Search results for: CD4+ T cells
1675 Effects of Kolavironon Liver Oxidative Stress and Beta-Cell Damage in Streptozotocin-Induced Diabetic Rats
Authors: Omolola R. Ayepola, Nicole L. Brooks, Oluwafemi O. Oguntibeju
Abstract:
The liver plays an important role in the regulation of blood glucose and is a target organ of hyperglycaemia. Hyperglycemia plays a crucial role in the onset of various liver diseases and may culminate into hepatopathy if untreated. Alteration in antioxidant defense and increase in oxidative stress that results in tissue injury is characteristic of diabetes. We evaluated the protective effects of kolaviron-a biflavonoid complex, on hepatic antioxidants, lipid peroxidation and apoptosis in the liver of diabetic rats. To induce type I diabetes, rats were injected with streptozotocin intraperitoneally at a single dose of 50 mg/kg. Oral treatment of diabetic rats with kolaviron (100 mg/kg) started on the 6th day after diabetes induction and continued for 6 weeks (5 times weekly). Diabetic rats exhibited a significant increase in the peroxidation of hepatic lipids as observed from the elevated level of malondialdehyde (MDA) estimated by High-Performance Liquid Chromatography. In addition, Oxygen Radical Absorbance Capacity (ORAC), ratio of reduced to oxidized glutathione (GSH/GSSG) and catalase (CAT) activity was decreased in the liver of diabetic rats. TUNEL assay revealed increased apoptotic cell death in the liver of diabetic rats. Examination of Pancreatic beta-cells by immunohistochemical methods revealed beta cell degeneration and reduction in beta cell/ islet area in the diabetic controls. Kolaviron-treatment increased the area of insulin immunoreactive beta-cells significantly. Kolaviron attenuated lipid peroxidation and apoptosis in the liver of diabetic rats, increased CAT activity GSH levels and the resultant GSH: GSSG. The ORAC of kolaviron-treated diabetic liver was restored to near-normal values. Kolaviron protects the liver against oxidative and apoptotic damage induced by hyperglycemia. The antidiabetic effect of kolaviron may also be related to its beneficial effects on beta-cell function.Keywords: diabetes mellitus, kolaviron, oxidative stress, liver, apoptosis
Procedia PDF Downloads 3851674 Role of Autophagic Lysosome Reformation for Cell Viability in an in vitro Infection Model
Authors: Muhammad Awais Afzal, Lorena Tuchscherr De Hauschopp, Christian Hübner
Abstract:
Introduction: Autophagy is an evolutionarily conserved lysosome-dependent degradation pathway, which can be induced by extrinsic and intrinsic stressors in living systems to adapt to fluctuating environmental conditions. In the context of inflammatory stress, autophagy contributes to the elimination of invading pathogens, the regulation of innate and adaptive immune mechanisms, and regulation of inflammasome activity as well as tissue damage repair. Lysosomes can be recycled from autolysosomes by the process of autophagic lysosome reformation (ALR), which depends on the presence of several proteins including Spatacsin. Thus ALR contributes to the replenishment of lysosomes that are available for fusion with autophagosomes in situations of increased autophagic turnover, e.g., during bacterial infections, inflammatory stress or sepsis. Objectives: We aimed to assess whether ALR plays a role for cell survival in an in-vitro bacterial infection model. Methods: Mouse embryonic fibroblasts (MEFs) were isolated from wild-type mice and Spatacsin (Spg11-/-) knockout mice. Wild-type MEFs and Spg11-/- MEFs were infected with Staphylococcus aureus (multiplication of infection (MOI) used was 10). After 8 and 16 hours of infection, cell viability was assessed on BD flow cytometer through propidium iodide intake. Bacterial intake by cells was also calculated by plating cell lysates on blood agar plates. Results: in-vitro infection of MEFs with Staphylococcus aureus showed a marked decrease of cell viability in ALR deficient Spatacsin knockout (Spg11-/-) MEFs after 16 hours of infection as compared to wild-type MEFs (n=3 independent experiments; p < 0.0001) although no difference was observed for bacterial intake by both genotypes. Conclusion: Suggesting that ALR is important for the defense of invading pathogens e.g. S. aureus, we observed a marked increase of cell death in an in-vitro infection model in cells with compromised ALR.Keywords: autophagy, autophagic lysosome reformation, bacterial infections, Staphylococcus aureus
Procedia PDF Downloads 1441673 Immune Modulation and Cytomegalovirus Reactivation in Sepsis-Induced Immunosuppression
Authors: G. Lambe, D. Mansukhani, A. Shetty, S. Khodaiji, C. Rodrigues, F. Kapadia
Abstract:
Introduction: Sepsis is known to cause impairment of both innate and adaptive immunity and involves an early uncontrolled inflammatory response, followed by a protracting immunosuppression phase, which includes decreased expression of cell receptors, T cell anergy and exhaustion, impaired cytokine production, which may cause high risk for secondary infections due to reduced response to antigens. Although human cytomegalovirus (CMV) is widely recognized as a serious viral pathogen in sepsis and immunocompromised patients, the incidence of CMV reactivation in patients with sepsis lacking strong evidence of immunosuppression is not well defined. Therefore, it is important to determine an association between CMV reactivation and sepsis-induced immunosuppression. Aim: To determine the association between incidence of CMV reactivation and immune modulation in sepsis-induced immunosuppression with time. Material and Methods: Ten CMV-seropositive adult patients with severe sepsis were included in this study. Blood samples were collected on Day 0, and further weekly up to 21 days. CMV load was quantified by real-time PCR using plasma. The expression of immunosuppression markers, namely, HLA-DR, PD-1, and regulatory T cells, were determined by flow cytometry using whole blood. Results: At Day 0, no CMV reactivation was observed in 6/10 patients. In these patients, the median length for reactivation was 14 days (range, 7-14 days). The remaining four patients, at Day 0, had a mean viral load of 1802+2599 copies/ml, which increased with time. At Day 21, the mean viral load for all 10 patients was 60949+179700 copies/ml, indicating that viremia increased with the length of stay in the hospital. HLA-DR expression on monocytes significantly increased from Day 0 to Day 7 (p = 0.001), following which no significant change was observed until Day 21, for all patients except 3. In these three patients, HLA-DR expression on monocytes showed a decrease at elevated viral load (>5000 copies/ml), indicating immune suppression. However, the other markers, PD-1 and regulatory T cells, did not show any significant changes. Conclusion: These preliminary findings suggest that CMV reactivation can occur in patients with severe sepsis. In fact, the viral load continued to increase with the length of stay in the hospital. Immune suppression, indicated by decreased expression of HLA-DR alone, was observed in three patients with elevated viral load.Keywords: CMV reactivation, immune suppression, sepsis immune modulation, CMV viral load
