Search results for: ecosystem-based approaches
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4020

Search results for: ecosystem-based approaches

2490 Understanding Personal Well-Being among Entrepreneurial Breadwinners: Bibliographic and Empirical Analyses of Relative Resource Theory

Authors: E. Fredrick Rice

Abstract:

Over the past three decades, a substantial body of academic literature has asserted that the pressure to maintain household income can negatively affect the personal well-being of breadwinners. Given that scholars have failed to thoroughly explore this phenomenon with breadwinners who are also business owners, theory has been underdeveloped in the entrepreneurial context. To identify the most appropriate theories to apply to entrepreneurs, the current paper utilized two approaches. First, a comprehensive bibliographic analysis was conducted focusing on works at the intersection of breadwinner status and well-being. Co-authorship and journal citation patterns highlighted relative resource theory as a boundary spanning approach with promising applications in the entrepreneurial space. To build upon this theory, regression analysis was performed using data from the Panel Study of Entrepreneurial Dynamics (PSED). Empirical results showed evidence for the effects of breadwinner status and household income on entrepreneurial well-being. Further, the findings suggest that it is not merely income or job status that predicts well-being, but one’s relative financial contribution compared to that of one’s non-breadwinning organizationally employed partner. This paper offers insight into how breadwinner status can be studied in relation to the entrepreneurial personality.

Keywords: breadwinner, entrepreneurship, household income, well-being.

Procedia PDF Downloads 175
2489 E-teaching Barriers: A Survey from Shanghai Primary School Teachers

Authors: Liu Dan

Abstract:

It was considered either unnecessary or impossible for primary school students to implement online teaching until last year. A large number of E-learning or E-teaching researches have been focused on adult-learners, andragogy and technology, however, primary school education, it is facing many problems that need to be solved. Therefore, this research is aimed at exploring barriers and influential factors on online teaching for K-12 students from teachers’ perspectives and discussing the E-pedagogy that is suitable for primary school students and teachers. Eight hundred and ninety-six teachers from 10 primary schools in Shanghai were invited to participate in a questionnaire survey. Data were analysed by hierarchical regression, and the results stress the significant three barriers by teachers with online teaching: the existing system is deficient in emotional interaction, teachers’ attitude towards the technology is negative and the present teacher training is lack of systematic E-pedagogy guidance. The barriers discovered by this study will help the software designers (E-lab) develop tools that allow for flexible and evolving pedagogical approaches whilst providing an easy entry point for cautious newcomers, so that help the teachers free to engage in E-teaching at pedagogical and disciplinary levels, to enhance their repertoire of teaching practices.

Keywords: online teaching barriers (OTB), e-teaching, primary school, teachers, technology

Procedia PDF Downloads 208
2488 Different Perceptions of Distance and Full-time Teaching Depending on Different Cultural Backgrounds: A Comparative Study

Authors: Daniel Ecler

Abstract:

This paper aims to compare the data obtained using semi-structured questionnaires and find some connections between them, which could help to understand what factors affect the perception of the advantages and disadvantages of distance learning compared to conventional education. The data collected came from respondents from Czech and Chinese university students, and expectations were such that the different cultural environments from which the two groups come would have an impact on different experiences of distance education. With the help of variation-finding comparison, it turned out that Chinese students did not have such difficulties with the transition to distance learning as students from the Czech Republic, as most of them came into contact with some form of distance education in the past. In addition, it has also been shown that Chinese students use modern technology to a much greater extent, which has also made it easier for them to become accustomed to another form of teaching. In conclusion, Chinese students have greater preconditions for easier management of distance learning, while Czech students prefer more personal contact, and thus full-time teaching. It is obvious that both approaches have their pros and cons; now, it is necessary to find out how to use them for maximum efficiency of the educational process.

Keywords: Chinese college students, cultural background, Czech college students, distance learning, full-time teaching

Procedia PDF Downloads 157
2487 Deep-Learning to Generation of Weights for Image Captioning Using Part-of-Speech Approach

Authors: Tiago do Carmo Nogueira, Cássio Dener Noronha Vinhal, Gélson da Cruz Júnior, Matheus Rudolfo Diedrich Ullmann

Abstract:

Generating automatic image descriptions through natural language is a challenging task. Image captioning is a task that consistently describes an image by combining computer vision and natural language processing techniques. To accomplish this task, cutting-edge models use encoder-decoder structures. Thus, Convolutional Neural Networks (CNN) are used to extract the characteristics of the images, and Recurrent Neural Networks (RNN) generate the descriptive sentences of the images. However, cutting-edge approaches still suffer from problems of generating incorrect captions and accumulating errors in the decoders. To solve this problem, we propose a model based on the encoder-decoder structure, introducing a module that generates the weights according to the importance of the word to form the sentence, using the part-of-speech (PoS). Thus, the results demonstrate that our model surpasses state-of-the-art models.

