Search results for: electronic microscopy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3577

Search results for: electronic microscopy

2047 Rubber Crumbs in Alkali Activated Clay Roof Tiles at Low Temperature

Authors: Aswin Kumar Krishnan, Yat Choy Wong, Reiza Mukhlis, Zipeng Zhang, Arul Arulrajah

Abstract:

The continuous increase in vehicle uptake escalates the number of rubber tyre waste which need to be managed to avoid landfilling and stockpiling. The present research focused on the sustainable use of rubber crumbs in clay roof tiles. The properties of roof tiles composed of clay, rubber crumbs, NaOH, and Na₂SiO₃ with a 10% alkaline activator were studied. Tile samples were fabricated by heating the compacted mixtures at 50°C for 72 hours, followed by a higher heating temperature of 200°C for 24 hours. The effect of rubber crumbs aggregates as a substitution for the raw clay materials was investigated by varying their concentration from 0% to 2.5%. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses have been conducted to study the phases and microstructures of the samples. It was found that the optimum rubber crumbs concentration was at 0.5% and 1%, while cracks and larger porosity were found at higher crumbs concentrations. Water absorption and compressive strength test results demonstrated that rubber crumbs and clay satisfied the standard requirement for the roof tiles.

Keywords: rubber crumbs, clay, roof tiles, alkaline activators

Procedia PDF Downloads 105
2046 Design of a Phemt Buffer Amplifier in Mm-Wave Band around 60 GHz

Authors: Maryam Abata, Moulhime El Bekkali, Said Mazer, Catherine Algani, Mahmoud Mehdi

Abstract:

One major problem of most electronic systems operating in the millimeter wave band is the signal generation with a high purity and a stable carrier frequency. This problem is overcome by using the combination of a signal with a low frequency local oscillator (LO) and several stages of frequency multipliers. The use of these frequency multipliers to create millimeter-wave signals is an attractive alternative to direct generation signal. Therefore, the isolation problem of the local oscillator from the other stages is always present, which leads to have various mechanisms that can disturb the oscillator performance, thus a buffer amplifier is often included in oscillator outputs. In this paper, we present the study and design of a buffer amplifier in the mm-wave band using a 0.15μm pHEMT from UMS foundry. This amplifier will be used as a part of a frequency quadrupler at 60 GHz.

Keywords: Mm-wave band, local oscillator, frequency quadrupler, buffer amplifier

Procedia PDF Downloads 546
2045 Investigating the Dose Effect of Electroacupuncture on Mice Inflammatory Pain Model

Authors: Wan-Ting Shen, Ching-Liang Hsieh, Yi-Wen Lin

Abstract:

Electroacupuncture (EA) has been reported effective for many kinds of pain and is a common treatment for acute or chronic pain. However, to date, there are limited studies examining the effect of acupuncture dosage. In our experiment, after injecting mice with Complete Freund’s Adjuvant (CFA) to induce inflammatory pain, two groups of mice were administered two different 15 min EA treatments at 2Hz. The first group received EA at a single acupuncture point (ST36, Zusanli) in both legs (two points), whereas the second group received two acupuncture points in both legs (four points) and the analgesic effect was compared. It was found that double points (ST36, Zusanli and SP6, Sanyinjiao) were significantly superior to single points (ST36, Zusanli) when evaluated using the electronic von Frey Test (mechanic) and Hargreaves’ Test (thermal). Through this study, it is expected more novel physiological mechanisms of acupuncture analgesia will be discovered.

Keywords: anti-inflammation, dose effect, electroacupuncture, pain control

Procedia PDF Downloads 176
2044 Deposition of Diamond Like Carbon Thin Film by Pulse Laser Deposition for Surgical Instruments

Authors: M. Khalid Alamgir, Javed Ahsan Bhatti, M. Zafarullah Khan

Abstract:

Thin film of amorphous carbon (DLC) was deposited on 316 steel using Nd: YAG laser having energy 300mJ. Pure graphite was used as a target. The vacuum in the deposition chamber was generated in the range of 10-6 mbar by turbo molecular pump. Ratio of sp3 to sp2 content shows amorphous nature of the film. This was confirmed by Raman spectra having two peaks around 1300 cm-1 i.e. D-band to 1700 cm-1 i.e. G-band. If sp3 bonding ratio is high, the films behave like diamond-like whereas, with high sp2, films are graphite-like. The ratio of sp3 and sp2 contents in the film depends upon the deposition method, hydrogen contents and system parameters. The structural study of the film was carried out by XRD. The hardness of the films as measured by Vickers hardness tester and was found to be 28 GPa. The EDX result shows the presence of carbon contents on the surface in high rate and optical microscopy result shows the smoothness of the film on substrate. The film possesses good adhesion and can be used to coat surgical instruments.

Keywords: DLC, thin film, Raman spectroscopy, XRD, EDX

Procedia PDF Downloads 567
2043 Natural Dyeing of Textile Cotton Fabric and Its Characterization

Authors: Rabia Almas

Abstract:

Today’s world is demanding natural and biological colorants on priority bases as an alternative to toxic and unsustainable synthetic dyes. Sustainable natural colors from plants and/or living organisms such as bacteria's and fungi attracted the world research scholars and textile industries recently due to the excitement and opportunities they covered. So, in the present study, natural colors from food waste, such as orange peels and peanuts, were extracted and applied to cotton fabric. The dyeing recipes were optimized in terms of dye concentration, processing temperature and time for higher color strength. The characterization of the dyes and fabric, such as Fourier transform infrared spectroscopy, Scanning Electron Microscopy, and fastness properties were measured for the identification of the chemical groups involved for a better understanding of the dyeing behavior. The results revealed that proper mordanting and concentration of dye on cotton fabric could give high color strength and good fastness to wash and light and these natural dyes can be used as an alternative to synthetic toxic colorants.