Procedia PDF Downloads 1501672 Pt Decorated Functionalized Acetylene Black as Efficient Cathode Material for Li Air Battery and Fuel Cell Applications
Authors: Rajashekar Badam, Vedarajan Raman, Noriyoshi Matsumi
Abstract:
Efficiency of energy converting and storage systems like fuel cells and Li-Air battery principally depended on oxygen reduction reaction (ORR) which occurs at cathode. As the kinetics of the ORR is very slow, it becomes the rate determining step. Exploring carbon substrates for enhancing the dispersion and activity of the metal catalyst and commercially viable simple preparation method is a very crucial area of research in the field of energy materials. Hence, many researchers made large number of carbon-based ORR materials today. But, there are hardly few studies on the effect of interaction between Pt-carbon and carbon-electrolyte on activity. In this work, we have prepared functionalized carbon-based Pt catalyst (Pt-FAB) with enhanced interfacial properties that lead to efficient ORR catalysis. The present work deals with a single-pot method to exfoliate and functionalized acetylene black with enhanced interaction with Pt as well as electrolyte. Acetylene black was functionalized and exfoliated using a facile single pot acid treatment method. The resulted FAB was further decorated with Pt-nano particles (Pt-np). The TEM images of Pt-FAB with uniformly decorated Pt-np of ~3 nm. Further, XPS studies of Pt 4f peak revealed that Pt0 peak was shifted by 0.4 eV in Pt-FAB compared to binding energy of typical Pt⁰ found in Pt/C. The shift can be ascribed to the modulation of electronic state and strong electronic interaction of Pt with carbon. Modulated electronic structure of Pt and strong electronic interaction of Pt with FAB enhances the catalytic activity and durability respectively. To understand the electrode electrolyte interface, electrochemical impedance spectroscopy was carried out. These measurements revealed that the charge transfer resistance of electrode to electrolyte for Pt-FAB is 10 times smaller than that of conventional Pt/C. The interaction with electrolyte helps reduce the interface boundaries, which in turn affects the overall catalytic performance of the electrode. Cyclic voltammetric measurements in 0.1M HClO₄ aq. at a potential scan rate of 50 mVs-1 was employed to evaluate electrochemical surface area (ECSA) of Pt. ECSA of Pt-FAB was found to be as high as 67.2 m²g⁻¹. The three-electrode system showed very high ORR catalytic activity. Mass activity at 0.9 V vs. RHE showed 460 A/g which is much higher than the DOE target values for the year 2020. Further, it showed enhanced performance by showing 723 mW/cm² of highest power density and 1006 mA/cm² of current density at 0.6 V in fuel cell single cell type configuration and 1030 mAhg⁻¹ of rechargeable capacity in Li air battery application. The higher catalytic activity can be ascribed to the improved interaction of FAB with Pt and electrolyte. The aforementioned results evince that Pt-FAB will be a promising cathode material for efficient ORR with significant cyclability for its application in fuel cells and Li-Air batteries. In conclusion, a disordered material was prepared from AB and was systematically characterized. The extremely high ORR activity and ease of preparation make it competent for replacing commercially available ORR materials.Keywords: functionalized acetylene black, oxygen reduction reaction, fuel cells, Functionalized battery
Procedia PDF Downloads 1081671 Size and Content of the Doped Silver Affected the Pulmonary Toxicity of Silver-Doped Nano-Titanium Dioxide Photocatalysts and the Optimization of These Two Parameters
Authors: Xiaoquan Huang, Congcong Li, Tingting Wei, Changcun Bai, Na Liu, Meng Tang
Abstract:
Silver is often doped on nano-titanium dioxide photocatalysts (Ag-TiO₂) by photodeposition method to improve their utilization of visible-light while increasing the toxicity of TiO₂。 However, it is not known what factors influence this toxicity and how to reduce toxicity while maintaining the maximum catalytic activity. In this study, Ag-TiO₂ photocatalysts were synthesized by the photodeposition method with different silver content (AgC) and photodeposition time (PDT). Characterization and catalytic experiments demonstrated that silver was well assembled on TiO₂ with excellent visible-light catalytic activity, and the size of silver increased with PDT. In vitro, the cell viability of lung epithelial cells A549 and BEAS-2B showed that the higher content and smaller size of silver doping caused higher toxicity. In vivo, Ag-TiO₂ catalysts with lower AgC or larger silver particle size obviously caused less pulmonary pro-inflammatory and pro-fibrosis responses. However, the visible light catalytic activity decreased with the increase in silver size. Therefore, in order to optimize the Ag-TiO₂ photocatalyst with the lowest pulmonary toxicity and highest catalytic performance, response surface methodology (RSM) was further performed to optimize the two independent variables of AgC and PDT. Visible-light catalytic activity was evaluated by the degradation rate of Rhodamine B, the antibacterial property was evaluated by killing log value for Escherichia coli, and cytotoxicity was evaluated by IC50 to BEAS-2B cells. As a result, the RSM model showed that AgC and PDT exhibited an interaction effect on catalytic activity in the quadratic model. AgC was positively correlated with antibacterial activity. Cytotoxicity was proportional to AgC while inversely proportional to PDT. Finally, the optimization values were AgC 3.08 w/w% and PDT 28 min. Under this optimal condition, the relatively high silver proportion ensured the visible-light catalytic and antibacterial activity, while the longer PDT effectively reduced the cytotoxicity. This study is of significance for the safe and efficient application of silver-doped TiO₂ photocatalysts.Keywords: Ag-doped TiO₂, cytotoxicity, inflammtion, fibrosis, response surface methodology
Procedia PDF Downloads 691670 Synthesis and Characterization of Sulfonated Aromatic Hydrocarbon Polymers Containing Trifluoromethylphenyl Side Chain for Proton Exchange Membrane Fuel Cell
Authors: Yi-Chiang Huang, Hsu-Feng Lee, Yu-Chao Tseng, Wen-Yao Huang
Abstract:
Proton exchange membranes as a key component in fuel cells have been widely studying over the past few decades. As proton exchange, membranes should have some main characteristics, such as good mechanical properties, low oxidative stability and high proton conductivity. In this work, trifluoromethyl groups had been introduced on polymer backbone and phenyl side chain which can provide densely located sulfonic acid group substitution and also promotes solubility, thermal and oxidative stability. Herein, a series of novel sulfonated aromatic hydrocarbon polyelectrolytes was synthesized by polycondensation of 4,4''''-difluoro-3,3''''- bis(trifluoromethyl)-2'',3''-bis(3-(trifluoromethyl)phenyl)-1,1':4',1'':4'',1''':4''',1''''-quinquephenyl with 2'',3''',5'',6''-tetraphenyl-[1,1':4',1'': 4'',1''':4''',1''''-quinquephenyl]-4,4''''-diol and post-sulfonated was through chlorosulfonic acid to given sulfonated polymers (SFC3-X) possessing ion exchange capacities ranging from 1.93, 1.91 and 2.53 mmol/g. ¹H NMR and FT-IR spectroscopy were applied to confirm the structure and composition of sulfonated polymers. The membranes exhibited considerably dimension stability (10-27.8% in length change; 24-56.5% in thickness change) and excellent oxidative stability (weight remain higher than 97%). The mechanical properties of membranes demonstrated good tensile strength on account of the high rigidity multi-phenylated backbone. Young's modulus were ranged 0.65-0.77GPa which is much larger than that of Nafion 211 (0.10GPa). Proton conductivities of membranes ranged from 130 to 240 mS/cm at 80 °C under fully humidified which were comparable or higher than that of Nafion 211 (150 mS/cm). The morphology of membranes was investigated by transmission electron microscopy which demonstrated a clear hydrophilic/hydrophobic phase separation with spherical ionic clusters in the size range of 5-20 nm. The SFC3-1.97 single fuel cell performance demonstrates the maximum power density at 1.08W/cm², and Nafion 211 was 1.24W/cm² as a reference in this work. The result indicated that SFC3-X are good candidates for proton exchange membranes in fuel cell applications. Fuel cell of other membranes is under testing.Keywords: fuel cells, polyelectrolyte, proton exchange membrane, sulfonated polymers
Procedia PDF Downloads 4531669 PTOP Expression Correlates with Telomerase Activity and Grades of Malignancy in Human Glioma Tissues
Authors: F. Polito, M. Cucinotta, A. Conti, C. Lo Giudice, C. Tomasello, F. Angileri, D. La Torre, M. Aguennouz
Abstract:
Glioblastoma multiforme (GBM) is the most aggressive form of brain tumors, with an extremely poor prognosis. Telomeres lenght is associated with tumor progression in several type of human cancers and telomere elongation is a common molecular feature of advanced malignancies. Among the telomeric shelterin proteins PTOP is required for telomeric protein complex assembly, telomerase recruitment and activity, and telomere length regulation through a PTOP-telomerase interaction. Previous studies suggest that PTOP upregulation is involved in radioresistance and telomere lengthening in colorectal cancer cells. Moreover, in human osteosarcoma cells PTOP deletion led to telomere shortening, increased apoptosis and radiation sensitivity enhancement. However, to date, little is known about the role of PTOP in progression of glioma cancers. In light of this background aim of the study is to investigate the expression of PTOP in different grades of human glioma and its correlation with the pathological grade of gliomas, grades of malignancy, proliferative activity and apoptosis. Fifteen Low Grade Astrocytomas (LGA), 18 Anaplastic Astrocytomas (AA) and 26 Glioblastoma Multiforme (GBM) samples were analyzed. Three samples of normal brain tissue (NBT) were used as controls. The expression levels of PTOP, h-TERT, BIRC1 and cyclin D1 were determined by real time PCR and/or western blot. Results obtained shows that PTOP expression in glioma tissues is tightly correlated with clinical grade ( p < 0.01 ). No correlation was found between PTOP expression and other clinicopathologic parameters. The expression of PTOP was positively correlated with the expression of hTERT and TERF1. Furthermore PTOP positively correlates with cyclin D1 and negatively correlates with the expression of BIRC1. Our findings indicate that PTOP might play key role in the progression of glioma regulating telomerase activity and likely through regulation of cell cycle and apoptosis. In conclusion results obtained prompted us to speculate that PTOP might represents a potential molecular bio marker and a therapeutic target for the treatment of glioblastoma tumors.Keywords: glioblastoma, PTOP, telomere, brain tumors
Procedia PDF Downloads 3461668 Optimization of Heterojunction Solar Cell Using AMPS-1D
Authors: Benmoussa Dennai, H. Benslimane, A. Helmaoui
Abstract:
Photo voltaic conversion is the direct conversion of electromagnetic energy into electrical energy continuously. This electromagnetic energy is the most solar radiation. In this work we performed a computer modelling using AMPS 1D optimization of hetero-junction solar cells GaInP/GaAs configuration for p/ n. We studied the influence of the thickness the base layer in the cell offers on the open circuit voltage, the short circuit current and efficiency.Keywords: optimization, photovoltaic cell, GaInP / GaAs AMPS-1D, hetetro-junction
Procedia PDF Downloads 4171667 Rice Mycotoxins Fate During In vitro Digestion and Intestinal Absorption: the Effect of Individual and Combination Exposures
Authors: Carolina S. Monteiro, Eugénia Pinto, Miguel A. Faria, Sara C. Cunha
Abstract:
About half of the world's population eats rice daily, making it the primary food source for billions of people. Besides its nutrition potential, rice can be a significant route of exposure to many contaminants. Mycotoxins are an example of such contaminants that can be present in rice. Among them, ochratoxin (OTA), citrinin (CIT), and zearalenone (ZEN) are frequently reported in rice. During digestion, only a fraction of mycotoxins from food can be absorbed (bioaccessible fraction), influencing their ability to cause toxic effects. Insufficient knowledge of the bioavailability of mycotoxins, alone and in combination, may hinder an accurate risk assessment of contaminants ingested by humans. In this context, two different rice (Oryza sativa) varieties, Carolino white and Carolino brown, both with and without turmeric, were boiled and individually spiked with OTA, CIT, and ZEN plus with its combination. Subsequently, samples were submitted to the INFOGEST harmonized in vitro digestion protocol to evaluate the bioaccessibility of mycotoxins. Afterward, the in vitro intestinal transport of the mycotoxins, both alone and in combination, was evaluated in digests of Carolino white rice with and without turmeric. Assays were performed with a monolayers of of Caco-2 and HT-29 cells. Bioaccessibility of OTA and ZEN, alone and in combination, were similar in Carolino white and brown rice with or without turmeric. For CIT, when Carolino white rice was used, the bioaccessibility was higher alone than in combination (62.00% vs. 25.00%, without turmeric; 87.56% vs. 53.87%, with turmeric); however, with Carolino brown rice was the opposite (66.38% vs. 75.20%, without turmeric; 43.89% vs. 59.44%, with turmeric). All the mycotoxins, isolated, reached the higher bioaccessibility in the Carolino white rice with turmeric (CIT: 87.56%; OTA: 59.24%; ZEN: 58.05%). When mycotoxins are co-present, the higher bioaccessibility of each one varies with the type of rice. In general, when turmeric is present, bioaccessibility increases, except for CIT, using Carolino brown rice. Concerning the intestinal absorption in vitro, after 3 hours of transport, all mycotoxins were detected in the basolateral compartment being thus transported through the cells monolayer. ZEN presented the highest fraction absorbed isolated and combined, followed by CIT and OTA. These findings highlight that the presence of other components in the complex dietary matrix, like turmeric, and the co-presence of mycotoxins can affect its final bioavailability with obvious implications for health risk. This work provides new insights to qualitatively and quantitatively describe mycotoxin in rice fate during human digestion and intestinal absorption and further contribute to better risk assessment.Keywords: bioaccessibility, digestion, intestinal absorption, mycotoxins