Keywords: gated recurrent units, caption generation, convolutional neural network, part-of-speech

Procedia PDF Downloads 107
2486 Using Analytical Hierarchy Process and TOPSIS Approaches in Designing a Finite Element Analysis Automation Program

Authors: Ming Wen, Nasim Nezamoddini

Abstract:

Sophisticated numerical simulations like finite element analysis (FEA) involve a complicated process from model setup to post-processing tasks that require replication of time-consuming steps. Utilizing FEA automation program simplifies the complexity of the involved steps while minimizing human errors in analysis set up, calculations, and results processing. One of the main challenges in designing FEA automation programs is to identify user requirements and link them to possible design alternatives. This paper presents a decision-making framework to design a Python based FEA automation program for modal analysis, frequency response analysis, and random vibration fatigue (RVF) analysis procedures. Analytical hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) are applied to evaluate design alternatives considering the feedback received from experts and program users.

Keywords: finite element analysis, FEA, random vibration fatigue, process automation, analytical hierarchy process, AHP, TOPSIS, multiple-criteria decision-making, MCDM

Procedia PDF Downloads 118
2485 Disidentification of Historical City Centers: A Comparative Study of the Old and New Settlements of Mardin, Turkey

Authors: Fatma Kürüm Varolgüneş, Fatih Canan

Abstract:

Mardin is one of the unique cities in Turkey with its rich cultural and historical heritage. Mardin’s traditional dwellings have been affected both by natural data such as climate and topography and by cultural data like lifestyle and belief. However, in the new settlements, housing is formed with modern approaches and unsuitable forms clashing with Mardin’s culture and environment. While the city is expanding, traditional textures are ignored. Thus, traditional settlements are losing their identity and are vanishing because of the rapid change and transformation. The main aim of this paper is to determine the physical and social data needed to define the characteristic features of Mardin’s old and new settlements. In this context, based on social and cultural data, old and new settlement formations of Mardin have been investigated from various aspects. During this research, the following methods have been utilized: observations, interviews, public surveys, literature review, as well as site examination via maps, photographs and questionnaire methodology. In conclusion, this paper focuses on how changes in the physical forms of cities affect the typology and the identity of cities, as in the case of Mardin.

Keywords: urban and local identity, historical city center, traditional settlements, Mardin

Procedia PDF Downloads 331
2484 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory

Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan

Abstract:

Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.

Keywords: data fusion, Dempster-Shafer theory, data mining, event detection

Procedia PDF Downloads 414
2483 Prevalence and Spatial Distribution of Anaemia in Ethiopia using 2011 EDHS

Authors: Bedilu A. Ejigu, Eshetu Wencheko, Kiros Berhane

Abstract:

Anaemia is a condition in which the haemoglobin concentration falls below an established cut-off value due to a decrease in the number and size of red blood cells. The current study aimed to assess the spatial pattern and identify predictors related to anaemia using the third Ethiopian demographic health survey which was conducted in 2010. To achieve this objective, this study took into account the clustered nature of the data. As a result, multilevel modeling has been used in the statistical analysis. For analysis purpose, only complete cases from 15,909 females, and 13,903 males were considered. Among all subjects who agreed for haemoglobin test, 5.49 %males, and 19.86% females were anaemic. In both binary and ordinal outcome modeling approaches, educational level, age, wealth index, BMI and HIV status were identified to be significant predictors for anaemia prevalence. Furthermore, it was noted that pregnant women were more anaemic than non-pregnant women. As revealed by Moran's I test, significant spatial autocorrelation was noted across clusters. The risk of anaemia was found to vary across different regions, and higher prevalence was observed in Somali and Affar region.

Keywords: anaemia, Moran's I test, multilevel models, spatial pattern

Procedia PDF Downloads 429
2482 A Comparison of Transdiagnostic Components in Generalized Anxiety Disorder, Unipolar Mood Disorder and Nonclinical Population

Authors: Imaneh Abbasi, Ladan Fata, Majid Sadeghi, Sara Banihashemi, Abolfazl Mohammadee

Abstract:

Background: Dimensional and transdiagnostic approaches as a result of high comorbidity among mental disorders have captured researchers and clinicians interests for exploring the latent factors of development and maintenance of some psychological disorders. The goal of present study is to compare some of these common factors between generalized anxiety disorder and unipolar mood disorder. Methods: 27 patients with generalized anxiety disorder, 29 patients with depression disorder were recruited using SCID-I and 69 non-clinical population were selected using GHQ cut off point. MANCOVA was used for analyzing data. Results: The results show that worry, rumination, intolerance of uncertainty, maladaptive metacognitive beliefs, and experiential avoidance were all significantly different between GAD and unipolar mood disorder groups. However, there were not any significant differences in difficulties in emotion regulation and neuroticism between GAD and unipolar mood disorder groups. Discussion: Results indicate that although there are some transdiagnostic and common factors in GAD and unipolar mood disorder, there may be some specific vulnerability factors for each disorder. Further study is needed for answering these questions.