Keywords: textile, textile dyes, natural dyes, bio colors

Procedia PDF Downloads 86
2042 An Easy-Applicable Method for In situ Silver Nanoparticles Preparation into Wool Fibers

Authors: Salwa Mowafi, Mohamed Rehan, Hany Kafafy

Abstract:

In this study, three different systems including room temperature, conventional water bath heating and microwave irradiation technique will be employed in the fabrication of silver nanoparticle-wool fibers. The silver nanoparticles will be synthesized in-situ incorporated into wool fibers under redox active bio-template of wool protein which facilitates the reduction of Ag+ to nanoparticulate Ag0. Silver NPs incorporated wool fiber will be characterized by scanning electron microscopy, energy dispersive X-ray, FTIR, TGA, silver content and X-ray photoelectron spectroscopy. The mechanism of binding Ag NPs in-situ incorporated wool fibers matrix will be discussed. The effect of silver nanoparticles on the coloration, antimicrobial, UV-protection and catalytic properties of the wool fibers will be evaluated. The overall results of this study indicate that the Ag NPs in-situ incorporated wool fibers will be applied as colorants for wool fibers with improving in its multi-functionality properties. So, this study provides a simple approach for innovative protein fibers design by applying the optical properties of Plasmonic noble metal nanoparticles.

Keywords: microwave irradiation technique, multi-functionality properties, silver nanoparticles, wool fibers

Procedia PDF Downloads 207
2041 Highly Linear and Low Noise AMR Sensor Using Closed Loop and Signal-Chopped Architecture

Authors: N. Hadjigeorgiou, A. C. Tsalikidou, E. Hristoforou, P. P. Sotiriadis

Abstract:

During the last few decades, the continuously increasing demand for accurate and reliable magnetic measurements has paved the way for the development of different types of magnetic sensing systems as well as different measurement techniques. Sensor sensitivity and linearity, signal-to-noise ratio, measurement range, cross-talk between sensors in multi-sensor applications are only some of the aspects that have been examined in the past. In this paper, a fully analog closed loop system in order to optimize the performance of AMR sensors has been developed. The operation of the proposed system has been tested using a Helmholtz coil calibration setup in order to control both the amplitude and direction of magnetic field in the vicinity of the AMR sensor. Experimental testing indicated that improved linearity of sensor response, as well as low noise levels can be achieved, when the system is employed.

Keywords: AMR sensor, closed loop, memory effects, chopper, linearity improvement, sensitivity improvement, magnetic noise, electronic noise

Procedia PDF Downloads 363
2040 Facile, Cost Effective and Green Synthesis of Graphene in Alkaline Aqueous Solution

Authors: Illyas Isa, Siti Nur Akmar Mohd Yazid, Norhayati Hashim

Abstract:

We report a simple, green and cost effective synthesis of graphene via chemical reduction of graphene oxide in alkaline aqueous solution. Extensive characterizations have been studied to confirm the formation of graphene in sodium carbonate solution. Cyclic voltammetry was used to study the electrochemical properties of the prepared graphene-modified glassy carbon electrode using potassium ferricyanide as a redox probe. Based on the result, with the addition of graphene to the glassy carbon electrode the current flow increases and the peak also broadens as compared to graphite and graphene oxide. This method is fast, cost effective, and green as nontoxic solvents are used which will not result in contamination of the products. Thus, this method can serve for the preparation of graphene which can be effectively used in sensors, electronic devices and supercapacitors.

Keywords: chemical reduction, electrochemical, graphene, green synthesis

Procedia PDF Downloads 339
2039 Dimensionality and Superconducting Parameters of YBa2Cu3O7 Foams

Authors: Michael Koblischka, Anjela Koblischka-Veneva, XianLin Zeng, Essia Hannachi, Yassine Slimani

Abstract:

Superconducting foams of YBa2Cu3O7 (abbreviated Y-123) were produced using the infiltration growth (IG) technique from Y2BaCuO5 (Y-211) foams. The samples were investigated by SEM (scanning electron microscopy) and electrical resistivity measurements. SEM observations indicated the specific microstructure of the foam struts with numerous tiny Y-211 particles (50-100 nm diameter) embedded in channel-like structures between the Y-123 grains. The investigation of the excess conductivity of different prepared composites was analyzed using Aslamazov-Larkin (AL) model. The investigated samples comprised of five distinct fluctuation regimes, namely short-wave (SWF), one-dimensional (1D), two-dimensional (2D), three-dimensional (3D), and critical (CR) fluctuations regimes. The coherence length along the c-axis at zero-temperature (ξc(0)), lower and upper critical magnetic fields (Bc1 and Bc2), critical current density (Jc) and numerous other superconducting parameters were estimated from the data. The analysis reveals that the presence of the tiny Y-211 particles alters the excess conductivity and the fluctuation behavior observed in standard YBCO samples.

