Search results for: corrosion prediction ductile fracture
2006 Computation of Thermal Stress Intensity Factor for Bonded Composite Repairs in Aircraft Structures
Authors: Fayçal Benyahia, Abdelmohsen Albedah, Bel Abbes Bachir Bouiadjra
Abstract:
In this study the Finite element method is used to analyse the effect of the thermal residual stresses resulting from adhesive curing on the performances of the bonded composite repair in aircraft structures. The stress intensity factor at the crack tip is chosen as fracture criterion in order to estimate the repair performances. The obtained results show that the presence of the thermal residual stresses reduces considerably the repair performances and consequently decreases the fatigue life of cracked structures. The effects of the curing temperature, the adhesive properties and the adhesive thickness on the Stress Intensity Factor (SIF) variation with thermal stresses are also analysed.Keywords: bonded composite repair, residual stress, adhesion, stress transfer, finite element analysis
Procedia PDF Downloads 4172005 Integral Abutment Bridge: A Study on Types, Importance, Limitations and Design Guidelines
Authors: Babitha Elizabeth Philip
Abstract:
This paper aims to study in general about bridges without expansion joints. Integral Abutment Bridges (IAB) fall into this category of bridges. They are having a continuous deck and also the girders are integrated into the abutments. They are most cost effective system in terms of construction, maintenance, and longevity. The main advantage of IAB is that it is corrosion resistant since water is not allowed to pass through the structure. The other attractions of integral bridges are its simple and rapid construction, smooth and uninterrupted deck which provides a safe ride. Also damages to the abutments can be avoided to a great extent due to better load distribution at the bridge ends. Damages due to improper drainage are not seen in IAB because of its properly drained approach slabs thus eliminating the possibility of erosion of the abutment backfill and freeze and thaw damage resulting from saturated backfill.Keywords: continuous bridge, integral abutment bridge, joint bridge, life cycle cost, soil interaction
Procedia PDF Downloads 4532004 Climate Changes in Albania and Their Effect on Cereal Yield
Authors: Lule Basha, Eralda Gjika
Abstract:
This study is focused on analyzing climate change in Albania and its potential effects on cereal yields. Initially, monthly temperature and rainfalls in Albania were studied for the period 1960-2021. Climacteric variables are important variables when trying to model cereal yield behavior, especially when significant changes in weather conditions are observed. For this purpose, in the second part of the study, linear and nonlinear models explaining cereal yield are constructed for the same period, 1960-2021. The multiple linear regression analysis and lasso regression method are applied to the data between cereal yield and each independent variable: average temperature, average rainfall, fertilizer consumption, arable land, land under cereal production, and nitrous oxide emissions. In our regression model, heteroscedasticity is not observed, data follow a normal distribution, and there is a low correlation between factors, so we do not have the problem of multicollinearity. Machine-learning methods, such as random forest, are used to predict cereal yield responses to climacteric and other variables. Random Forest showed high accuracy compared to the other statistical models in the prediction of cereal yield. We found that changes in average temperature negatively affect cereal yield. The coefficients of fertilizer consumption, arable land, and land under cereal production are positively affecting production. Our results show that the Random Forest method is an effective and versatile machine-learning method for cereal yield prediction compared to the other two methods.Keywords: cereal yield, climate change, machine learning, multiple regression model, random forest
Procedia PDF Downloads 912003 Real Time Classification of Political Tendency of Twitter Spanish Users based on Sentiment Analysis
Authors: Marc Solé, Francesc Giné, Magda Valls, Nina Bijedic
Abstract:
What people say on social media has turned into a rich source of information to understand social behavior. Specifically, the growing use of Twitter social media for political communication has arisen high opportunities to know the opinion of large numbers of politically active individuals in real time and predict the global political tendencies of a specific country. It has led to an increasing body of research on this topic. The majority of these studies have been focused on polarized political contexts characterized by only two alternatives. Unlike them, this paper tackles the challenge of forecasting Spanish political trends, characterized by multiple political parties, by means of analyzing the Twitters Users political tendency. According to this, a new strategy, named Tweets Analysis Strategy (TAS), is proposed. This is based on analyzing the users tweets by means of discovering its sentiment (positive, negative or neutral) and classifying them according to the political party they support. From this individual political tendency, the global political prediction for each political party is calculated. In order to do this, two different strategies for analyzing the sentiment analysis are proposed: one is based on Positive and Negative words Matching (PNM) and the second one is based on a Neural Networks Strategy (NNS). The complete TAS strategy has been performed in a Big-Data environment. The experimental results presented in this paper reveal that NNS strategy performs much better than PNM strategy to analyze the tweet sentiment. In addition, this research analyzes the viability of the TAS strategy to obtain the global trend in a political context make up by multiple parties with an error lower than 23%.Keywords: political tendency, prediction, sentiment analysis, Twitter
Procedia PDF Downloads 2382002 Mechanism and Kinetic of Layers Growth: Application to Nitriding of 32CrMoV13 Steel
Authors: Torchane Lazhar
Abstract:
In this work, our task consists in optimizing the nitriding treatment at low-temperature of the steel 32CrMoV13 by the way of the mixtures of ammonia gas, nitrogen and hydrogen to improve the mechanical properties of the surface (good wear resistance, friction and corrosion), and of the diffusion layer of the nitrogen (good resistance to fatigue and good tenacity with heart). By limiting our work to the pure iron and to the alloys iron-chromium and iron-chrome-carbon, we have studied the various parameters which manage the nitriding: flow rate and composition of the gaseous phase, the interaction chromium-nitrogen and chromium-carbon by the help of experiments of nitriding realized in the laboratory by thermogravimetry. The acquired knowledge have been applied by the mastery of the growth of the combination layer on the diffusion layer in the case of the industrial steel 32CrMoV13.Keywords: diffusion of nitrogen, gaseous nitriding, layer growth kinetic, steel
Procedia PDF Downloads 4122001 Predicting High-Risk Endometrioid Endometrial Carcinomas Using Protein Markers
Authors: Yuexin Liu, Gordon B. Mills, Russell R. Broaddus, John N. Weinstein
Abstract:
The lethality of endometrioid endometrial cancer (EEC) is primarily attributable to the high-stage diseases. However, there are no available biomarkers that predict EEC patient staging at the time of diagnosis. We aim to develop a predictive scheme to help in this regards. Using reverse-phase protein array expression profiles for 210 EEC cases from The Cancer Genome Atlas (TCGA), we constructed a Protein Scoring of EEC Staging (PSES) scheme for surgical stage prediction. We validated and evaluated its diagnostic potential in an independent cohort of 184 EEC cases obtained at MD Anderson Cancer Center (MDACC) using receiver operating characteristic curve analyses. Kaplan-Meier survival analysis was used to examine the association of PSES score with patient outcome, and Ingenuity pathway analysis was used to identify relevant signaling pathways. Two-sided statistical tests were used. PSES robustly distinguished high- from low-stage tumors in the TCGA cohort (area under the ROC curve [AUC]=0.74; 95% confidence interval [CI], 0.68 to 0.82) and in the validation cohort (AUC=0.67; 95% CI, 0.58 to 0.76). Even among grade 1 or 2 tumors, PSES was significantly higher in high- than in low-stage tumors in both the TCGA (P = 0.005) and MDACC (P = 0.006) cohorts. Patients with positive PSES score had significantly shorter progression-free survival than those with negative PSES in the TCGA (hazard ratio [HR], 2.033; 95% CI, 1.031 to 3.809; P = 0.04) and validation (HR, 3.306; 95% CI, 1.836 to 9.436; P = 0.0007) cohorts. The ErbB signaling pathway was most significantly enriched in the PSES proteins and downregulated in high-stage tumors. PSES may provide clinically useful prediction of high-risk tumors and offer new insights into tumor biology in EEC.Keywords: endometrial carcinoma, protein, protein scoring of EEC staging (PSES), stage
Procedia PDF Downloads 2202000 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments
Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea
Abstract:
The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.Keywords: deep learning, data mining, gender predication, MOOCs
Procedia PDF Downloads 1481999 FT-NIR Method to Determine Moisture in Gluten Free Rice-Based Pasta during Drying
Authors: Navneet Singh Deora, Aastha Deswal, H. N. Mishra
Abstract:
Pasta is one of the most widely consumed food products around the world. Rapid determination of the moisture content in pasta will assist food processors to provide online quality control of pasta during large scale production. Rapid Fourier transform near-infrared method (FT-NIR) was developed for determining moisture content in pasta. A calibration set of 150 samples, a validation set of 30 samples and a prediction set of 25 samples of pasta were used. The diffuse reflection spectra of different types of pastas were measured by FT-NIR analyzer in the 4,000-12,000 cm-1 spectral range. Calibration and validation sets were designed for the conception and evaluation of the method adequacy in the range of moisture content 10 to 15 percent (w.b) of the pasta. The prediction models based on partial least squares (PLS) regression, were developed in the near-infrared. Conventional criteria such as the R2, the root mean square errors of cross validation (RMSECV), root mean square errors of estimation (RMSEE) as well as the number of PLS factors were considered for the selection of three pre-processing (vector normalization, minimum-maximum normalization and multiplicative scatter correction) methods. Spectra of pasta sample were treated with different mathematic pre-treatments before being used to build models between the spectral information and moisture content. The moisture content in pasta predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (R2 = 0.983), which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of moisture content in pasta. The best calibration model was developed with min-max normalization (MMN) spectral pre-processing (R2 = 0.9775). The MMN pre-processing method was found most suitable and the maximum coefficient of determination (R2) value of 0.9875 was obtained for the calibration model developed.Keywords: FT-NIR, pasta, moisture determination, food engineering
Procedia PDF Downloads 2581998 A Review of Tribological Excellence of Bronze Alloys
Authors: Ram Dhani chauhan
Abstract:
Tribology is a term that was developed from the Greek words ‘tribos’ (rubbing) and ‘logy’ (knowledge). In other words, a study of wear, friction and lubrication of material is known as Tribology. In groundwater irrigation, the life of submersible pump components like impeller, bush and wear ring will depend upon the wear and corrosion resistance of casted material. Leaded tin bronze (LTB) is an easily castable material with good mechanical properties and tribological behaviour and is utilised in submersible pumps at large. It has been investigated that, as Sn content increases from 4-8 wt. % in LTB alloys, the hardness of the alloys increases and the wear rate decreases. Similarly, a composite of copper with 3% wt. Graphite (threshold limit of mix) has a lower COF (coefficient of friction) and the lowest wear rate. In LTB alloys, in the initial low-speed range, wear increases and in the higher range, it was found that wear rate decreases.Keywords: coefficent of friction, coefficient of wear, tribology, leaded tin bronze