Procedia PDF Downloads 651666 Comparison with Two Clinical Cases of Plasma Cell Neoplasm by Using the Method of Capillary Electrophoresis
Authors: Kai Pai Huang
Abstract:
Background: There are several types of plasma cell neoplasms including multiple myeloma, plasmacytoma, lymphoplasmacytic lymphoma, and monoclonal gammopathy of undetermined significance (MGUS) are found in our lab. Today, we want to compare with two cases using the method of capillary electrophoresis. Method: Serum is prepared and electrophoresis is performed at alkaline PH in a capillary using the Sebia® Capillary 2. Albumin and globulins are detected by the detector which is located in the cathode of the capillary and the signals are transformed to peaks. Serum was treated with beta-mercaptoethanol which reducing the polymerized immunoglobulin to monomer immunoglobulin to clarify two M-protein are secreted from the same plasma cell clone in bone marrow. Result: Case 1: A 78-year-old female presenting dysuria, oliguria and leg edema for several months. Laboratory data showed proteinuria, leukocytosis, results of high serum IgA and lambda light chain. A renal biopsy found amyloid fibrils in the glomerular mesangial area. Serum protein electrophoresis shows a major monoclonal peak in the β region and minor small peak in gamma region, and the immunotyping studies for serum showed two IgA/λ type. Case 2: A 55-year-old male presenting abdominal distension and low back pain for more than one month. Laboratory data showed T12 T8 compression fracture, results of high serum IgM and kappa light chain. Bone marrow aspiration showed the cells from the bone marrow are B cells with monotypic kappa chain expression. Bone marrow biopsy found this is lymphoplasmacytic lymphoma (Waldenstrom macroglobulin). Serum protein electrophoresis shows a monoclonal peak in the β region and the immunotyping studies for serum showed IgM/κ type. Conclusion: Plasma cell neoplasm can be diagnosed by many examinations. Among them, using capillary electrophoresis by a lab can separate several types of gammopathy and the quantification of a monoclonal peak can be used to evaluate the patients’ prognosis or treatment.Keywords: plasma cell neoplasm, capillary electrophoresis, serum protein electrophoresis, immunotyping
Procedia PDF Downloads 1461665 Application of Topical Imiquimod for Treatment Cervical Intraepithelial Neoplasia in Young Women: A Preliminary Result of a Pilot Study
Authors: Phill-Seung Jung, Dae-Yeon Kim
Abstract:
Objectives: In young, especially nulliparous women, it is not easy to decide on excisional therapy for cervical intraepithelial neoplasia (CIN). We aimed to evaluate how effective topical imiquimod is in the treatment of high-grade CIN so that excisional therapy can be avoided in young women. Methods: Patients with CIN were allocated to this pilot study. They did not want excisional therapy and agreed with topical imiquimod therapy, which required once-a-week hospital visit for 8 weeks for the application of imiquimod to the cervix by a gynecologic oncologist. If the lesion got worse during treatment, it was decided to convert imiquimod therapy to excisional therapy. Results: A total of 36 patients with a median age of 29 years (range, 22–41 years) agreed to receive topical imiquimod therapy. Of these, 32 patients (88.9%) were positive for high-risk human papillomavirus (HR HPV). Twenty-five patients (69.4%) had low-grade squamous intraepithelial lesion (LSIL), and 11 (30.6%) had high-grade squamous intraepithelial lesion (HSIL) on their initial LBC. Twenty-eight patients underwent punch biopsy, which showed CIN 1 in 7 (19.4%), CIN 2 in 11 (30.6%), and CIN 3 in 10 (27.8%) patients. Twenty patients finished the 8-week imiquimod therapy. Among them, 14 patients had CIN 2 or 3, and 6 patients had CIN 1. HR HPV was positive in 12 patients. On the last examination, 14 patients (70.0%) had negative intraepithelial lesions, 3 (15.0%) had atypical squamous cells of undetermined significance, and 1 (5.0%) had LSIL. Two patients had persistent HSIL: 1 patient underwent loop electrosurgical excision procedure, resulting in CIN 3 with positive resection margin, and the other patient underwent punch biopsy, resulting in intermediate cells and restarted imiquimod therapy. Only 7 patients were negative for HR HPV. Conclusions: This study showed that topical imiquimod therapy was effective for the treatment of high-grade CIN, with a histologic regression rate of 85.7% (14/20) and HPV eradication rate of 25.0% (8/32). Based on our findings, topical imiquimod therapy might have a successful therapeutic effect in young women with CIN 2-3 so that they can avoid excisional therapy. In addition, it could be a more reassuring treatment option for CIN 1 than just follow-up after few months. To confirm its efficacy, a phase II study with larger cohort would be needed.Keywords: Imiquimod, Cervical Intraepthelial Neoplasia, Cervical Dysplasia, Human Papillomavirus
Procedia PDF Downloads 2511664 Harnessing Nature's Fury: Hyptis Suaveolens Loaded Bioactive Liposome for Photothermal Therapy of Lung Cancer
Authors: Sajmina Khatun, Monika Pebam, Aravind Kumar Rengan
Abstract:
Photothermal therapy, a subset of nanomedicine, takes advantage of light-absorbing agents to generate localized heat, selectively eradicating cancer cells. This innovative approach minimizes damage to healthy tissues and offers a promising avenue for targeted cancer treatment. Unlike conventional therapies, photothermal therapy harnesses the power of light to combat malignancies precisely and effectively, showcasing its potential to revolutionize cancer treatment paradigms. The combined strengths of nanomedicine and photothermal therapy signify a transformative shift toward more effective, targeted, and tolerable cancer treatments in the medical landscape. Utilizing natural products becomes instrumental in formulating diverse bioactive medications owing to their various pharmacological properties attributed to the existence of phenolic structures, triterpenoids, and similar compounds. Hyptis suaveolens, commonly known as pignut, stands as an aromatic herb within the Lamiaceae family and represents a valuable therapeutic plant. Flourishing in swamps and alongside tropical and subtropical roadsides, these noxious weeds impede the development of adjacent plants. Hyptis suaveolens ranks among the most globally distributed alien invasive species. The present investigation revealed that a versatile, biodegradable liposome nanosystem (HIL NPs), incorporating bioactive molecules from Hyptis suaveolens, exhibits effective bioavailability to cancer cells, enabling tumor ablation upon near-infrared (NIR) laser exposure. The components within the nanosystem, specifically the bioactive molecules from Hyptis, function as anticancer agents, aiding in the photothermal ablation of highly metastatic lung cancer cells. Despite being a prolific weed impeding neighboring plant growth, Hyptis suaveolens showcases therapeutic benefits through its bioactive compounds. The obtained HIL NPs, characterized as a photothermally active liposome nanosystem, demonstrate a pronounced fluorescence absorption peak in the NIR range and achieve a high photothermal conversion efficiency under NIR laser irradiation. Transmission electron microscopy (TEM) and particle size analysis reveal that HIL NPs possess a spherical shape with a size of 141 ± 30 nm. Moreover, in vitro assessments of HIL NPs against lung cancer cell lines (A549) indicate effective anticancer activity through a combined cytotoxic effect and hyperthermia. Tumor ablation is facilitated by apoptosis induced by the overexpression of ɣ-H2AX, arresting cancer cell proliferation. Consequently, the multifunctional and biodegradable nanosystem (HIL NPs), incorporating bioactive compounds from Hyptis, provides valuable perspectives for developing an innovative therapeutic strategy originating from a challenging weed. This approach holds promise for potential applications in both bioimaging and the combined use of phyto-photothermal therapy for cancer treatment.Keywords: bioactive liposome, hyptis suaveolens, photothermal therapy, lung cancer