Keywords: Excess conductivity, Foam, Microstructure, Superconductor YBa2Cu3Oy

Procedia PDF Downloads 172
2038 Synthesis and Characterization of Green Coke-Derived Activated Carbon by KOH Activation

Authors: Richard, Iyan Subiyanto, Chairul Hudaya

Abstract:

Activated carbon has been playing a significant role for many applications, especially in energy storage devices. However, commercially activated carbons generally require complicated processes and high production costs. Therefore, in this study, an activated carbon originating from green coke waste, that is economically affordable will be used as a carbon source. To synthesize activated carbon, KOH as an activator was employed with variation of C:KOH in ratio of 1:2, 1:3, 1:4, and 1:5, respectively, with an activation temperature of 700°C. The characterizations of activated carbon are obtained from Scanning Electron Microscopy, Energy Dispersive X-Ray, Raman Spectroscopy, and Brunauer-Emmett-Teller. The optimal activated carbon sample with specific surface area of 2,024 m²/g with high carbon content ( > 80%) supported by the high porosity carbon image obtained by SEM was prepared at C:KOH ratio of 1:4. The result shows that the synthesized activated carbon would be an ideal choice for energy storage device applications. Therefore, this study is expected to reduce the costs of activated carbon production by expanding the utilization of petroleum waste.

Keywords: activated carbon, energy storage material, green coke, specific surface area

Procedia PDF Downloads 171
2037 Design of Uniform Spray Nozzle and Simulation of Carrier Gas Flow Rate Distribution for FTO Thin Film Fabrication Process

Authors: HyeSuk Ri, HyonChol Kim, NamChol Yu

Abstract:

The FTO thin films were deposited on 15 cm × 15 cm glass substrates by ultrasonic spray pyrolysis, and the influence of process parameters on the film properties was investigated. This paper is the first report on the design of a uniform nozzle and simulating the carrier gas flow characteristics in an ultrasonic spray pyrolysis process. The uniformity of FTO films was evaluated by surface resistivity. The structure, surface morphology and optical properties of FTO films were investigated using scanning electron microscopy, X-ray diffraction, and UV-Vis spectroscopy. The process conditions for film preparation were SnCl₄ concentration of 1.34 mol, NH₄F concentration of 0.08 mol, temperature of 500 °C, deposition time of 15 min, carrier gas flow rate of 3 m/s, distance between nozzle and substrate of 0.7 cm. The transmittance of the fabricated FTO films was 80%, the surface resistance showed a uniform behavior at 14-15Ω/cm² and the X-ray analysis showed a high orientation of SnO₂ crystals in the 200-plane. SEM analysis showed that the crystallite size was constant.

Keywords: nozzle design, FTO film, simulation, ultrasonic spray pyrolysis

Procedia PDF Downloads 8
2036 Physico-Mechanical Properties of Chemically Modified Sisal Fibre Reinforced Unsaturated Polyester Composites

Authors: A. A. Salisu, M. Y. Yakasai, K. M. Aujara

Abstract:

Sisal leaves were subjected to enzymatic retting method to extract the sisal fibre. A portion of the fibre was pretreated with alkali (NaOH), and further treated with benzoyl chloride and silane treatment reagents. Both the treated and untreated Sisal fibre composites were used to fabricate the composite by hand lay-up technique using unsaturated polyester resin. Tensile, flexural, water absorption, density, thickness swelling and chemical resistant tests were conducted and evaluated on the composites. Results obtained for all the parameters showed an increase in the treated fibre compared to untreated fibre. FT-IR spectra results ascertained the inclusion of benzoyl and silane groups on the fibre surface. Scanning electron microscopy (SEM) result obtained showed variation in the morphology of the treated and untreated fibre. Chemical modification was found to improve adhesion of the fibre to the matrix, as well as physico-mechanical properties of the composites.

Keywords: chemical resistance, density test, polymer matrix sisal fibre, thickness swelling

Procedia PDF Downloads 438
2035 Technological Development and Implementation of a Robotic Arm Motioned by Programmable Logic Controller

Authors: J. G. Batista, L. J. de Bessa Neto, M. A. F. B. Lima, J. R. Leite, J. I. de Andrade Nunes

Abstract:

The robot manipulator is an equipment that stands out for two reasons: Firstly because of its characteristics of movement and reprogramming, resembling the arm; secondly, by adding several areas of knowledge of science and engineering. The present work shows the development of the prototype of a robotic manipulator driven by a Programmable Logic Controller (PLC), having two degrees of freedom, which allows the movement and displacement of mechanical parts, tools, and objects in general of small size, through an electronic system. The aim is to study direct and inverse kinematics of the robotic manipulator to describe the translation and rotation between two adjacent links of the robot through the Denavit-Hartenberg parameters. Currently, due to the many resources that microcomputer systems offer us, robotics is going through a period of continuous growth that will allow, in a short time, the development of intelligent robots with the capacity to perform operations that require flexibility, speed and precision.

Keywords: Denavit-Hartenberg, direct and inverse kinematics, microcontrollers, robotic manipulator

Procedia PDF Downloads 349
2034 Synthesis of Ce Impregnated on Functionalized Graphene Oxide Nanosheets for Transesterification of Propylene Carbonate and Ethanol to Produce Diethyl Carbonate

Authors: Kumar N., Verma S., Park J., Srivastava V. C.