Procedia PDF Downloads 191997 Electromechanical Reliability of ITO/Ag/ITO Multilayer Coated Pet Substrate for Optoelectronic Application
Authors: D. W. Mohammed, J. Bowen, S. N. Kukureka
Abstract:
Successful design and fabrication of flexible devices for electrode components requires a low sheet resistance, high optical transmittance, high mechanical reliability. Indium tin oxide (ITO) film is currently the predominant transparent conductive oxide (TCO) film in potential applications such as flexible organic light- emitting diodes, flat-panel displays, solar cells, and thin film transistors (TFTs). However ITO films are too brittle and their resistivity is rather high in some cases compared with ITO/Ag/ ITO, and they cannot completely meet flexible optoelectronic device requirements. Therefore, in this work the mechanical properties of ITO /Ag/ITO multilayer film that deposited on Polyethylene terephthalate (PET) compared with the single layered ITO sample were investigated using bending fatigue, twisting fatigue and thermal cycling experiments. The electrical resistance was monitored during the application of mechanical and thermal loads to see the pattern of relationship between the load and the electrical continuity as a consequent of failure. Scanning electron microscopy and atomic force microscopy were used to provide surface characterization of the mechanically-tested samples. The effective embedment of the Ag layer between upper and lower ITO films led to metallic conductivity and superior flexibility to the single ITO electrode, due to the high failure strain of the ductile Ag layer. These results indicate that flexible ITO/Ag/ITO multilayer electrodes are a promising candidate for use as transparent conductor in flexible displays. They provided significantly reduced sheet resistance compared to ITO, and improved bending and twisting properties both as a function of radius, angle and thermal cycling.Keywords: ITO/Ag/ITO multilayer, failure strain, mechanical properties, PET
Procedia PDF Downloads 2961996 Improvement of Chemical Demulsifier Performance Using Silica Nanoparticles
Authors: G. E. Gandomkar, E. Bekhradinassab, S. Sabbaghi, M. M. Zerafat
Abstract:
The reduction of water content in crude oil emulsions reduces pipeline corrosion potential and increases the productivity. Chemical emulsification of crude oil emulsions is one of the methods available to reduce the water content. Presence of demulsifier causes the film layer between the crude oil emulsion and water droplets to become unstable leading to the acceleration of water coalescence. This research has been performed to study the improvement performance of a chemical demulsifier by silica nanoparticles. The silica nano-particles have been synthesized by sol-gel technique and precipitation using poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) as surfactants and then nano-particles are added to the demulsifier. The silica nanoparticles were characterized by Particle Size Analyzer (PSA) and SEM. Upon the addition of nanoparticles, bottle tests have been carried out to separate and measure the water content. The results show that silica nano-particles increase the demulsifier efficiency by about 40%.Keywords: demulsifier, dehydration, silicon dioxide, nanoparticle
Procedia PDF Downloads 4021995 Adhesion Performance According to Lateral Reinforcement Method of Textile
Authors: Jungbhin You, Taekyun Kim, Jongho Park, Sungnam Hong, Sun-Kyu Park
Abstract:
Reinforced concrete has been mainly used in construction field because of excellent durability. However, it may lead to reduction of durability and safety due to corrosion of reinforcement steels according to damage of concrete surface. Recently, research of textile is ongoing to complement weakness of reinforced concrete. In previous research, only experiment of longitudinal length were performed. Therefore, in order to investigate the adhesion performance according to the lattice shape and the embedded length, the pull-out test was performed on the roving with parameter of the number of lateral reinforcement, the lateral reinforcement length and the lateral reinforcement spacing. As a result, the number of lateral reinforcement and the lateral reinforcement length did not significantly affect the load variation depending on the adhesion performance, and only the load analysis results according to the reinforcement spacing are affected.Keywords: adhesion performance, lateral reinforcement, pull-out test, textile
Procedia PDF Downloads 3581994 Lateral-Torsional Buckling of Steel Girder Systems Braced by Solid Web Crossbeams
Authors: Ruoyang Tang, Jianguo Nie
Abstract:
Lateral-torsional bracing members are critical to the stability of girder systems during the construction phase of steel-concrete composite bridges, and the interaction effect of multiple girders plays an essential role in the determination of buckling load. In this paper, an investigation is conducted on the lateral-torsional buckling behavior of the steel girder system which is composed of three or four I-shaped girders and braced by solid web crossbeams. The buckling load for such girder system is comprehensively analyzed and an analytical solution is developed for uniform pressure loading conditions. Furthermore, post-buckling analysis including initial geometric imperfections is performed and parametric studies in terms of bracing density, stiffness ratio as well as the number and spacing of girders are presented in order to find the optimal bracing plans for an arbitrary girder layout. The theoretical solution of critical load on account of local buckling mode shows good agreement with the numerical results in eigenvalue analysis. In addition, parametric analysis results show that both bracing density and stiffness ratio have a significant impact on the initial stiffness, global stability and failure mode of such girder system. Taking into consideration the effect of initial geometric imperfections, an increase in bracing density between adjacent girders can effectively improve the bearing capacity of the structure, and higher beam-girder stiffness ratio can result in a more ductile failure mode.Keywords: bracing member, construction stage, lateral-torsional buckling, steel girder system