Keywords: transdiagnostic, depression, generalized anxiety disorder, emotion regulation

Procedia PDF Downloads 504
2481 Enhancing Sensitivity in Multifrequency Atomic Force Microscopy

Authors: Babak Eslami

Abstract:

Bimodal and trimodal AFM have provided additional capabilities to scanning probe microscopy characterization techniques. These capabilities have specifically enhanced material characterization of surfaces and provided subsurface imaging in addition to conventional topography images. Bimodal and trimodal AFM, being different techniques of multifrequency AFM, are based on exciting the cantilever’s fundamental eigenmode with second and third eigenmodes simultaneously. Although higher eigenmodes provide a higher number of observables that can provide additional information about the sample, they cause experimental challenges. In this work, different experimental approaches for enhancing AFM images in multifrequency for different characterization goals are provided. The trade-offs between eigenmodes including the advantages and disadvantages of using each mode for different samples (ranging from stiff to soft matter) in both air and liquid environments are provided. Additionally, the advantage of performing conventional single tapping mode AFM with higher eigenmodes of the cantilever in order to reduce sample indentation is discussed. These analyses are performed on widely used polymers such as polystyrene, polymethyl methacrylate and air nanobubbles on different surfaces in both air and liquid.

Keywords: multifrequency, sensitivity, soft matter, polymer

Procedia PDF Downloads 135
2480 Exploration of Critical Success Factors in Business and Management in Artificial Intelligence Era

Authors: Najah Kalifah Almazmomi

Abstract:

In the time of artificial intelligence (AI), there is a need to know the determinants of success in business management, which are taking on a new dimension. This research purports to scrutinize the Critical Success Factors (CSFs) that drive and ignite the fire of success to help uncover the subtle and profound dynamics that might be operative in organizations. By means of a systematic literature review and a number of empirical methods, the paper is aimed at determining and assessing the key aspects of CSFs, putting emphasis on their role and meaning in the context of AI technology adoption. Some central features such as leadership ways, innovation models, strategic thinking methodologies, organizational culture transformations, and human resource management approaches are compared and contrasted with the AI-driven revolution. Additionally, this research will explore the interactive effects of these factors and their joint impact on the success, survival, and flexibility of a business in the current environment, which is changing due to AI development. Through the use of different qualitative and quantitative methodologies, the research concludes that the findings are significant in understanding the relative roles of individual CSFs and in studying the interactions between them in such an AI-enabled business environment.

Keywords: critical success factors, business and management, artificial intelligence, leadership strategies

Procedia PDF Downloads 43
2479 Improved Performance in Content-Based Image Retrieval Using Machine Learning Approach

Authors: B. Ramesh Naik, T. Venugopal

Abstract:

This paper presents a novel approach which improves the high-level semantics of images based on machine learning approach. The contemporary approaches for image retrieval and object recognition includes Fourier transforms, Wavelets, SIFT and HoG. Though these descriptors helpful in a wide range of applications, they exploit zero order statistics, and this lacks high descriptiveness of image features. These descriptors usually take benefit of primitive visual features such as shape, color, texture and spatial locations to describe images. These features do not adequate to describe high-level semantics of the images. This leads to a gap in semantic content caused to unacceptable performance in image retrieval system. A novel method has been proposed referred as discriminative learning which is derived from machine learning approach that efficiently discriminates image features. The analysis and results of proposed approach were validated thoroughly on WANG and Caltech-101 Databases. The results proved that this approach is very competitive in content-based image retrieval.

Keywords: CBIR, discriminative learning, region weight learning, scale invariant feature transforms

Procedia PDF Downloads 184
2478 Assembly Training: An Augmented Reality Approach Using Design Science Research

Authors: Stefan Werrlich, Phuc-Anh Nguyen, Kai Nitsche, Gunther Notni

Abstract:

Augmented Reality (AR) is a strong growing research topic. This innovative technology is interesting for several training domains like education, medicine, military, sports and industrial use cases like assembly and maintenance tasks. AR can help to improve the efficiency, quality and transfer of training tasks. Due to these reasons, AR becomes more interesting for big companies and researchers because the industrial domain is still an unexplored field. This paper presents the research proposal of a PhD thesis which is done in cooperation with the BMW Group, aiming to explore head-mounted display (HMD) based training in industrial environments. We give a short introduction, describing the motivation, the underlying problems as well as the five formulated research questions we want to clarify along this thesis. We give a brief overview of the current assembly training in industrial environments and present some AR-based training approaches, including their research deficits. We use the Design Science Research (DSR) framework for this thesis and describe how we want to realize the seven guidelines, mandatory from the DSR. Furthermore, we describe each methodology which we use within that framework and present our approach in a comprehensive figure, representing the entire thesis.