Abstract:

Organic carbonates have the potential to be used as fuels and because of this, their production through non-phosgene routes is a thrust area of research. Di-ethyl carbonate (DEC) synthesis from propylene carbonate (PC) in the presence of alcohol is a green route. In this study, the use of reduced graphene oxide (rGO) based metal oxide catalysts [rGO-MO, where M = Ce] with different amounts of graphene oxide (0.2%, 0.5%, 1%, and 2%) has been investigated for the synthesis of DEC by using PC and ethanol as reactants. The GO sheets were synthesized by an electrochemical process and the catalysts were synthesized using an in-situ method. A theoretical study of the thermodynamics of the reaction was done, which revealed that the reaction is mildly endothermic. The theoretical value of optimum temperature was found to be 420 K. The synthesized catalysts were characterized for their morphological, structural and textural properties using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), N2 adsorption/desorption, thermogravimetric analysis (TGA), and Raman spectroscopy. Optimization studies were carried out to study the effect of different reaction conditions like temperature (140 °C to 180 °C) and catalyst dosage (0.102 g to 0.255 g) on the yield of DEC. Amongst the various synthesized catalysts, 1% rGO-CeO2 gave the maximum yield of DEC.

Keywords: GO, DEC, propylene carbonate, transesterification, thermodynamics

Procedia PDF Downloads 83
2033 Investigating Role of Autophagy in Cispaltin Induced Stemness and Chemoresistance in Oral Squamous Cell Carcinoma

Authors: Prajna Paramita Naik, Sujit Kumar Bhutia

Abstract:

Background: Regardless of the development multimodal treatment strategies, oral squamous cell carcinoma (OSCC) is often associated with a high rate of recurrence, metastasis and chemo- and radio- resistance. The present study inspected the relevance of CD44, ABCB1 and ADAM17 expression as a putative stem cell compartment in oral squamous cell carcinoma (OSCC) and deciphered the role of autophagy in regulating the expression of aforementioned proteins, stemness and chemoresistance. Methods: A retrospective analysis of CD44, ABCB1 and ADAM17 expression with respect to the various clinicopathological factors of sixty OSCC patients were determined via immunohistochemistry. The correlation among CD44, ABCB1 and ADAM17 expression was established. Sphere formation assay, flow cytometry and fluorescence microscopy were conducted to elucidate the stemness and chemoresistance nature of established cisplatin-resistant oral cancer cells (FaDu). The pattern of expression of CD44, ABCB1 and ADAM17 in parental (FaDu-P) and resistant FaDu cells (FaDu-CDDP-R) were investigated through fluorescence microscopy. Western blot analysis of autophagy marker proteins was performed to compare the status of autophagy in parental and resistant FaDu cell. To investigate the role of autophagy in chemoresistance and stemness, sphere formation assay, immunofluorescence and Western blot analysis was performed post transfection with siATG14 and the level of expression of autophagic proteins, mitochondrial protein and stemness-associated proteins were analyzed. The statistical analysis was performed by GraphPad Prism 4.0 software. p-value was defined as follows: not significant (n.s.): p > 0.05;*: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001 were considered statistically significant. Results: In OSCC, high CD44, ABCB1 and ADAM17 expression were significantly correlated with higher tumor grades and poor differentiation. However, the expression of these proteins was not related to the age and sex of OSCC patients. Moreover, the expression of CD44, ABCB1 and ADAM17 were positively correlated with each other. In vitro and OSCC tissue double labeling experiment data showed that CD44+ cells were highly associated with ABCB1 and ADAM17 expression. Further, FaDu-CDDP-R cells showed higher sphere forming capacity along with increased fraction of the CD44+ population and β-catenin expression FaDu-CDDP-R cells also showed accelerated expression of CD44, ABCB1 and ADAM17. A comparatively higher autophagic flux was observed in FaDu-CDDP-R against FaDu-P cells. The expression of mitochondrial proteins was noticeably reduced in resistant cells as compared to parental cells indicating the occurrence of autophagy-mediated mitochondrial degradation in oral cancer. Moreover, inhibition of autophagy was coupled with the decreased formation of orospheres suggesting autophagy-mediated stemness in oral cancer. Blockade of autophagy was also found to induce the restoration of mitochondrial proteins in FaDu-CDDP-R cells indicating the involvement of mitophagy in chemoresistance. Furthermore, a reduced expression of CD44, ABCB1 and ADAM17 was also observed in ATG14 deficient cells FaDu-P and FaDu-CDDP-R cells. Conclusion: The CD44+ ⁄ABCB1+ ⁄ADAM17+ expression in OSCC might be associated with chemoresistance and a putative CSC compartment. Further, the present study highlights the contribution of mitophagy in chemoresistance and confirms the potential involvement of autophagic regulation in acquisition of stem-like characteristics in OSCC.

Keywords: ABCB1, ADAM17, autophagy, CD44, chemoresistance, mitophagy, OSCC, stemness

Procedia PDF Downloads 196
2032 In-Vitro and Antibacterial Studies for Silicate-Phosphate Glasses Formed with Biosynthesized Silica

Authors: Damandeep Kaur, O.P. Pandey, M.S. Reddy

Abstract:

In the present research, bio-synthesisation of silica particles has been carried out successfully. For this purpose, agriculture waste rice husk (RH) has been utilized. Among several types of agriculture waste, RH is considered to be cost-effective and easily accessible. In the present investigation, a chemical approach has been followed to extract silica nanoparticles. X-Ray Diffraction (XRD) patterns indicated the amorphous nature of silica at lower temperature range. Silica and other mineral contents have been found using energy dispersive spectroscopy (EDS). Morphological and structural studies have been carried out with the use of Field Emission Scanning Electron Microscopy (FE-SEM) and Fourier Transform Infrared Transmission (FTIR) spectroscopy. Further, extracted silica from RH has been used for preparation of the glasses. The appearance of broad humps in XRD patterns confirmed the amorphous nature of prepared glasses. These glasses exhibited enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria. The as-synthesized glass samples can be further used for physical and structural studies for drug loading applications.