Procedia PDF Downloads 1241993 Predicting Growth of Eucalyptus Marginata in a Mediterranean Climate Using an Individual-Based Modelling Approach
Authors: S.K. Bhandari, E. Veneklaas, L. McCaw, R. Mazanec, K. Whitford, M. Renton
Abstract:
Eucalyptus marginata, E. diversicolor and Corymbia calophylla form widespread forests in south-west Western Australia (SWWA). These forests have economic and ecological importance, and therefore, tree growth and sustainable management are of high priority. This paper aimed to analyse and model the growth of these species at both stand and individual levels, but this presentation will focus on predicting the growth of E. Marginata at the individual tree level. More specifically, the study wanted to investigate how well individual E. marginata tree growth could be predicted by considering the diameter and height of the tree at the start of the growth period, and whether this prediction could be improved by also accounting for the competition from neighbouring trees in different ways. The study also wanted to investigate how many neighbouring trees or what neighbourhood distance needed to be considered when accounting for competition. To achieve this aim, the Pearson correlation coefficient was examined among competition indices (CIs), between CIs and dbh growth, and selected the competition index that can best predict the diameter growth of individual trees of E. marginata forest managed under different thinning regimes at Inglehope in SWWA. Furthermore, individual tree growth models were developed using simple linear regression, multiple linear regression, and linear mixed effect modelling approaches. Individual tree growth models were developed for thinned and unthinned stand separately. The developed models were validated using two approaches. In the first approach, models were validated using a subset of data that was not used in model fitting. In the second approach, the model of the one growth period was validated with the data of another growth period. Tree size (diameter and height) was a significant predictor of growth. This prediction was improved when the competition was included in the model. The fit statistic (coefficient of determination) of the model ranged from 0.31 to 0.68. The model with spatial competition indices validated as being more accurate than with non-spatial indices. The model prediction can be optimized if 10 to 15 competitors (by number) or competitors within ~10 m (by distance) from the base of the subject tree are included in the model, which can reduce the time and cost of collecting the information about the competitors. As competition from neighbours was a significant predictor with a negative effect on growth, it is recommended including neighbourhood competition when predicting growth and considering thinning treatments to minimize the effect of competition on growth. These model approaches are likely to be useful tools for the conservations and sustainable management of forests of E. marginata in SWWA. As a next step in optimizing the number and distance of competitors, further studies in larger size plots and with a larger number of plots than those used in the present study are recommended.Keywords: competition, growth, model, thinning
Procedia PDF Downloads 1281992 Preparation and Characterization of BaMnO₃ Application to the Photocatalytic Oxidation of Paracetamol under Solar Light
Authors: Dahmane Mohamed, Tab Asma, Trari Mohamed
Abstract:
BaMnO₃ nanoparticles were synthesized by a nitrate route. Its structure and physical properties were characterized by means of X-ray powder diffraction, radio crystallographic analysis, ultraviolet-visible absorption spectroscopy in diffuse reflectance mode, infrared spectroscopy, and electrochemical measurements. The optical study showed that barium manganese oxide presents a direct transition with band energy 2.13 eV. The electrochemical study allowed us to identify the redox peaks and the corrosion parameters. Capacitance measurement clearly showed n-type conductivity. The photodegradation of paracetamol by BaMnO₃ was followed by UV-visible spectrophotometry; the results were then confirmed by HPLC. BaMnO₃ has shown its photocatalytic efficiency in the photodegradation of 10 mg/L paracetamol under solar irradiation, with a yield of ≈ 88%. The kinetic study has shown that paracetamol degrades with first-order kinetics.Keywords: BaMnO₃, photodegradation, paracetamol, electrochemical measurements, solar light
Procedia PDF Downloads 1031991 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis
Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara
Abstract:
Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy
Procedia PDF Downloads 3511990 Nondestructive Monitoring of Atomic Reactions to Detect Precursors of Structural Failure
Authors: Volodymyr Rombakh
Abstract:
This article was written to substantiate the possibility of detecting the precursors of catastrophic destruction of a structure or device and stopping operation before it. Damage to solids results from breaking the bond between atoms, which requires energy. Modern theories of strength and fracture assume that such energy is due to stress. However, in a letter to W. Thomson (Lord Kelvin) dated December 18, 1856, J.C. Maxwell provided evidence that elastic energy cannot destroy solids. He proposed an equation for estimating a deformable body's energy, equal to the sum of two energies. Due to symmetrical compression, the first term does not change, but the second term is distortion without compression. Both types of energy are represented in the equation as a quadratic function of strain, but Maxwell repeatedly wrote that it is not stress but strain. Furthermore, he notes that the nature of the energy causing the distortion is unknown to him. An article devoted to theories of elasticity was published in 1850. Maxwell tried to express mechanical properties with the help of optics, which became possible only after the creation of quantum mechanics. However, Maxwell's work on elasticity is not cited in the theories of strength and fracture. The authors of these theories and their associates are still trying to describe the phenomena they observe based on classical mechanics. The study of Faraday's experiments, Maxwell's and Rutherford's ideas, made it possible to discover a previously unknown area