Keywords: assembly, augmented reality, research proposal, training

Procedia PDF Downloads 247
2477 An Improved Tie Force Method for Progressive Collapse Resistance Design of Precast Concrete Cross Wall Structures

Authors: M. Tohidi, J. Yang, C. Baniotopoulos

Abstract:

Progressive collapse of buildings typically occurs when abnormal loading conditions cause local damages, which leads to a chain reaction of failure and ultimately catastrophic collapse. The tie force (TF) method is one of the main design approaches for progressive collapse. As the TF method is a simplified method, further investigations on the reliability of the method is necessary. This study aims to develop an improved TF method to design the cross wall structures for progressive collapse. To this end, the pullout behavior of strands in grout was firstly analyzed; and then, by considering the tie force-slip relationship in the friction stage together with the catenary action mechanism, a comprehensive analytical method was developed. The reliability of this approach is verified by the experimental results of concrete block pullout tests and full scale floor-to-floor joints tests undertaken by Portland Cement Association (PCA). Discrepancies in the tie force between the analytical results and codified specifications have suggested the deficiency of TF method, hence an improved model based on the analytical results has been proposed to address this concern.

Keywords: cross wall, progressive collapse, ties force method, catenary, analytical

Procedia PDF Downloads 472
2476 A Proposed Framework for Better Managing Small Group Projects on an Undergraduate Foundation Programme at an International University Campus

Authors: Sweta Rout-Hoolash

Abstract:

Each year, selected students from around 20 countries begin their degrees at Middlesex University with the International Foundation Program (IFP), developing the skills required for academic study at a UK university. The IFP runs for 30 learning/teaching weeks at Middlesex University Mauritius Branch Campus, which is an international campus of UK’s Middlesex University. Successful IFP students join their degree courses already settled into life at their chosen campus (London, Dubai, Mauritius or Malta) and confident that they understand what is required for degree study. Although part of the School of Science and Technology, in Mauritius it prepares students for undergraduate level across all Schools represented on campus – including disciplines such as Accounting, Business, Computing, Law, Media and Psychology. The researcher has critically reviewed the framework and resources in the curriculum for a particular six week period of IFP study (dedicated group work phase). Despite working together closely for 24 weeks, IFP students approach the final 6 week small group work project phase with mainly inhibitive feelings. It was observed that students did not engage effectively in the group work exercise. Additionally, groups who seemed to be working well did not necessarily produce results reflecting effective collaboration, nor individual members’ results which were better than prior efforts. The researcher identified scope for change and innovation in the IFP curriculum and how group work is introduced and facilitated. The study explores the challenges of groupwork in the context of the Mauritius campus, though it is clear that the implications of the project are not restricted to one campus only. The presentation offers a reflective review on the previous structure put in place for the management of small group assessed projects on the programme from both the student and tutor perspective. The focus of the research perspective is the student voice, by taking into consideration past and present IFP students’ experiences as written in their learning journals. Further, it proposes the introduction of a revised framework to help students take greater ownership of the group work process in order to engage more effectively with the learning outcomes of this crucial phase of the programme. The study has critically reviewed recent and seminal literature on how to achieve greater student ownership during this phase especially under an environment of assessed multicultural group work. The presentation proposes several new approaches for encouraging students to take more control of the collaboration process. Detailed consideration is given to how the proposed changes impact on the work of other stakeholders, or partners to student learning. Clear proposals are laid out for evaluation of the different approaches intended to be implemented during the upcoming academic year (student voice through their own submitted reflections, focus group interviews and through the assessment results). The proposals presented are all realistic and have the potential to transform students’ learning. Furthermore, the study has engaged with the UK Professional Standards Framework for teaching and supporting learning in higher education, and demonstrates practice at the level of ‘fellow’ of the Higher Education Academy (HEA).