Keywords: rice husk, biosynthesized silica, bioactive glasses, antibacterial studies

Procedia PDF Downloads 117
2031 New Isolate of Cucumber Mosaic Virus Infecting Banana

Authors: Abdelsabour G. A. Khaled, Ahmed W. A. Abdalla And Sabry Y. M. Mahmoud

Abstract:

Banana plants showing typical mosaic and yellow stripes on leaves as symptoms were collected from Assiut Governorate in Egypt. The causal agent was identified as Cucumber mosaic virus (CMV) on the basis of symptoms, transmission, serology, transmission electron microscopy and reverse transcription polymerase chain reaction (RT-PCR). Coat protein (CP) gene was amplified using gene specific primers for coat protein (CP), followed by cloning into desired cloning vector for sequencing. In this study the CMV was transmitted into propagation host either by aphid or mechanically. The transmission was confirmed through Direct Antigen Coating Enzyme Linked Immuno Sorbent Assay (DAC-ELISA). Analysis of the 120 deduced amino acid sequence of the coat protein gene revealed that the EG-A strain of CMV shared from 97.50 to 98.33% with those strains belonging to subgroup IA. The cluster analysis grouped the Egyptian isolate with strains Fny and Ri8 belonging sub-group IA. It appears that there occurs a high incidence of CMV infecting banana belonging to IA subgroup in most parts of Egypt.

Keywords: banana, CMV, transmission, CP gene, RT-PCR

Procedia PDF Downloads 343
2030 Corrosion Evaluation of Zinc Coating Prepared by Two Types of Electric Currents

Authors: M. Sajjadnejad, H. Karimi Abadeh

Abstract:

In this research, zinc coatings were fabricated by electroplating process in a sulfate solution under direct and pulse current conditions. In direct and pulse current conditions, effect of maximum current was investigated on the coating properties. Also a comparison was made between the obtained coatings under direct and pulse current. Morphology of the coatings was investigated by scanning electron microscopy (SEM). Corrosion behavior of the coatings was investigated by potentiodynamic polarization test. In pulse current conditions, the effect of pulse frequency and duty cycle was also studied. The effect of these conditions and parameters were also investigated on morphology and corrosion behavior. All of DC plated coatings are showing a distinct passivation area in -1 to -0.4 V range. Pulsed current coatings possessed a higher corrosion resistance. The results showed that current density is the most important factor regarding the fabrication process. Furthermore, a rise in duty cycle deteriorated corrosion resistance of coatings. Pulsed plated coatings performed almost 10 times better than DC plated coatings.

Keywords: corrosion, duty cycle, pulsed current, zinc

Procedia PDF Downloads 125
2029 The Impact of Environmental Dynamism on Strategic Outsourcing Success

Authors: Mohamad Ghozali Hassan, Abdul Aziz Othman, Mohd Azril Ismail

Abstract:

Adapting quickly to environmental dynamism is essential for an organization to develop outsourcing strategic and management in order to sustain competitive advantage. This research used the Partial Least Squares Structural Equation Modeling (PLS-SEM) tool to investigate the factors of environmental dynamism impact on the strategic outsourcing success among electrical and electronic manufacturing industries in outsourcing management. Statistical results confirm that the inclusion of customer demand, technological change, and competition level as a new combination concept of environmental dynamism, has positive effects on outsourcing success. Additionally, this research demonstrates the acceptability of PLS-SEM as a statistical analysis to furnish a better understanding of environmental dynamism in outsourcing management in Malaysia. A practical finding contributes to academics and practitioners in the field of outsourcing management.

Keywords: environmental dynamism, customer demand, technological change, competition level, outsourcing success

Procedia PDF Downloads 504
2028 Anomalous Behaviors of Visible Luminescence from Graphene Quantum Dots

Authors: Hyunho Shin, Jaekwang Jung, Jeongho Park, Sungwon Hwang

Abstract:

For the application of graphene quantum dots (GQDs) to optoelectronic nanodevices, it is of critical importance to understand the mechanisms which result in novel phenomena of their light absorption/emission. The optical transitions are known to be available up to ~6 eV in GQDs, especially useful for ultraviolet (UV) photodetectors (PDs). Here, we present size-dependent shape/edge-state variations of GQDs and visible photoluminescence (PL) showing anomalous size dependencies. With varying the average size (da) of GQDs from 5 to 35 nm, the peak energy of the absorption spectra monotonically decreases, while that of the visible PL spectra unusually shows nonmonotonic behaviors having a minimum at diameter ∼17 nm. The PL behaviors can be attributed to the novel feature of GQDs, that is, the circular-to-polygonal-shape and corresponding edge-state variations of GQDs at diameter ∼17 nm as the GQD size increases, as demonstrated by high resolution transmission electron microscopy. We believe that such a comprehensive scheme in designing device architecture and the structural formulation of GQDs provides a device for practical realization of environmentally benign, high performance flexible devices in the future.