of electromagnetic radiation. The properties of photons emitted in this reaction are fundamentally different from those of photons emitted in nuclear reactions and are caused by the transition of electrons in an atom. The photons released during all processes in the universe, including from plants and organs in natural conditions; their penetrating power in metal is millions of times greater than that of one of the gamma rays. However, they are not non-invasive. This apparent contradiction is because the chaotic motion of protons is accompanied by the chaotic radiation of photons in time and space. Such photons are not coherent. The energy of a solitary photon is insufficient to break the bond between atoms, one of the stages of which is ionization. The photographs registered the rail deformation by 113 cars, while the Gaiger Counter did not. The author's studies show that the cause of damage to a solid is the breakage of bonds between a finite number of atoms due to the stimulated emission of metastable atoms. The guarantee of the reliability of the structure is the ratio of the energy dissipation rate to the energy accumulation rate, but not the strength, which is not a physical parameter since it cannot be measured or calculated. The possibility of continuous control of this ratio is due to the spontaneous emission of photons by metastable atoms. The article presents calculation examples of the destruction of energy and photographs due to the action of photons emitted during the atomic-proton reaction.Keywords: atomic-proton reaction, precursors of man-made disasters, strain, stress
Procedia PDF Downloads 921989 Real-Time Radar Tracking Based on Nonlinear Kalman Filter
Authors: Milca F. Coelho, K. Bousson, Kawser Ahmed
Abstract:
To accurately track an aerospace vehicle in a time-critical situation and in a highly nonlinear environment, is one of the strongest interests within the aerospace community. The tracking is achieved by estimating accurately the state of a moving target, which is composed of a set of variables that can provide a complete status of the system at a given time. One of the main ingredients for a good estimation performance is the use of efficient estimation algorithms. A well-known framework is the Kalman filtering methods, designed for prediction and estimation problems. The success of the Kalman Filter (KF) in engineering applications is mostly due to the Extended Kalman Filter (EKF), which is based on local linearization. Besides its popularity, the EKF presents several limitations. To address these limitations and as a possible solution to tracking problems, this paper proposes the use of the Ensemble Kalman Filter (EnKF). Although the EnKF is being extensively used in the context of weather forecasting and it is being recognized for producing accurate and computationally effective estimation on systems with a very high dimension, it is almost unknown by the tracking community. The EnKF was initially proposed as an attempt to improve the error covariance calculation, which on the classic Kalman Filter is difficult to implement. Also, in the EnKF method the prediction and analysis error covariances have ensemble representations. These ensembles have sizes which limit the number of degrees of freedom, in a way that the filter error covariance calculations are a lot more practical for modest ensemble sizes. In this paper, a realistic simulation of a radar tracking was performed, where the EnKF was applied and compared with the Extended Kalman Filter. The results suggested that the EnKF is a promising tool for tracking applications, offering more advantages in terms of performance.Keywords: Kalman filter, nonlinear state estimation, optimal tracking, stochastic environment
Procedia PDF Downloads 1461988 Relocation of Plastic Hinge of Interior Beam Column Connections with Intermediate Bars in Reinforced Concrete and T-Section Steel Inserts in Precast Concrete Frames
Authors: P. Wongmatar, C. Hansapinyo, C. Buachart
Abstract:
Failure of typical seismic frames has been found by plastic hinge occurring on beams section near column faces. Past researches shown that the seismic capacity of the frames can be enhanced if the plastic hinges of the beams are shifted away from the column faces. This paper presents detailing of reinforcements in the interior beam–column connections aiming to relocate the plastic hinge of reinforced concrete and precast concrete frames. Four specimens were tested under quasi-static cyclic load including two monolithic specimens and two precast specimens. For one monolithic specimen, typical seismic reinforcement was provided and considered as a reference specimen named M1. The other reinforced concrete frame M2 contained additional intermediate steel in the connection area compared with the specimen M1. For the precast specimens, embedded T-section steels in joint were provided, with and without diagonal bars in the connection area for specimen P1 and P2, respectively. The test results indicated the ductile failure with beam flexural failure in monolithic specimen M1 and the intermediate steel increased strength and improved joint performance of specimen M2. For the precast specimens, cracks generated at the end of the steel inserts. However, slipping of reinforcing steel lapped in top of the beams was seen before yielding of the main bars leading to the brittle failure. The diagonal bars in precast specimens P2 improved the connection stiffness and the energy dissipation capacity.Keywords: relocation, plastic hinge, intermediate bar, T-section steel, precast concrete frame
Procedia PDF Downloads 2731987 Granule Morphology of Zirconia Powder with Solid Content on Two-Fluid Spray Drying
Authors: Hyeongdo Jeong, Jong Kook Lee
Abstract:
Granule morphology and microstructure were affected by slurry viscosity, chemical composition, particle size and spray drying process. In this study, we investigated granule morphology of zirconia powder with solid content on two-fluid spray drying. Zirconia granules after spray drying show sphere-like shapes with a diameter of 40-70 μm at low solid contents (30 or 40 wt%) and specific surface area of 5.1-5.6 m²/g. But a donut-like shape with a few cracks were observed on zirconia granules prepared from the slurry of high solid content (50 wt %), green compacts after cold isostatic pressing under the pressure of 200 MPa have the density of 2.1-2.2 g/cm³ and homogeneous fracture surface by complete destruction of granules. After the sintering at 1500 °C for 2 h, all specimens have relative density of 96.2-98.3 %. With increasing a solid content from 30 to 50 wt%, grain size increased from 0.3 to 0.6 μm, but relative density was inversely decreased from 98.3 to 96.2 %.Keywords: zirconia, solid content, granulation, spray drying