Procedia PDF Downloads 941663 Immunoliposome-Mediated Drug Delivery to Plasmodium-Infected and Non-Infected Red Blood Cells as a Dual Therapeutic/Prophylactic Antimalarial Strategy
Authors: Ernest Moles, Patricia Urbán, María Belén Jiménez-Díaz, Sara Viera-Morilla, Iñigo Angulo-Barturen, Maria Antònia Busquets, Xavier Fernàndez-Busquets
Abstract:
Bearing in mind the absence of an effective vaccine against malaria and its severe clinical manifestations causing nearly half a million deaths every year, this disease represents nowadays a major threat to life. Besides, the basic rationale followed by currently marketed antimalarial approaches is based on the administration of drugs on their own, promoting the emergence of drug-resistant parasites owing to the limitation in delivering drug payloads into the parasitized erythrocyte high enough to kill the intracellular pathogen while minimizing the risk of causing toxic side effects to the patient. Such dichotomy has been successfully addressed through the specific delivery of immunoliposome (iLP)-encapsulated antimalarials to Plasmodium falciparum-infected red blood cells (pRBCs). Unfortunately, this strategy has not progressed towards clinical applications, whereas in vitro assays rarely reach drug efficacy improvements above 10-fold. Here, we show that encapsulation efficiencies reaching >96% can be achieved for the weakly basic drugs chloroquine (CQ) and primaquine using the pH gradient active loading method in liposomes composed of neutrally charged, saturated phospholipids. Targeting antibodies are best conjugated through their primary amino groups, adjusting chemical crosslinker concentration to retain significant antigen recognition. Antigens from non-parasitized RBCs have also been considered as targets for the intracellular delivery of drugs not affecting the erythrocytic metabolism. Using this strategy, we have obtained unprecedented nanocarrier targeting to early intraerythrocytic stages of the malaria parasite for which there is a lack of specific extracellular molecular tags. Polyethylene glycol-coated liposomes conjugated with monoclonal antibodies specific for the erythrocyte surface protein glycophorin A (anti-GPA iLP) were capable of targeting 100% RBCs and pRBCs at the low concentration of 0.5 μM total lipid in the culture, with >95% of added iLPs retained into the cells. When exposed for only 15 min to P. falciparum in vitro cultures synchronized at early stages, free CQ had no significant effect over parasite viability up to 200 nM drug, whereas iLP-encapsulated 50 nM CQ completely arrested its growth. Furthermore, when assayed in vivo in P. falciparum-infected humanized mice, anti-GPA iLPs cleared the pathogen below detectable levels at a CQ dose of 0.5 mg/kg. In comparison, free CQ administered at 1.75 mg/kg was, at most, 40-fold less efficient. Our data suggest that this significant improvement in drug antimalarial efficacy is in part due to a prophylactic effect of CQ found by the pathogen in its host cell right at the very moment of invasion.Keywords: immunoliposomal nanoparticles, malaria, prophylactic-therapeutic polyvalent activity, targeted drug delivery
Procedia PDF Downloads 3751662 Low- and High-Temperature Methods of CNTs Synthesis for Medicine
Authors: Grzegorz Raniszewski, Zbigniew Kolacinski, Lukasz Szymanski, Slawomir Wiak, Lukasz Pietrzak, Dariusz Koza
Abstract:
One of the most promising area for carbon nanotubes (CNTs) application is medicine. One of the most devastating diseases is cancer. Carbon nanotubes may be used as carriers of a slowly released drug. It is possible to use of electromagnetic waves to destroy cancer cells by the carbon nanotubes (CNTs). In our research we focused on thermal ablation by ferromagnetic carbon nanotubes (Fe-CNTs). In the cancer cell hyperthermia functionalized carbon nanotubes are exposed to radio frequency electromagnetic field. Properly functionalized Fe-CNTs join the cancer cells. Heat generated in nanoparticles connected to nanotubes warm up nanotubes and then the target tissue. When the temperature in tumor tissue exceeds 316 K the necrosis of cancer cells may be observed. Several techniques can be used for Fe-CNTs synthesis. In our work, we use high-temperature methods where arc-discharge is applied. Low-temperature systems are microwave plasma with assisted chemical vapor deposition (MPCVD) and hybrid physical-chemical vapor deposition (HPCVD). In the arc discharge system, the plasma reactor works with a pressure of He up to 0,5 atm. The electric arc burns between two graphite rods. Vapors of carbon move from the anode, through a short arc column and forms CNTs which can be collected either from the reactor walls or cathode deposit. This method is suitable for the production of multi-wall and single-wall CNTs. A disadvantage of high-temperature methods is a low purification, short length, random size and multi-directional distribution. In MPCVD system plasma is generated in waveguide connected to the microwave generator. Then containing carbon and ferromagnetic elements plasma flux go to the quartz tube. The additional resistance heating can be applied to increase the reaction effectiveness and efficiency. CNTs nucleation occurs on the quartz tube walls. It is also possible to use substrates to improve carbon nanotubes growth. HPCVD system involves both chemical decomposition of carbon containing gases and vaporization of a solid or liquid source of catalyst. In this system, a tube furnace is applied. A mixture of working and carbon-containing gases go through the quartz tube placed inside the furnace. As a catalyst ferrocene vapors can be used. Fe-CNTs may be collected then either from the quartz tube walls or on the substrates. Low-temperature methods are characterized by higher purity product. Moreover, carbon nanotubes from tested CVD systems were partially filled with the iron. Regardless of the method of Fe-CNTs synthesis the final product always needs to be purified for applications in medicine. The simplest method of purification is an oxidation of the amorphous carbon. Carbon nanotubes dedicated for cancer cell thermal ablation need to be additionally treated by acids for defects amplification on the CNTs surface what facilitates biofunctionalization. Application of ferromagnetic nanotubes for cancer treatment is a promising method of fighting with cancer for the next decade. Acknowledgment: The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013Keywords: arc discharge, cancer, carbon nanotubes, CVD, thermal ablation