Keywords: graphene, quantum dot, size, photoluminescence

Procedia PDF Downloads 296
2027 Precise Electrochemical Metal Recovery from Emerging Waste Streams

Authors: Wei Jin

Abstract:

Efficient and selective metal recovery from emerging solid waste, such as spent lithium batteries, electronic waste and SCR catalysts, is of great importance from both environmental and resource considerations. In order to overcome the bottlenecks of long flow-sheet and severe secondary pollution in conventional processes, the rational design of 2-electron oxygen reduction reaction (ORR) and capacitive deionization (CDI) nanomaterials were developed for the precise electrochemical metal recovery. It has been demonstrated that the modified carbon nanomaterials can be employed as 2e ORR to produce H2O2 in aqueous solution, in which the metal can be leached out from the solid waste as ions. Moreover, the multi-component metallic solution can be electrochemically extracted with good efficiency and selectivity with the nanoporous aerogel. Each system presents stable performance for long-term operation and can be used in industrial solid waste treatment. This study provides a materials-oriented, cleaner metal recovery approach for strategic metal resources sustainability.

Keywords: electrochemistry, metal recovery, waste steams, nanomaterials

Procedia PDF Downloads 21
2026 Comparative Catalytic Activity of Some Ferrites for Phenol Degradation in Aqueous Solutions

Authors: Bayan Alqassem, Israa A. Othman, Mohammed Abu Haija, Fawzi Banat

Abstract:

The treatment of wastewater from highly toxic pollutants is one of the most challenging issues for humanity. In this study, the advanced oxidation process (AOP) was employed to study the catalytic degradation of phenol using different ferrite catalysts which are CoFe₂O₄, CrFe₂O₄, CuFe₂O₄, MgFe₂O₄, MnFe₂O₄, NiFe₂O₄ and ZnFe₂O₄. The ferrite catalysts were prepared via sol-gel and co-precipitation methods. Different ferrite composites were also prepared either by varying the metal ratios or incorporating chemically reduced graphene oxide in the ferrite cluster. The effect of phosphoric acid treatment on the copper ferrite activity. All of the prepared catalysts were characterized using infrared spectroscopy (IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The ferrites catalytic activities were tested towards phenol degradation using high performance liquid chromatography (HPLC). The experimental results showed that ferrites prepared through sol-gel route were more active than those of the co-precipitation method towards phenol degradation. In both cases, CuFe₂O₄ exhibited the highest degradation of phenol compared to the other ferrites. The photocatalytic properties of the ferrites were also investigated.

Keywords: ferrite catalyst, ferrite composites, phenol degradation, photocatalysis

Procedia PDF Downloads 221
2025 Radiology Information System’s Mechanisms: HL7-MHS & HL7/DICOM Translation

Authors: Kulwinder Singh Mann

Abstract:

The innovative features of information system, known as Radiology Information System (RIS), for electronic medical records has shown a good impact in the hospital. The objective is to help and make their work easier; such as for a physician to access the patient’s data and for a patient to check their bill transparently. The interoperability of RIS with the other intra-hospital information systems it interacts with, dealing with the compatibility and open architecture issues, are accomplished by two novel mechanisms. The first one is the particular message handling system that is applied for the exchange of information, according to the Health Level Seven (HL7) protocol’s specifications and serves the transfer of medical and administrative data among the RIS applications and data store unit. The second one implements the translation of information between the formats that HL7 and Digital Imaging and Communication in Medicine (DICOM) protocols specify, providing the communication between RIS and Picture and Archive Communication System (PACS) which is used for the increasing incorporation of modern medical imaging equipment.

Keywords: RIS, PACS, HIS, HL7, DICOM, messaging service, interoperability, digital images

Procedia PDF Downloads 302
2024 Evaluation of the Suitability of a Microcapsule-Based System for the Manufacturing of Self-Healing Low-Density Polyethylene

Authors: Małgorzata Golonka, Jadwiga Laska

Abstract:

Among self-healing materials, the most unexplored group are thermoplastic polymers. These polymers are used not only to produce packaging with a relatively short life but also to obtain coatings, insulation, casings, or parts of machines and devices. Due to its exceptional resistance to weather conditions, hydrophobicity, sufficient mechanical strength, and ease of extrusion, polyethylene is used in the production of polymer pipelines and as an insulating layer for steel pipelines. Polyethylene or PE coated steel pipelines can be used in difficult conditions such as underground or underwater installations. Both installation and use under such conditions are associated with high stresses and consequently the formation of microdamages in the structure of the material, loss of its integrity and final applicability. The ideal solution would be to include a self-healing system in the polymer material. In the presented study the behavior of resin-coated microcapsules in the extrusion process of low-density polyethylene was examined. Microcapsules are a convenient element of the repair system because they can be filled with appropriate reactive substances to ensure the repair process, but the main problem is their durability under processing conditions. Rapeseed oil, which has a relatively high boiling point of 240⁰C and low volatility, was used as the core material that simulates the reactive agents. The capsule shell, which is a key element responsible for its mechanical strength, was obtained by in situ polymerising urea-formaldehyde, melamine-urea-formaldehyde or melamine-formaldehyde resin on the surface of oil droplets dispersed in water. The strength of the capsules was compared based on the shell material, and in addition, microcapsules with single- and multilayer shells were obtained using different combinations of the chemical composition of the resins. For example, the first layer of appropriate tightness and stiffness was made of melamine-urea-formaldehyde resin, and the second layer was a melamine-formaldehyde reinforcing layer. The size, shape, distribution of capsule diameters and shell thickness were determined using digital optical microscopy and electron microscopy. The efficiency of encapsulation (i.e., the presence of rapeseed oil as the core) and the tightness of the shell were determined by FTIR spectroscopic examination. The mechanical strength and distribution of microcapsules in polyethylene were tested by extruding samples of crushed low-density polyethylene mixed with microcapsules in a ratio of 1 and 2.5% by weight. The extrusion process was carried out in a mini extruder at a temperature of 150⁰C. The capsules obtained had a diameter range of 70-200 µm. FTIR analysis confirmed the presence of rapeseed oil in both single- and multilayer shell microcapsules. Microscopic observations of cross sections of the extrudates confirmed the presence of both intact and cracked microcapsules. However, the melamine-formaldehyde resin shells showed higher processing strength compared to that of the melamine-urea-formaldehyde coating and the urea-formaldehyde coating. Capsules with a urea-formaldehyde shell work very well in resin coating systems and cement composites, i.e., in pressureless processing and moulding conditions. The addition of another layer of melamine-formaldehyde coating to both the melamine-urea-formaldehyde and melamine-formaldehyde resin layers significantly increased the number of microcapsules undamaged during the extrusion process. The properties of multilayer coatings were also determined and compared with each other using computer modelling.