Procedia PDF Downloads 2161986 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record
Authors: Raghavi C. Janaswamy
Abstract:
In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.Keywords: electronic health record, graph neural network, heterogeneous data, prediction
Procedia PDF Downloads 861985 Effect of Welding Parameters on Mechanical and Microstructural Properties of Aluminum Alloys Produced by Friction Stir Welding
Authors: Khalil Aghapouramin
Abstract:
The aim of the present work is to investigate the mechanical and microstructural properties of dissimilar and similar aluminum alloys welded by Friction Stir Welding (FSW). The specimens investigated by applying different welding speed and rotary speed. Typically, mechanical properties of the joints performed through tensile test fatigue test and microhardness (HV) at room temperature. Fatigue test investigated by using electromechanical testing machine under constant loading control with similar since wave loading. The Maximum stress versus minimum got the range between 0.1 to 0.3 in the research. Based upon welding parameters by optical observation and scanning electron microscopy microstructural properties fulfilled with a cross section of welds, in addition, SEM observations were made of the fracture surfacesKeywords: friction stir welding, fatigue and tensile test, Al alloys, microstructural behavior
Procedia PDF Downloads 3401984 Influencing Factors and Mechanism of Patient Engagement in Healthcare: A Survey in China
Authors: Qing Wu, Xuchun Ye, Kirsten Corazzini
Abstract:
Objective: It is increasingly recognized that patients’ rational and meaningful engagement in healthcare could make important contributions to their health care and safety management. However, recent evidence indicated that patients' actual roles in healthcare didn’t match their desired roles, and many patients reported a less active role than desired, which suggested that patient engagement in healthcare may be influenced by various factors. This study aimed to analyze influencing factors on patient engagement and explore the influence mechanism, which will be expected to contribute to the strategy development of patient engagement in healthcare. Methods: On the basis of analyzing the literature and theory study, the research framework was developed. According to the research framework, a cross-sectional survey was employed using the behavior and willingness of patient engagement in healthcare questionnaire, Chinese version All Aspects of Health Literacy Scale, Facilitation of Patient Involvement Scale and Wake Forest Physician Trust Scale, and other influencing factor related scales. A convenience sample of 580 patients was recruited from 8 general hospitals in Shanghai, Jiangsu Province, and Zhejiang Province. Results: The results of the cross-sectional survey indicated that the mean score for the patient engagement behavior was (4.146 ± 0.496), and the mean score for the willingness was (4.387 ± 0.459). The level of patient engagement behavior was inferior to their willingness to be involved in healthcare (t = 14.928, P < 0.01). The influencing mechanism model of patient engagement in healthcare was constructed by the path analysis. The path analysis revealed that patient attitude toward engagement, patients’ perception of facilitation of patient engagement and health literacy played direct prediction on the patients’ willingness of engagement, and standard estimated values of path coefficient were 0.341, 0.199, 0.291, respectively. Patients’ trust in physician and the willingness of engagement played direct prediction on the patient engagement, and standard estimated values of path coefficient were 0.211, 0.641, respectively. Patient attitude toward engagement, patients’ perception of facilitation and health literacy played indirect prediction on patient engagement, and standard estimated values of path coefficient were 0.219, 0.128, 0.187, respectively. Conclusions: Patients engagement behavior did not match their willingness to be involved in healthcare. The influencing mechanism model of patient engagement in healthcare was constructed. Patient attitude toward engagement, patients’ perception of facilitation of engagement and health literacy posed indirect positive influence on patient engagement through the patients’ willingness of engagement. Patients’ trust in physician and the willingness of engagement had direct positive influence on the patient engagement. Patient attitude toward engagement, patients’ perception of physician facilitation of engagement and health literacy were the factors influencing the patients’ willingness of engagement. The results of this study provided valuable evidence on guiding the development of strategies for promoting patient rational and meaningful engagement in healthcare.Keywords: healthcare, patient engagement, influencing factor, the mechanism
Procedia PDF Downloads 1561983 Relevance of Reliability Approaches to Predict Mould Growth in Biobased Building Materials
Authors: Lucile Soudani, Hervé Illy, Rémi Bouchié
Abstract:
Mould growth in living environments has been widely reported for decades all throughout the world. A higher level of moisture in housings can lead to building degradation, chemical component emissions from construction materials as well as enhancing mould growth within the envelope elements or on the internal surfaces. Moreover, a significant number of studies have highlighted the link between mould presence and the prevalence of respiratory diseases. In recent years, the proportion of biobased materials used in construction has been increasing, as seen as an effective lever to reduce the environmental impact of the building sector. Besides, bio-based materials are also hygroscopic materials: when in contact with the wet air of a surrounding environment, their porous structures enable a better capture of water molecules, thus providing a more suitable background for mould growth. Many studies have been conducted to develop reliable models to be able to predict mould appearance, growth, and decay over many building materials and external exposures. Some of them require information about temperature and/or relative humidity, exposure times, material sensitivities, etc. Nevertheless, several studies have highlighted a large disparity between predictions and actual mould growth in experimental settings as well as in occupied buildings. The difficulty of considering the influence of all parameters appears to be the most challenging issue. As many complex phenomena take place simultaneously, a preliminary study has been carried out to evaluate the feasibility to sadopt a reliability approach rather than a deterministic approach. Both epistemic and random uncertainties were identified specifically for the prediction of mould appearance and growth. Several studies published in the literature were selected and analysed, from the agri-food or automotive sectors, as the deployed methodology appeared promising.Keywords: bio-based materials, mould growth, numerical prediction, reliability approach
Procedia PDF Downloads 461982 Review of Friction Stir Welding of Dissimilar 5000 and 6000 Series Aluminum Alloy Plates
Authors: K. Subbaiah
Abstract:
Friction stir welding is a solid state welding process. Friction stir welding process eliminates the defects found in fusion welding processes. It is environmentally friend process. 5000 and 6000 series aluminum alloys are widely used in the transportation industries. The Al-Mg-Mn (5000) and Al-Mg-Si (6000) alloys are preferably offer best combination of use in Marine construction. The medium strength and high corrosion resistant 5000 series alloys are the aluminum alloys, which are found maximum utility in the world. In this review, the tool pin profile, process parameters such as hardness, yield strength and tensile strength, and microstructural evolution of friction stir welding of Al-Mg alloys 5000 Series and 6000 series have been discussed.Keywords: 5000 series and 6000 series Al alloys, friction stir welding, tool pin profile, microstructure and properties
Procedia PDF Downloads 4661981 Preparation and Characterization of Poly (ε-caprolactone) Loaded with Layered Double Hydroxide Nanohybrid Intercalated with Alendronate for Osteoporosis Treatment
Authors: Seyedeh Faranak Baniahmad, Soroor Yousefi
Abstract:
Osteoporosis is a bone disease which increases the bone fracture risk, reduces the bone mineral density (BMD) and alters the amount and variety of proteins in bones. Antiresorptive therapy is one the most popular Osteoporosis treatment methods. In this method the bisphosphonates, hormones, calcitonin or the selective estrogen receptor modulators is replaced. In order to reduce undesirable effects and to increase the bioavailability of drug agents, the controlled drug delivery systems have been utilized. In current study, the controlled release of Alendronate from LDH-PCL with (0, 5, 10, 15 % wt. of LDH) was investigated. The results showed that the release of alendronate from the lamellar LDH incorporated into the PCL matrix is much slower than the release of alendronate from the PCL. Therefore such systems are very promising, in which the antiresorptive drug has to remain in the matrix for longer time and can be released in controlled manner.Keywords: osteoporosis, alendronate, poly (ε–caprolactone), layered double hydroxide
Procedia PDF Downloads 3941980 Study of Low Loading Heavier Phase in Horizontal Oil-Water Liquid-Liquid Pipe Flow
Authors: Aminu J. A. Koguna, Aliyu M. Aliyu, Olawale T. Fajemidupe, Yahaya D. Baba
Abstract:
Production fluids are transported from the platform to tankers or process facilities through transfer pipelines. Water being one of the heavier phases tends to settle at the bottom of pipelines especially at low flow velocities and this has adverse consequences for pipeline integrity. On restart after a shutdown this could result in corrosion and issues for process equipment, thus the need to have the heavier liquid dispersed into the flowing lighter fluid. This study looked at the flow regime of low water cut and low flow velocity oil and water flow using conductive film thickness probes in a large diameter 4-inch pipe to obtain oil and water interface height and the interface structural velocity. A wide range of 0.1–1.0 m/s oil and water mixture velocities was investigated for 0.5–5% water cut. Two fluid model predictions were used to compare with the experimental results.Keywords: interface height, liquid, velocity, flow regime, dispersed, water cut
Procedia PDF Downloads 3911979 Multi-Model Super Ensemble Based Advanced Approaches for Monsoon Rainfall Prediction
Authors: Swati Bhomia, C. M. Kishtawal, Neeru Jaiswal
Abstract:
Traditionally, monsoon forecasts have encountered many difficulties that stem from numerous issues such as lack of adequate upper air observations, mesoscale nature of convection, proper resolution, radiative interactions, planetary boundary layer physics, mesoscale air-sea fluxes, representation of orography, etc. Uncertainties in any of these areas lead to large systematic errors. Global circulation models (GCMs), which are developed independently at different institutes, each of which carries somewhat different representation of the above processes, can be combined to reduce the collective local biases in space, time, and for different variables from different models. This is the basic concept behind the multi-model superensemble and comprises of a training and a forecast phase. The training phase learns from the recent past performances of models and is used to determine statistical weights from a least square minimization via a simple multiple regression. These weights are then used in the forecast phase. The superensemble forecasts carry the highest skill compared to simple ensemble mean, bias corrected ensemble mean and the best model out of the participating member models. This approach is a powerful post-processing method for the estimation of weather forecast parameters reducing the direct model output errors. Although it can be applied successfully to the continuous parameters like temperature, humidity, wind speed, mean sea level pressure