Procedia PDF Downloads 4491661 Optimization of Heterojunction Solar Cell Using AMPS-1D
Authors: Benmoussa Dennai, H. Benslimane, A. Helmaoui
Abstract:
Photovoltaic conversion is the direct conversion of electromagnetic energy into electrical energy continuously. This electromagnetic energy is the most solar radiation. In this work we performed a computer modelling using AMPS 1D optimization of hetero-junction solar cells GaInP / GaAs configuration for p / n. We studied the influence of the thickness the base layer in the cell offers on the open circuit voltage, the short circuit current and efficiency.Keywords: optimization, photovoltaic cell, GaInP / GaAs AMPS-1D, hetetro-junction
Procedia PDF Downloads 5181660 How Obesity Sparks the Immune System and Lessons from the COVID-19 Pandemic
Authors: Husham Bayazed
Abstract:
Purpose of Presentation: Obesity and overweight are among the biggest health challenges of the 21st century, according to the WHO. Obviously, obese individuals suffer different courses of disease – from infections and allergies to cancer- and even respond differently to some treatment options. Of note, obesity often seems to predispose and triggers several secondary diseases such as diabetes, arteriosclerosis, or heart attacks. Since decades it seems that immunological signals gear inflammatory processes among obese individuals with the aforementioned conditions. This review aims to shed light how obesity sparks or rewire the immune system and predisposes to such unpleasant health outcomes. Moreover, lessons from the Covid-19 pandemic ascertain that people living with pre-existing conditions such as obesity can develop severe acute respiratory syndrome (SARS), which needs to be elucidated how obesity and its adjuvant inflammatory process distortion contribute to enhancing severe COVID-19 consequences. Recent Findings: In recent clinical studies, obesity was linked to alter and sparks the immune system in different ways. Adipose tissue (AT) is considered as a secondary immune organ, which is a reservoir of tissue-resident of different immune cells with mediator release, making it a secondary immune organ. Adipocytes per se secrete several pro-inflammatory cytokines (IL-6, IL-4, MCP-1, and TNF-α ) involved in activation of macrophages resulting in chronic low-grade inflammation. The correlation between obesity and T cells dysregulation is pivotal in rewiring the immune system. Of note, autophagy occurrence in adipose tissues further rewire the immune system due to flush and outburst of leptin and adiponectin, which are cytokines and influencing pro-inflammatory immune functions. These immune alterations among obese individuals are collectively incriminated in triggering several metabolic disorders and playing role in increasing cancers incidence and susceptibility to different infections. During COVID-19 pandemic, it was verified that patients with pre-existing obesity being at greater risk of suffering severe and fatal clinical outcomes. Beside obese people suffer from increased airway resistance and reduced lung volume, ACE2 expression in adipose tissue seems to be high and even higher than that in lungs, which spike infection incidence. In essence, obesity with pre-existence of pro-inflammatory cytokines such as LI-6 is a risk factor for cytokine storm and coagulopathy among COVID-19 patients. Summary: It is well documented that obesity is associated with chronic systemic low-grade inflammation, which sparks and alter different pillars of the immune system and triggers different metabolic disorders, and increases susceptibility of infections and cancer incidence. The pre-existing chronic inflammation in obese patients with the augmented inflammatory response against the viral infection seems to increase the susceptibility of these patients to developing severe COVID-19. Although the new weight loss drugs and bariatric surgery are considered as breakthrough news for obesity treatment, but preventing is easier than treating it once it has taken hold. However, obesity and immune system link new insights dispute the role of immunotherapy and regulating immune cells treating diet-induced obesity.Keywords: immunity, metabolic disorders, cancer, COVID-19
Procedia PDF Downloads 741659 Renewable Energy Trends Analysis: A Patents Study
Authors: Sepulveda Juan
Abstract:
This article explains the elements and considerations taken into account when implementing and applying patent evaluation and scientometric study in the identifications of technology trends, and the tools that led to the implementation of a software application for patent revision. Univariate analysis helped recognize the technological leaders in the field of energy, and steered the way for a multivariate analysis of this sample, which allowed for a graphical description of the techniques of mature technologies, as well as the detection of emerging technologies. This article ends with a validation of the methodology as applied to the case of fuel cells.Keywords: patents, scientometric, renewable energy, technology maps
Procedia PDF Downloads 3071658 Solar Panel Design Aspects and Challenges for a Lunar Mission
Authors: Mannika Garg, N. Srinivas Murthy, Sunish Nair
Abstract:
TeamIndus is only Indian team participated in the Google Lunar X Prize (GLXP). GLXP is an incentive prize space competition which is organized by the XPrize Foundation and sponsored by Google. The main objective of the mission is to soft land a rover on the moon surface, travel minimum displacement of 500 meters and transmit HD and NRT videos and images to the Earth. Team Indus is designing a Lunar Lander which carries Rover with it and deliver onto the surface of the moon with a soft landing. For lander to survive throughout the mission, energy is required to operate all attitude control sensors, actuators, heaters and other necessary components. Photovoltaic solar array systems are the most common and primary source of power generation for any spacecraft. The scope of this paper is to provide a system-level approach for designing the solar array systems of the lander to generate required power to accomplish the mission. For this mission, the direction of design effort is to higher efficiency, high reliability and high specific power. Towards this approach, highly efficient multi-junction cells have been considered. The design is influenced by other constraints also like; mission profile, chosen spacecraft attitude, overall lander configuration, cost effectiveness and sizing requirements. This paper also addresses the various solar array design challenges such as operating temperature, shadowing, radiation environment and mission life and strategy of supporting required power levels (peak and average). The challenge to generate sufficient power at the time of surface touchdown, due to low sun elevation (El) and azimuth (Az) angle which depends on Lunar landing site, has also been showcased in this paper. To achieve this goal, energy balance analysis has been carried out to study the impact of the above-mentioned factors and to meet the requirements and has been discussed in this paper.Keywords: energy balance analysis, multi junction solar cells, photovoltaic, reliability, spacecraft attitude