Keywords: collaborative peer learning, enhancing learning experiences, group work assessment, learning communities, multicultural diverse classrooms, studying abroad

Procedia PDF Downloads 329
2475 Exploring Augmented Reality in Graphic Design: A Hybrid Pedagogical Model for Design Education

Authors: Nan Hu, Wujun Wang

Abstract:

In the ever-changing digital arena, augmented reality (AR) applications have transitioned from technological enthusiasm into business endeavors, signaling a near future in which AR applications are integrated into daily life. While practitioners in the design industry continue to explore AR’s potential for innovative communication, educators have taken steps to incorporate AR into the curricula for design, explore its creative potential, and realize early initiatives for teaching AR in design-related disciplines. In alignment with recent advancements, this paper presents a pedagogical model for a hybrid studio course in which students collaborate with AR alongside 3D modeling and graphic design. The course extended students’ digital capacity, fostered their design thinking skills, and immersed them in a multidisciplinary design process. This paper outlines the course and evaluates its effectiveness by discussing challenges encountered and outcomes generated in this particular pedagogical context. By sharing insights from the teaching experience, we aim to empower the community of design educators and offer institutions a valuable reference for advancing their curricular approaches. This paper is a testament to the ever-evolving landscape of design education and its response to the digital age.

Keywords: 3D, AR, augmented reality, design thinking, graphic design

Procedia PDF Downloads 75
2474 Extraction of Urban Land Features from TM Landsat Image Using the Land Features Index and Tasseled Cap Transformation

Authors: R. Bouhennache, T. Bouden, A. A. Taleb, A. Chaddad

Abstract:

In this paper we propose a method to map the urban areas. The method uses an arithmetic calculation processed from the land features indexes and Tasseled cap transformation TC of multi spectral Thematic Mapper Landsat TM image. For this purpose the derived indexes image from the original image such SAVI the soil adjusted vegetation index, UI the urban Index, and EBBI the enhanced built up and bareness index were staked to form a new image and the bands were uncorrelated, also the Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) supervised classification approaches were first applied on the new image TM data using the reference spectra of the spectral library and subsequently the four urban, vegetation, water and soil land cover categories were extracted with their accuracy assessment.The urban features were represented using a logic calculation applied to the brightness, UI-SAVI, NDBI-greenness and EBBI- brightness data sets. The study applied to Blida and mentioned that the urban features can be mapped with an accuracy ranging from 92 % to 95%.

Keywords: EBBI, SAVI, Tasseled Cap Transformation, UI

Procedia PDF Downloads 487
2473 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach

Authors: Dongkwon Han, Sangho Kim, Sunil Kwon

Abstract:

Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.

Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance

Procedia PDF Downloads 199
2472 Bag of Local Features for Person Re-Identification on Large-Scale Datasets

Authors: Yixiu Liu, Yunzhou Zhang, Jianning Chi, Hao Chu, Rui Zheng, Libo Sun, Guanghao Chen, Fangtong Zhou

Abstract:

In the last few years, large-scale person re-identification has attracted a lot of attention from video surveillance since it has a potential application prospect in public safety management. However, it is still a challenging job considering the variation in human pose, the changing illumination conditions and the lack of paired samples. Although the accuracy has been significantly improved, the data dependence of the sample training is serious. To tackle this problem, a new strategy is proposed based on bag of visual words (BoVW) model of designing the feature representation which has been widely used in the field of image retrieval. The local features are extracted, and more discriminative feature representation is obtained by cross-view dictionary learning (CDL), then the assignment map is obtained through k-means clustering. Finally, the BoVW histograms are formed which encodes the images with the statistics of the feature classes in the assignment map. Experiments conducted on the CUHK03, Market1501 and MARS datasets show that the proposed method performs favorably against existing approaches.

Keywords: bag of visual words, cross-view dictionary learning, person re-identification, reranking

Procedia PDF Downloads 199
2471 Evaluation of Three Digital Graphical Methods of Baseflow Separation Techniques in the Tekeze Water Basin in Ethiopia

Authors: Alebachew Halefom, Navsal Kumar, Arunava Poddar

Abstract:

The purpose of this work is to specify the parameter values, the base flow index (BFI), and to rank the methods that should be used for base flow separation. Three different digital graphical approaches are chosen and used in this study for the purpose of comparison. The daily time series discharge data were collected from the site for a period of 30 years (1986 up to 2015) and were used to evaluate the algorithms. In order to separate the base flow and the surface runoff, daily recorded streamflow (m³/s) data were used to calibrate procedures and get parameter values for the basin. Additionally, the performance of the model was assessed by the use of the standard error (SE), the coefficient of determination (R²), and the flow duration curve (FDC) and baseflow indexes. The findings indicate that, in general, each strategy can be used worldwide to differentiate base flow; however, the Sliding Interval Method (SIM) performs significantly better than the other two techniques in this basin. The average base flow index was calculated to be 0.72 using the local minimum method, 0.76 using the fixed interval method, and 0.78 using the sliding interval method, respectively.