Keywords: self-healing polymers, polyethylene, microcapsules, extrusion

Procedia PDF Downloads 31
2023 Quantum Dots Incorporated in Biomembrane Models for Cancer Marker

Authors: Thiago E. Goto, Carla C. Lopes, Helena B. Nader, Anielle C. A. Silva, Noelio O. Dantas, José R. Siqueira Jr., Luciano Caseli

Abstract:

Quantum dots (QD) are semiconductor nanocrystals that can be employed in biological research as a tool for fluorescence imagings, having the potential to expand in vivo and in vitro analysis as cancerous cell biomarkers. Particularly, cadmium selenide (CdSe) magic-sized quantum dots (MSQDs) exhibit stable luminescence that is feasible for biological applications, especially for imaging of tumor cells. For these facts, it is interesting to know the mechanisms of action of how such QDs mark biological cells. For that, simplified models are a suitable strategy. Among these models, Langmuir films of lipids formed at the air-water interface seem to be adequate since they can mimic half a membrane. They are monomolecular films formed at liquid-gas interfaces that can spontaneously form when organic solutions of amphiphilic compounds are spread on the liquid-gas interface. After solvent evaporation, the monomolecular film is formed, and a variety of techniques, including tensiometric, spectroscopic and optic can be applied. When the monolayer is formed by membrane lipids at the air-water interface, a model for half a membrane can be inferred where the aqueous subphase serve as a model for external or internal compartment of the cell. These films can be transferred to solid supports forming the so-called Langmuir-Blodgett (LB) films, and an ampler variety of techniques can be additionally used to characterize the film, allowing for the formation of devices and sensors. With these ideas in mind, the objective of this work was to investigate the specific interactions of CdSe MSQDs with tumorigenic and non-tumorigenic cells using Langmuir monolayers and LB films of lipids and specific cell extracts as membrane models for diagnosis of cancerous cells. Surface pressure-area isotherms and polarization modulation reflection-absorption spectroscopy (PM-IRRAS) showed an intrinsic interaction between the quantum dots, inserted in the aqueous subphase, and Langmuir monolayers, constructed either of selected lipids or of non-tumorigenic and tumorigenic cells extracts. The quantum dots expanded the monolayers and changed the PM-IRRAS spectra for the lipid monolayers. The mixed films were then compressed to high surface pressures and transferred from the floating monolayer to solid supports by using the LB technique. Images of the films were then obtained with atomic force microscopy (AFM) and confocal microscopy, which provided information about the morphology of the films. Similarities and differences between films with different composition representing cell membranes, with or without CdSe MSQDs, was analyzed. The results indicated that the interaction of quantum dots with the bioinspired films is modulated by the lipid composition. The properties of the normal cell monolayer were not significantly altered, whereas for the tumorigenic cell monolayer models, the films presented significant alteration. The images therefore exhibited a stronger effect of CdSe MSQDs on the models representing cancerous cells. As important implication of these findings, one may envisage for new bioinspired surfaces based on molecular recognition for biomedical applications.

Keywords: biomembrane, langmuir monolayers, quantum dots, surfaces

Procedia PDF Downloads 199
2022 Surface-Quenching Induced Cell Opening Technique in Extrusion of Thermoplastic Foamed Sheets

Authors: Abhishek Gandhi, Naresh Bhatnagar

Abstract:

In this article, a new technique has been developed to manufacture open cell extruded thermoplastic foamed sheets with the aid of extrudate surface-quenching phenomenon. As the extrudate foam exits the die, its surface is rapidly quenched which results in freezing of cells on the surface, while the cells at the core continue to grow and leads to development of open-cellular microstructure at the core. Influence of chill roll temperature was found to be extremely significant in developing porous morphological attributes. Subsequently, synergistic effect of blowing agent content and chill roll temperature was examined for their expansion ratio and open-cell microstructure. Further, chill roll rotating speed was found extremely significant in obtaining open-cellular foam structures. This study intends to enhance the understanding of researchers working in the area of open-cell foam processing.