Procedia PDF Downloads 2301657 Simulation and Characterization of Organic Light Emitting Diodes and Organic Photovoltaics Using Physics Based Tool
Authors: T. A. Shahul Hameed, P. Predeep, Anju Iqbal, M. R. Baiju
Abstract:
Research and development in organic photovoltaic cells and Organic Light Emitting Diodes have gained wider acceptance due to the advent of many advanced techniques to enhance the efficiency and operational hours. Here we report our work on design, simulation and characterizationracterize the bulk heterojunction organic photo cell and polymer light emitting diodes in different layer configurations using ATLAS, a licensed device simulation tool. Bulk heterojuction and multilayer devices were simulated for comparing their performance parameters.Keywords: HOMO, LUMO, PLED, OPV
Procedia PDF Downloads 5851656 PARP1 Links Transcription of a Subset of RBL2-Dependent Genes with Cell Cycle Progression
Authors: Ewelina Wisnik, Zsolt Regdon, Kinga Chmielewska, Laszlo Virag, Agnieszka Robaszkiewicz
Abstract:
Apart from protecting genome, PARP1 has been documented to regulate many intracellular processes inter alia gene transcription by physically interacting with chromatin bound proteins and by their ADP-ribosylation. Our recent findings indicate that expression of PARP1 decreases during the differentiation of human CD34+ hematopoietic stem cells to monocytes as a consequence of differentiation-associated cell growth arrest and formation of E2F4-RBL2-HDAC1-SWI/SNF repressive complex at the promoter of this gene. Since the RBL2 complexes repress genes in a E2F-dependent manner and are widespread in the genome in G0 arrested cells, we asked (a) if RBL2 directly contributes to defining monocyte phenotype and function by targeting gene promoters and (b) if RBL2 controls gene transcription indirectly by repressing PARP1. For identification of genes controlled by RBL2 and/or PARP1,we used primer libraries for surface receptors and TLR signaling mediators, genes were silenced by siRNA or shRNA, analysis of gene promoter occupation by selected proteins was carried out by ChIP-qPCR, while statistical analysis in GraphPad Prism 5 and STATISTICA, ChIP-Seq data were analysed in Galaxy 2.5.0.0. On the list of 28 genes regulated by RBL2, we identified only four solely repressed by RBL2-E2F4-HDAC1-BRM complex. Surprisingly, 24 out of 28 emerged genes controlled by RBL2 were co-regulated by PARP1 in six different manners. In one mode of RBL2/PARP1 co-operation, represented by MAP2K6 and MAPK3, PARP1 was found to associate with gene promoters upon RBL2 silencing, which was previously shown to restore PARP1 expression in monocytes. PARP1 effect on gene transcription was observed only in the presence of active EP300, which acetylated gene promoters and activated transcription. Further analysis revealed that PARP1 binding to MA2K6 and MAPK3 promoters enabled recruitment of EP300 in monocytes, while in proliferating cancer cell lines, which actively transcribe PARP1, this protein maintained EP300 at the promoters of MA2K6 and MAPK3. Genome-wide analysis revealed a similar distribution of PARP1 and EP300 around transcription start sites and the co-occupancy of some gene promoters by PARP1 and EP300 in cancer cells. Here, we described a new RBL2/PARP1/EP300 axis which controls gene transcription regardless of the cell type. In this model cell, cycle-dependent transcription of PARP1 regulates expression of some genes repressed by RBL2 upon cell cycle limitation. Thus, RBL2 may indirectly regulate transcription of some genes by controlling the expression of EP300-recruiting PARP1. Acknowledgement: This work was financed by Polish National Science Centre grants nr DEC-2013/11/D/NZ2/00033 and DEC-2015/19/N/NZ2/01735. L.V. is funded by the National Research, Development and Innovation Office grants GINOP-2.3.2-15-2016-00020 TUMORDNS, GINOP-2.3.2-15-2016-00048-STAYALIVE and OTKA K112336. AR is supported by Polish Ministry of Science and Higher Education 776/STYP/11/2016.Keywords: retinoblastoma transcriptional co-repressor like 2 (RBL2), poly(ADP-ribose) polymerase 1 (PARP1), E1A binding protein p300 (EP300), monocytes
Procedia PDF Downloads 2091655 On the Volume of Ganglion Cell Stimulation in Visual Prostheses by Finite Element Discretization
Authors: Diego Luján Villarreal
Abstract:
Visual prostheses are designed to repair some eyesight in patients blinded by photoreceptor diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Electrode-to-cell proximity has drawn attention due to its implications on secure single-localized stimulation. Yet, few techniques are available for understanding the relationship between the number of cells activated and the current injection. We propose an answering technique by solving the governing equation for time-dependent electrical currents using finite element discretization to obtain the volume of stimulation.Keywords: visual prosthetic devices, volume for stimulation, FEM discretization, 3D simulation
Procedia PDF Downloads 731654 Treating Complex Pain and Addictions with Bioelectrode Therapy: An Acupuncture Point Stimulus Method for Relieving Human Suffering
Authors: Les Moncrieff
Abstract:
In a world awash with potent opioids flaming an international crisis, the need to explore safe alternatives has never been more urgent. Bio-electrode Therapy is a novel adjunctive treatment method for relieving acute opioid withdrawal symptoms and many types of complex acute and chronic pain (often the underlying cause of opioid dependence). By combining the science of developmental bioelectricity with Traditional Chinese Medicine’s theory of meridians, rapid relief from pain is routinely being achieved in the clinical setting. Human body functions are dependent on electrical factors, and acupuncture points on the body are known to have higher electrical conductivity than surrounding skin tissue. When tiny gold- and silver-plated electrodes are secured to the skin at specific acupuncture points using established Chinese Medicine principles and protocols, an enhanced microcurrent and electrical field are created between the electrodes, influencing the entire meridian and connecting meridians. No external power source or electrical devices are required. Endogenous DC electric fields are an essential fundamental component for development, regeneration, and wound healing. Disruptions in the normal ion-charge in the meridians and circulation of blood will manifest as pain and development of disease. With the application of these simple electrodes (gold acting as cathode and silver as anode) according to protocols, the resulting microcurrent is directed along the selected meridians to target injured or diseased organs and tissues. When injured or diseased cells have been stimulated by the microcurrent and electrical fields, the permeability of the cell membrane is affected, resulting in an immediate relief of pain, a rapid balancing of positive and negative ions (sodium, potassium, etc.) in the cells, the restoration of intracellular fluid levels, replenishment of electrolyte levels, pH balance, removal of toxins, and a re-establishment of homeostasis.Keywords: bioelectricity, electrodes, electrical fields, acupuncture meridians, complex pain, opioid withdrawal management