Keywords: baseflow index, digital graphical methods, streamflow, Emba Madre Watershed

Procedia PDF Downloads 86
2470 Critical Literature Survey of the Macroeconomic Effects of Fiscal Policy in Light of Recent Empirical Evidence

Authors: Walaa W. Diab

Abstract:

The present paper offers a fundamental critique of the macroeconomic effects of fiscal policy after it surveys the theoretical and empirical literature on the macroeconomic effects of fiscal policy. It emphasizes the importance of the fiscal policy after reviewing the revolution of almost all economic schools and bringing them in one summarized figure; the paper links the developmental role of the fiscal policy with the objectives and measures of the economic transformation. Thus, the importance of this study can be seen from several perspectives: First, it reviews the theoretical harvest of fiscal policy and provides a comparison between the main revolutionary Economic thoughts; the classical school, Keynesian school, and monetarist school. Then it turns to conclude the fiscal policy from the new consensus mainstream economic schools. Finally, the study presents grouped and classified empirical pieces of evidence as it divides those empirical studies into two groups; the first for developed economies and the second for developing ones. So the study is important also for the policymakers as well as scholars as it gives its recommendations upon the last analysis in the form of ‘policy implications’. The paper also presents a deeper look into the evaluation approaches of the macroeconomic effects of fiscal policy at the empirical level. Thus it is useful for both researchers and decision makers.

Keywords: economic transformation, fiscal policy, macroeconomic effects, public spending

Procedia PDF Downloads 310
2469 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation

Authors: Hamed Alqahtani, Manolya Kavakli-Thorne

Abstract:

The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.

Keywords: disentanglement, face detection, generative adversarial networks, video surveillance

Procedia PDF Downloads 133
2468 Determination of Harmful Important Mite (ACARI) and Nematoda Species, Their Distribution and Their Control Possibility on Garlic and Onion Growing Areas in Turkey

Authors: Cihan Cilbircioğlu

Abstract:

Allium sativum L.(garlic) and Allium. cepa L. (onion) are the most common species of the Allium spp. and are produced at the very high rate all over the world. The yield loss caused by pests is the most important problem in the production of these crops. In the absence of control measures, yield loss would be around 35% on average. The yield loss sometimes depending on the pest species and population density can reach about 100%. Mites and nematodes are the most important pests of them. These pests that cause damage to A. sativum and A. cepa shows a wide range of taxonomic categories. The number of common pest mite and nematode species that cause damage to either A. sativum and A. cepa are over 20 species. In this study, detailed information on morphology, life cycle, management, and symptoms of the economically most important harmful important mite (acari) and nematode species of onion and garlic has been provided through careful survey of corresponding researches in Turkey and given information about new practices and approaches on their controls.

Keywords: onion, garlic, pest, acari, nematoda control methods, Turkey

Procedia PDF Downloads 492
2467 Open Source, Open Hardware Ground Truth for Visual Odometry and Simultaneous Localization and Mapping Applications

Authors: Janusz Bedkowski, Grzegorz Kisala, Michal Wlasiuk, Piotr Pokorski

Abstract:

Ground-truth data is essential for VO (Visual Odometry) and SLAM (Simultaneous Localization and Mapping) quantitative evaluation using e.g. ATE (Absolute Trajectory Error) and RPE (Relative Pose Error). Many open-access data sets provide raw and ground-truth data for benchmark purposes. The issue appears when one would like to validate Visual Odometry and/or SLAM approaches on data captured using the device for which the algorithm is targeted for example mobile phone and disseminate data for other researchers. For this reason, we propose an open source, open hardware groundtruth system that provides an accurate and precise trajectory with a 3D point cloud. It is based on LiDAR Livox Mid-360 with a non-repetitive scanning pattern, on-board Raspberry Pi 4B computer, battery and software for off-line calculations (camera to LiDAR calibration, LiDAR odometry, SLAM, georeferencing). We show how this system can be used for the evaluation of various the state of the art algorithms (Stella SLAM, ORB SLAM3, DSO) in typical indoor monocular VO/SLAM.

Keywords: SLAM, ground truth, navigation, LiDAR, visual odometry, mapping

Procedia PDF Downloads 81
2466 Prediction of Gully Erosion with Stochastic Modeling by using Geographic Information System and Remote Sensing Data in North of Iran

Authors: Reza Zakerinejad

Abstract:

Gully erosion is a serious problem that threading the sustainability of agricultural area and rangeland and water in a large part of Iran. This type of water erosion is the main source of sedimentation in many catchment areas in the north of Iran. Since in many national assessment approaches just qualitative models were applied the aim of this study is to predict the spatial distribution of gully erosion processes by means of detail terrain analysis and GIS -based logistic regression in the loess deposition in a case study in the Golestan Province. This study the DEM with 25 meter result ion from ASTER data has been used. The Landsat ETM data have been used to mapping of land use. The TreeNet model as a stochastic modeling was applied to prediction the susceptible area for gully erosion. In this model ROC we have set 20 % of data as learning and 20 % as learning data. Therefore, applying the GIS and satellite image analysis techniques has been used to derive the input information for these stochastic models. The result of this study showed a high accurate map of potential for gully erosion.