Keywords: foams, porous materials, morphology, composite, microscopy, open-cell foams

Procedia PDF Downloads 449
2021 Proportion and Factors Associated with Presumptive Tuberculosis among Suspected Pediatric Tuberculosis Patients

Authors: Naima Nur, Safa Islam, Saeema Islam, Md. Faridul Alam

Abstract:

Background: The worldwide increase in pediatric presumptive tuberculosis (TB) is the most life-threatening challenge in effectively controlling TB. The objective of this study was to determine the proportion of presumptive TB and the factors associated with it. Methods: A cross-sectional study was conducted between March and November 2013 at ICDDR-Bangladesh. Two hundred twelve pulmonary and extra-pulmonary specimens were collected from 84 suspected pediatric patients diagnosed with TB based on their clinical symptoms/radiological findings. Presumptive TB and confirmed TB were considered presumptive TB and non-presumptive TB and were isolated by smear-microscopy, culture, and GeneXpert. Logistic regression was used to analyze associations between outcome and predictor variables. Results: The proportion of presumptive TB was 85.7%, and 14.3% of non-presumptive TB. In presumptive TB, vaccine scars, family TB history, and school-going children were 16.6%, 33.3%, and 56.9%, respectively. In contrast, vaccine scars and family TB history were 8.3%, and school-going children were 58.3% in non-presumptive TB. Significant factors did not appear in the logistic regression analysis. Conclusion: Despite the high proportion of presumptive TB, there was no statistically significant between presumptive TB and non-presumptive TB.

Keywords: presumptive tuberculosis, confirmed tuberculosis, patient's characteristics, diagnosis

Procedia PDF Downloads 51
2020 SEM Analysis of the Effectiveness of the Acid Etching on Cat Enamel

Authors: C. Gallottini, W. Di Mari, C. De Carolis, A. Dolci, G. Dolci, L. Gallottini, G. Barraco, S. Eramo

Abstract:

The aim of this paper is to summarize the literature on micromorphology and composition of the enamel of the cat and present an original experiment by SEM on how it responds to the etching with ortophosphoric acid for the time recommended in the veterinary literature (30", 45", 60"), derived from research and experience on human enamel; 21 teeth of cat were randomly divided into three groups of 7 (A, B, C): Group A was subjected to etching for 30 seconds by means of orthophosphoric acid to 40% on a circular area with diameter of about 2mm of the enamel coronal; the Groups B and C had the same treatment but, respectively, for 45 and 60 seconds. The samples obtained were observed by SEM to constant magnification of 1000x framing, in particular, the border area between enamel exposed and not exposed to etching to highlight differences. The images were subjected to the analysis of three blinded experienced operators in electron microscopy. In the enamel of the cat the etching for the times considered is not optimally effective for the purpose adhesives and the presence of a thick prismless layer could explain this situation. To improve this condition may clinically in the likeness of what is proposed for the enamel of human deciduous teeth: a bevel or a chamfer of 1 mm on the contour of the cavity to discover the prismatic enamel and increase the bonding surface.

Keywords: cat enamel, SEM, veterinary dentistry, acid etching

Procedia PDF Downloads 307
2019 Specific Colon Cancer Prophylaxis Using Dendritic Stem Cells and Gold Nanoparticles Functionalized with Colon Cancer Epitopes

Authors: Teodora Mocan, Matea Cristian, Cornel Iancu, Flaviu A. Tabaran, Florin Zaharie, Bartos Dana, Lucian Mocan

Abstract:

Colon cancer (CC) a lethal human malignancy, is one of the most commonly diagnosed cancer. With its high increased mortality rate, as well as low survival rate combined with high resistance to chemotherapy CC, represents one of the most important global health issues. In the presented research, we have developed a distinct nanostructured colon carcinoma vaccine model based on a nano-biosystem composed of 39 nm gold nanoparticles conjugated to colon cancer epitopes. We prove by means of proteomic analysis, immunocytochemistry, flow cytometry and hyperspectral microscopy that our developed nanobioconjugate was able to contribute to an optimal prophylactic effect against CC by promoting major histocompatibility complex mediated (MHC) antigen presentation by dendritic cells. We may conclude that the proposed immunoprophylactic approach could be more effective than the current treatments of CC because it promotes recognition of the tumoral antigens by the immune system.

Keywords: anticancer vaccine, colon cancer, gold nanoparticles, tumor antigen

Procedia PDF Downloads 454
2018 Effects of SRT and HRT on Treatment Performance of MBR and Membrane Fouling

Authors: M. I. Aida Isma, Azni Idris, Rozita Omar, A. R. Putri Razreena

Abstract:

40L of hollow fiber membrane bioreactor with solids retention times (SRT) of 30, 15 and 4 days were setup for treating synthetic wastewater at hydraulic retention times (HRT) of 12, 8 and 4 hours. The objectives of the study were to investigate the effects of SRT and HRT on membrane fouling. A comparative analysis was carried out for physiochemical quality parameters (turbidity, suspended solids, COD, NH3-N and PO43-). Scanning electron microscopy (SEM), energy diffusive X-ray (EDX) analyzer and particle size distribution (PSD) were used to characterize the membrane fouling properties. The influence of SRT on the quality of effluent, activated sludge quality, and membrane fouling were also correlated. Lower membrane fouling and slower rise in trans-membrane pressure (TMP) were noticed at the longest SRT and HRT of 30d and 12h, respectively. Increasing SRT results in noticeable reduction of dissolved organic matters. The best removal efficiencies of COD, TSS, NH3-N and PO43- were 93%, 98%, 80% and 30% respectively. The high HRT with shorter SRT induced faster fouling rate. The main fouling resistance was cake layer. The most severe membrane fouling was observed at SRT and HRT of 4 and 12, respectively with thickness cake layer of 17 μm as reflected by higher TMP, lower effluent removal and thick sludge cake layer.

Keywords: membrane bioreactor, SRT, HRT, fouling

Procedia PDF Downloads 528