etc., in this paper, this approach is applied to rainfall, a parameter quite difficult to handle with standard post-processing methods, due to its high temporal and spatial variability. The present study aims at the development of advanced superensemble schemes comprising of 1-5 day daily precipitation forecasts from five state-of-the-art global circulation models (GCMs), i.e., European Centre for Medium Range Weather Forecasts (Europe), National Center for Environmental Prediction (USA), China Meteorological Administration (China), Canadian Meteorological Centre (Canada) and U.K. Meteorological Office (U.K.) obtained from THORPEX Interactive Grand Global Ensemble (TIGGE), which is one of the most complete data set available. The novel approaches include the dynamical model selection approach in which the selection of the superior models from the participating member models at each grid and for each forecast step in the training period is carried out. Multi-model superensemble based on the training using similar conditions is also discussed in the present study, which is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional multi-model ensemble (MME) approaches. Further, a variety of methods that incorporate a 'neighborhood' around each grid point which is available in literature to allow for spatial error or uncertainty, have also been experimented with the above mentioned approaches. The comparison of these schemes with respect to the observations verifies that the newly developed approaches provide more unified and skillful prediction of the summer monsoon (viz. June to September) rainfall compared to the conventional multi-model approach and the member models.Keywords: multi-model superensemble, dynamical model selection, similarity criteria, neighborhood technique, rainfall prediction
Procedia PDF Downloads 1391978 Single Stage “Fix and Flap” Orthoplastic Approach to Severe Open Tibial Fractures: A Systematic Review of the Outcomes
Authors: Taylor Harris
Abstract:
Gustilo-anderson grade III tibial fractures are exquisitely difficult injuries to manage as they require extensive soft tissue repair in addition to fracture fixation. These injuries are best managed collaboratively by Orthopedic and Plastic surgeons. While utilizing an Orthoplastics approach has decreased the rates of adverse outcomes in these injuries, there is a large amount of variation in exactly how an Orthoplastics team approaches complex cases such as these. It is sometimes recommended that definitive bone fixation and soft tissue coverage be completed simultaneously in a single-stage manner, but there is a paucity of large scale studies to provide evidence to support this recommendation. It is the aim of this study to report the outcomes of a single-stage "fix-and-flap" approach through a systematic review of the available literature. Hopefully, this better informs an evidence-based Orthoplastics approach to managing open tibial fractures. Systematic review of the literature was performed. Medline and Google Scholar were used and all studies published since 2000, in English were included. 103 studies were initially evaluated for inclusion. Reference lists of all included studies were also examined for potentially eligible studies. Gustilo grade III tibial shaft fractures in adults that were managed with a single-stage Orthoplastics approach were identified and evaluated with regard to outcomes of interest. Exclusion criteria included studies with patients <16 years old, case studies, systemic reviews, meta-analyses. Primary outcomes of interest were the rates of deep infections and rates of limb salvage. Secondary outcomes of interest included time to bone union, rates of non-union, and rates of re-operation. 15 studies were eligible. 11 of these studies reported rates of deep infection as an outcome, with rates ranging from 0.98%-20%. The pooled rate between studies was 7.34%. 7 studies reported rates of limb salvage with a range of 96.25%-100%. The pooled rate of the associated studies was 97.8%. 6 reported rates of non-union with a range of 0%-14%, a pooled rate of 6.6%. 6 reported time to bone union with a range of 24 to 40.3 weeks and a pooled average time of 34.2 weeks, and 4 reported rates of reoperation ranging from 7%-55%, with a pooled rate of 31.1%. A few studies that compared a single stage to a multi stage approach side-by-side unanimously favored the single stage approach. Outcomes of Gustilo grade III open tibial fractures utilizing an Orthoplastics approach that is specifically done in a single-stage produce low rates of adverse outcomes. Large scale studies of Orthoplastic collaboration that were not completed in strictly a single stage, or were completed in multiple stages, have not reported as favorable outcomes. We recommend that not only should Orthopedic surgeons and Plastic surgeons collaborate in the management of severe open tibial fracture, but they should plan to undergo definitive fixation and coverage in a single-stage for improved outcomes.Keywords: orthoplastic, gustilo grade iii, single-stage, trauma, systematic review
Procedia PDF Downloads 861977 Experimental Characterization of the Shear Behavior of Fiber Reinforced Concrete Beam Elements in Chips
Authors: Djamal Atlaoui, Youcef Bouafia
Abstract:
This work deals with the experimental study of the mechanical behavior, by shear tests (fracture shear), elements of concrete beams reinforced with fibers in chips. These fibers come from the machining waste of the steel parts. The shear tests are carried out on prismatic specimens of dimensions 10 x 20 x 120 cm3. The fibers are characterized by mechanical resistance and tearing. The optimal composition of the concrete was determined by the workability test. Two fiber contents are selected for this study (W = 0.6% and W = 0.8%) and a BT control concrete (W = 0%) of the same composition as the matrix is developed to serve as a reference with a sand-to-gravel ratio (S/G) of concrete matrix equal to 1. The comparison of the different results obtained shows that the chips fibers confer a significant ductility to the material after cracking of the concrete. Also, the fibers used limit diagonal cracks in shear and improve strength and rigidity.Keywords: characterization, chips fibers, cracking mode, ductility, undulation, shear
Procedia PDF Downloads 133