Keywords: TreeNet model, terrain analysis, Golestan Province, Iran

Procedia PDF Downloads 541
2465 The Comparison of the Reliability Margin Measure for the Different Concepts in the Slope Analysis

Authors: Filip Dodigovic, Kreso Ivandic, Damir Stuhec, S. Strelec

Abstract:

The general difference analysis between the former and new design concepts in geotechnical engineering is carried out. The application of new regulations results in the need for real adaptation of the computation principles of limit states, i.e. by providing a uniform way of analyzing engineering tasks. Generally, it is not possible to unambiguously match the limit state verification procedure with those in the construction engineering. The reasons are the inability to fully consistency of the common probabilistic basis of the analysis, and the fundamental effect of material properties on the value of actions and the influence of actions on resistance. Consequently, it is not possible to apply separate factorization with partial coefficients, as in construction engineering. For the slope stability analysis design procedures problems in the light of the use of limit states in relation to the concept of allowable stresses is detailed in. The quantifications of the safety margins in the slope stability analysis for both approaches is done. When analyzing the stability of the slope, by the strict application of the adopted forms from the new regulations for significant external temporary and/or seismic actions, the equivalent margin of safety is increased. The consequence is the emergence of more conservative solutions.

Keywords: allowable pressure, Eurocode 7, limit states, slope stability

Procedia PDF Downloads 341
2464 A Simple Algorithm for Real-Time 3D Capturing of an Interior Scene Using a Linear Voxel Octree and a Floating Origin Camera

Authors: Vangelis Drosos, Dimitrios Tsoukalos, Dimitrios Tsolis

Abstract:

We present a simple algorithm for capturing a 3D scene (focused on the usage of mobile device cameras in the context of augmented/mixed reality) by using a floating origin camera solution and storing the resulting information in a linear voxel octree. Data is derived from cloud points captured by a mobile device camera. For the purposes of this paper, we assume a scene of fixed size (known to us or determined beforehand) and a fixed voxel resolution. The resulting data is stored in a linear voxel octree using a hashtable. We commence by briefly discussing the logic behind floating origin approaches and the usage of linear voxel octrees for efficient storage. Following that, we present the algorithm for translating captured feature points into voxel data in the context of a fixed origin world and storing them. Finally, we discuss potential applications and areas of future development and improvement to the efficiency of our solution.

Keywords: voxel, octree, computer vision, XR, floating origin

Procedia PDF Downloads 137
2463 Internet of Things, Edge and Cloud Computing in Rock Mechanical Investigation for Underground Surveys

Authors: Esmael Makarian, Ayub Elyasi, Fatemeh Saberi, Olusegun Stanley Tomomewo

Abstract:

Rock mechanical investigation is one of the most crucial activities in underground operations, especially in surveys related to hydrocarbon exploration and production, geothermal reservoirs, energy storage, mining, and geotechnics. There is a wide range of traditional methods for driving, collecting, and analyzing rock mechanics data. However, these approaches may not be suitable or work perfectly in some situations, such as fractured zones. Cutting-edge technologies have been provided to solve and optimize the mentioned issues. Internet of Things (IoT), Edge, and Cloud Computing technologies (ECt & CCt, respectively) are among the most widely used and new artificial intelligence methods employed for geomechanical studies. IoT devices act as sensors and cameras for real-time monitoring and mechanical-geological data collection of rocks, such as temperature, movement, pressure, or stress levels. Structural integrity, especially for cap rocks within hydrocarbon systems, and rock mass behavior assessment, to further activities such as enhanced oil recovery (EOR) and underground gas storage (UGS), or to improve safety risk management (SRM) and potential hazards identification (P.H.I), are other benefits from IoT technologies. EC techniques can process, aggregate, and analyze data immediately collected by IoT on a real-time scale, providing detailed insights into the behavior of rocks in various situations (e.g., stress, temperature, and pressure), establishing patterns quickly, and detecting trends. Therefore, this state-of-the-art and useful technology can adopt autonomous systems in rock mechanical surveys, such as drilling and production (in hydrocarbon wells) or excavation (in mining and geotechnics industries). Besides, ECt allows all rock-related operations to be controlled remotely and enables operators to apply changes or make adjustments. It must be mentioned that this feature is very important in environmental goals. More often than not, rock mechanical studies consist of different data, such as laboratory tests, field operations, and indirect information like seismic or well-logging data. CCt provides a useful platform for storing and managing a great deal of volume and different information, which can be very useful in fractured zones. Additionally, CCt supplies powerful tools for predicting, modeling, and simulating rock mechanical information, especially in fractured zones within vast areas. Also, it is a suitable source for sharing extensive information on rock mechanics, such as the direction and size of fractures in a large oil field or mine. The comprehensive review findings demonstrate that digital transformation through integrated IoT, Edge, and Cloud solutions is revolutionizing traditional rock mechanical investigation. These advanced technologies have empowered real-time monitoring, predictive analysis, and data-driven decision-making, culminating in noteworthy enhancements in safety, efficiency, and sustainability. Therefore, by employing IoT, CCt, and ECt, underground operations have experienced a significant boost, allowing for timely and informed actions using real-time data insights. The successful implementation of IoT, CCt, and ECt has led to optimized and safer operations, optimized processes, and environmentally conscious approaches in underground geological endeavors.

