, a common feature of these concretes is heat curing treatment which is essential in order to provide sufficient mechanical properties in the early age. However, there are several practical issues with the application of heat curing in large-scale structures. The purpose of this study is to develop cement-free concrete without heat curing treatment. Experimental investigations were carried out in two phases. In the first phase (Phase A), the optimum content of water, polycarboxylate based superplasticizer contents and potassium silicate activator in the mix was determined. In the second stage (Phase B), the effect of ground granulated blast furnace slag (GGBFS) incorporation on the compressive strength of fly ash (FA) and Slag based geopolymer mixtures was evaluated. Setting time and workability were also conducted alongside with compressive tests. The results showed that as the slag content was increased the setting time was reduced while the compressive strength was improved. The obtained compressive strength was in the range of 40-50 MPa for 50% slag replacement mixtures. Furthermore, the results indicated that increment of water and superplasticizer content resulted to retarding of the setting time and slight reduction of the compressive strength. The compressive strength of the examined mixes was considerably increased as potassium silicate content was increased.Keywords: fly ash, geopolymer, potassium silicate, slag
Procedia PDF Downloads 222587 The Influense of Alternative Farming Systems on Physical Parameters of the Soil
Authors: L. Masilionyte, S. Maiksteniene
Abstract:
Alternative farming systems are used to cultivate high quality food products and retain the viability and fertility of soil. The field experiments of different farming systems were conducted at Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry in 2006–2013. The soil of the experimental site was Endocalcari-Endohypogleyic Cambisol (CMg-n-w-can). In different farming systems, farmyard manure, straw and green manure catch crops used for fertilization both in the soil low in humus and in the soil moderate in humus. In the 0–20 cm depth layer, it had a more significant effect on soil moisture than on other physical soil properties. In the agricultural systems, in which catch crops had been grown, soil physical characteristics did not differ significantly before their biomass incorporation, except for the moisture content, which was lower in rainy periods and higher in drier periods than in the soil without catch crops. Soil bulk density and porosity in the topsoil layer were more dependent on soil humus content than on agricultural measures used: in the soil moderate in humus content, compared with the soil low in humus, bulk density was by 1.4 % lower, and porosity by 1.8 % higher. The research findings create a possibility to make improvements in alternative cropping systems by choosing organic fertilizers and catch crops’ combinations that have the sustainable effect on soil and that maintain the sustainability of soil productivity parameters. Rational fertilization systems, securing the stability of soil productivity parameters and crop rotation productivity will promote a development of organic agriculture.Keywords: agro-measures, soil physical parameters, organic farming, sustainable farming
Procedia PDF Downloads 404586 Eco-Friendly Polymeric Corrosion Inhibitor for Sour Oilfield Environment
Authors: Alireza Rahimi, Abdolreza Farhadian, Arash Tajik, Elaheh Sadeh, Avni Berisha, Esmaeil Akbari Nezhad
Abstract:
Although natural polymers have been shown to have some inhibitory properties on sour corrosion, they are not considered very effective green corrosion inhibitors. Accordingly, effective corrosion inhibitors should be developed based on natural resources to mitigate sour corrosion in the oil and gas industry. Here, Arabic gum was employed as an eco-friendly precursor for the synthesis of innovative polyurethanes designed as highly efficient corrosion inhibitors for sour oilfield solutions. A comprehensive assessment, combining experimental and computational analyses, was conducted to evaluate the inhibitory performance of the inhibitor. Electrochemical measurements demonstrated that a concentration of 200 mM of the inhibitor offered substantial protection to mild steel against sour corrosion, yielding inhibition efficiencies of 98% and 95% at 25 ºC and 60 ºC, respectively. Additionally, the presence of the inhibitor led to a smoother steel surface, indicating the adsorption of polyurethane molecules onto the metal surface. X-ray photoelectron spectroscopy results further validated the chemical adsorption of the inhibitor on mild steel surfaces. Scanning Kelvin probe microscopy revealed a shift in the potential distribution of the steel surface towards negative values, indicating inhibitor adsorption and corrosion process inhibition. Molecular dynamic simulation indicated high adsorption energy values for the inhibitor, suggesting its spontaneous adsorption onto the Fe (110) surface. These findings underscore the potential of Arabic gum as a viable resource for the development of polyurethanes under mild conditions, serving as effective corrosion inhibitors for sour solutions.Keywords: environmental effect, Arabic gum, corrosion inhibitor, sour corrosion, molecular dynamics simulation
Procedia PDF Downloads 62585 Fashion and Soft War: Analysis of Iran's Regulatory Measures for Fashion Industry
Authors: Leili Nekounazar
Abstract:
Since 2009, when the Green movement, Iran’s most significant political uprising in post-Islamic revolution materialized, the term 'soft war' has become an integral part of the Iranian regime’s lexicon when addressing the media propaganda waged by the west and the regime’s so-called 'enemies'. Iran’s authorities describe soft war as a western campaign aiming at undermining the revolutionary values by covert activities, deploying cultural tools and purposeful dissemination of information. With this respect, Internet and in particular, the social media networks, and oppositional radio-television broadcasts have been considered as the west’s soft war conduits. With the rising of the underground fashion industry in the past couple of years that does not conform to the compulsory dress codes prescribed by the state, the Islamic regime expands the soft war narrative to include any undesired fashion-related activities and frames the rising fashion industry as a cultural war intoxicating the Iranian-Islamic identity. Accordingly, fashion products created by the Iranian fashion intermediators have been attributed to the westerners and outsiders and are regarded as the matter of national security. This study examines the reactive and proactive measures deployed by the Iranian regime to control the rise of fashion industry. It further puts under the scrutiny how the state as a part of its proactive measure shapes the narrative of 'soft war' in relation to fashion in Iran and explores how the notion of soft war has been articulated in relation to the modeling and fashion in the state’s political rhetoric. Through conducting a content analysis of the authorities’ statements, it describes how the narrative of soft war assists the state policing the fashion industry.Keywords: censorship, fashion, Iran, soft war
Procedia PDF Downloads 344584 Agrarian Distress and out Migration of Youths: Study of a Wet Land Village in Hirakud Command Area, Odisha
Authors: Kishor K. Podh
Abstract:
Agriculture in India treated as the backbone of its economy. It has been accommodated to more than 60 percent of its population as their economic base, directly or indirectly for their livelihood. Besides its significant role, the sharp declines in public investment and development in agriculture have witnessed. After independence Hirakud Command Area (HCA) popularly known as the Rice Bowl of State, due to its fabulous production and provides food to a larger part of the state. After the great green revolution and then liberalization agrarian families become overburden with the loan. They started working as wage laborer in other’s field and non-farm sectors to overcome from the uninvited indebtedness. Although production increases at present, still the youths of this area migrating outsides for job Tamil Nadu, Andhra Pradesh, Maharashtra, Gujarat, etc. Because agriculture no longer remains a profitable occupation; increasing input costs, the uncertainty of crops, improper pricing, poor marketing, etc. compels the youths to choose the alternative occupations. They work in industries (under contractors), construction workers and other menial jobs due to lack of skills and degrees. Kharmunda a village within HCA selected as per the convenience and 100 youth migrants were interviewed purposively selected who were present during data collection. The study analyses the types of migration; its similarity/differentiations, its determining factors, in tow geographical areas of Western Odisha, i.e., single crop and double crops in relation to agricultural situations.Keywords: agrarian distress, double crops, Hirakud Command Area, indebtedness, out migration, Western Odisha
Procedia PDF Downloads 333583 Contextual Analysis of Spekboom (Portulacaria afra) on Air Quality: A Case of Durban, South Africa
Authors: C. Greenstone, R. Hansmann, K. Lawrence
Abstract:
Portulacaria afra, commonly known as Spekboom is an indigenous South African plant. Spekboom is recognized for its medicinal, nutrient rich, easy to grow, drought tolerant and have climate change combating benefits. Durban’s air quality currently falls below the acceptable level. Urban greening absorbs air pollutants which can improve human health; however, urban planning often neglects the aspect of air quality on human health. It is therefore imperative that there is an investigation generating some quantification of the Spekboom plant on air quality. Though there are numerous advantages that Spekboom brings to ecosystems, the effect of Spekboom on air quality in context specific locales remains under researched. This study seeks to address this gap and bring forward the effect of Spekboom on air quality and improving human health overall using locations with specific characteristics ranging from industrial, commercial and residential. The study adopted a field sampling and spatial analysis approach through the collection of cuttings of Spekboom from various locations to measure the amount of toxins absorbed by the plant and thereafter using Geographic Information Systems (GIS) to spatially map the location of each sample. Through the results found, the implementation of Spekboom as an air purifier in areas that have poor air quality can be carried out. Spekboom could even be cultivated around cities forming a green belt to improve air quality on a much larger scale. Due to Spekboom's low maintenance characteristics, it makes the entire implementation process quite simple. Proposed Future research will be to collect yearly cuttings from the same plant in order to get a longitudinal, long-term assessment of air quality improvements in areas where Spekboom is implemented.Keywords: air quality, human health, portulacaria afra, spekboom
Procedia PDF Downloads 17