Keywords: rock mechanical studies, internet of things, edge computing, cloud computing, underground surveys, geological operations

Procedia PDF Downloads 67
2462 Challenges of Embedding Entrepreneurship in Modibbo Adama University of Technology Yola, Nigeria

Authors: Michael Ubale Cyril

Abstract:

Challenges of embedding entrepreneurship in tertiary institutions in Nigeria requires a consistent policy for equipping schools with necessary facilities like establishing incubating technology centre, the right calibres of human resources, appropriate pedagogical tools for teaching entrepreneurship education and exhibition grounds where products and services will be delivered and patronised by the customers. With the death of facilities in public schools in Nigeria, educators are clamouring for a way out. This study investigated the challenges of embedding entrepreneurship education in Modibbo Adama University of Technology Yola, Nigeria. The population for the study was 201 comprising 34 industrial entrepreneurs, 76 technical teachers and 91 final year undergraduates. The data was analysed using means of 3 groups, standard deviation, and analysis of variance. The study found out, that technical teachers have not been trained to teach entrepreneurship education, approaches to teaching methodology, were not varied and lack of infrastructural facilities like building was not a factor. It was recommended that technical teachers be retrained to teach entrepreneurship education, textbooks in entrepreneurship should be published with Nigerian outlook.

Keywords: challenges, embedding, entrepreneurship pedagogical, technology incubating centres

Procedia PDF Downloads 305
2461 Lack of Regulation Leads to Complexity: A Case Study of the Free Range Chicken Meat Sector in the Western Cape, South Africa

Authors: A. Coetzee, C. F. Kelly, E. Even-Zahav

Abstract:

Dominant approaches to livestock production are harmful to the environment, human health and animal welfare, yet global meat consumption is rising. Sustainable alternative production approaches are therefore urgently required, and ‘free range’ is the main alternative for chicken meat offered in South Africa (and globally). Although the South African Poultry Association provides non-binding guidelines, there is a lack of formal definition and regulation of free range chicken production, meaning it is unclear what this alternative entails and if it is consistently practised (a trend observed globally). The objective of this exploratory qualitative case study is therefore to investigate who and what determines free range chicken. The case study, conducted from a social constructivist worldview, uses semi-structured interviews, photographs and document analysis to collect data. Interviews are conducted with those involved with bringing free range chicken to the market - farmers, chefs, retailers, and regulators. Data is analysed using thematic analysis to establish dominant patterns in the data. The five major themes identified (based on prevalence in data and on achieving the research objective) are: 1) free range means a bird reared with good animal welfare in mind, 2) free range means quality meat, 3) free range means a profitable business, 4) free range is determined by decision makers or by access to markets, and 5) free range is coupled with concerns about the lack of regulation. Unpacking the findings in the context of the literature reveals who and what determines free range. The research uncovers wide-ranging interpretations of ‘free range’, driven by the absence of formal regulation for free range chicken practices and the lack of independent private certification. This means that the term ‘free range’ is socially constructed, thus varied and complex. The case study also shows that whether chicken meat is free range is generally determined by those who have access to markets. Large retailers claim adherence to the internationally recognised Five Freedoms, also include in the South African Poultry Association Code of Good Practice, which others in the sector say are too broad to be meaningful. Producers describe animal welfare concerns as the main driver for how they practice/view free range production, yet these interpretations vary. An additional driver is a focus on human health, which participants achieve mainly through the use of antibiotic-free feed, resulting in what participants regard as higher quality meat. The participants are also strongly driven by business imperatives, with most stating that free range chicken should carry a higher price than conventionally-reared chicken due to increased production costs. Recommendations from this study focus on, inter alia, a need to understand consumers’ perspectives on free range chicken, given that those in the sector claim they are responding to consumer demand, and conducting environmental research such as life cycle assessment studies to establish the true (environmental) sustainability of free range production. At present, it seems the sector mostly responds to social sustainability: human health and animal welfare.

Keywords: chicken meat production, free range, socially constructed, sustainability

Procedia PDF Downloads 162