Procedia PDF Downloads 801653 Biophysically Motivated Phylogenies
Authors: Catherine Felce, Lior Pachter
Abstract:
Current methods for building phylogenetic trees from gene expression data consider mean expression levels. With single-cell technologies, we can leverage more information about cell dynamics by considering the entire distribution of gene expression across cells. Using biophysical modeling, we propose a method for constructing phylogenetic trees from scRNA-seq data, building on Felsenstein's method of continuous characters. This method can highlight genes whose level of expression may be unchanged between species, but whose rates of transcription/decay may have evolved over time.Keywords: phylogenetics, single-cell, biophysical modeling, transcription
Procedia PDF Downloads 501652 Novel Routes to the Synthesis and Functionalization of Metallic and Semiconductor Thin Film and Nanoparticles
Authors: Hanan. Al Chaghouri, Mohammad Azad Malik, P. John Thomas, Paul O’Brien
Abstract:
The process of assembling metal nanoparticles at the interface of two liquids has received a great deal of attention over the past few years due to a wide range of important applications and their unusual properties as compared to bulk materials. We present a low cost, simple and cheap synthesis of metal nanoparticles, core/shell structures and semiconductors followed by assembly of these particles between immiscible liquids. The aim of this talk is divided to three parts: Firstly, to describe the achievement of a closed loop recycling for producing cadmium sulfide as powders and/or nanostructured thin films for solar cells or other optoelectronic devices applications by using a different chain length of commercially available secondary amines of dithiocarbamato complexes. The approach can be extended to other metal sulfides such as those of Zn, Pb, Cu, or Fe and many transition metals and oxides. Secondly, to synthesis significantly cheaper magnetic particles suited for the mass market. Ni/NiO nanoparticles with ferromagnetic properties at room temperature were among the smallest and strongest magnets (5 nm) were made in solution. The applications of this work can be to produce viable storage devices and the other possibility is to disperse these nanocrystals in solution and use it to make ferrofluids which have a number of mature applications. The third part is about preparing and assembling of submicron silver, cobalt and nickel particles by using polyol methods and liquid/liquid interface, respectively. Coinage metals like gold, copper and silver are suitable for plasmonic thin film solar cells because of their low resistivity and strong interactions with visible light waves. Silver is the best choice for solar cell application since it has low absorption losses and high radiative efficiency compared to gold and copper. Assembled cobalt and nickel as films are promising for spintronic, magnetic and magneto-electronic and biomedics.Keywords: metal nanoparticles, core/shell structures and semiconductors, ferromagnetic properties, closed loop recycling, liquid/liquid interface
Procedia PDF Downloads 4591651 Activity of Commonly Used Intravenous Nutrient and Bisolvon in Neonatal Intensive Care Units against Biofilm Cells and Their Synergetic Effect with Antibiotics
Authors: Marwa Fady Abozed, Hemat Abd El Latif, Fathy Serry, Lotfi El Sayed
Abstract:
The purpose of this study was to investigate the efficacy of intravenous nutrient(soluvit, vitalipid, aminoven infant, lipovenos) and bisolvon commonly used in neonatal intensive care units against biofilm cells of staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aerguinosa and klebseilla pneumonia as they are the most commonly isolated organisms and are biofilm producers. Also, the synergetic acticity of soluvit, heparin, bisolvon with antibiotics and its effect on minimum biofilm eradication concentration(MBEC) was tested. Intravenous nutrient and bromohexine are widely used in newborns. Numbers of viable cell count released from biofilm after treatment with intravenous nutrient and bromohexine were counted to compare the efficacy. The percentage of reduction in biofilm regrowth in case of using soluvit was 43-51% and 36-42 % for Gram positive and Gram negative respectively, on adding the vitalipid the percentage was 45-50 %and 37-41% for Gram positive and Gram negative respectively. While, in case of using bisolvon the percentage was 46-52% and 47-48% for Gram positive and Gram negative respectively. Adding lipovenos had a reduction percentage of 48-52% and 48-49% for Gram positive and Gram negative respectively. While, adding aminoven infant the percentage was 10-15% and 9-11% for Gram positive and Gram negative respectively. Adding soluvit, heparin and bisolvon to antibiotics had synergic effect. soluvit with ciprofloxacin has 8-16 times decrease than minimum biofilm eradication concentration (MBEC) for ciprofloxacin alone. While, by adding soluvit to vancomycin the MBEC reduced by 16 times than MBEC of vancomycin alone. In case of combination soluvit with cefotaxime, amikacin and gentamycin the reduction in MBEC was 16, 8 and 6-32 times respectively. The synergetic effect of adding heparin to ciprofloxacin, vancomycin, cefotaxime, amikacin and gentamicin was 2 times reduction with all except in case of gram negative the range of reduction was 0-2 with both gentamycin and ciprofloxacin. Bisolvon exihited synergetic effect with ciprofloxacin, vancomycin, cefotaxime, amikacin and gentamicin by 16, 32, 32, 8, 32-64 and 32 times decrease in MBEC respectively.Keywords: biofilm, neonatal intensive care units, antibiofilm agents, intravenous nutrient
Procedia PDF Downloads 3271650 Autophagy Promotes Vascular Smooth Muscle Cell Migration in vitro and in vivo
Authors: Changhan Ouyang, Zhonglin Xie
Abstract:
In response to proatherosclerotic factors such as oxidized lipids, or to therapeutic interventions such as angioplasty, stents, or bypass surgery, vascular smooth muscle cells (VSMCs) migrate from the media to the intima, resulting in intimal hyperplasia, restenosis, graft failure, or atherosclerosis. These proatherosclerotic factors also activate autophagy in VSMCs. However, the functional role of autophagy in vascular health and disease remains poorly understood. In the present study, we determined the role of autophagy in the regulation of VSMC migration. Autophagy activity in cultured human aortic smooth muscle cells (HASMCs) and mouse carotid arteries was measured by Western blot analysis of microtubule-associated protein 1 light chain 3 B (LC3B) and P62. The VSMC migration was determined by scratch wound assay and transwell migration assay. Ex vivo smooth muscle cell migration was determined using aortic ring assay. The in vivo SMC migration was examined by staining the carotid artery sections with smooth muscle alpha actin (alpha SMA) after carotid artery ligation. To examine the relationship between autophagy and neointimal hyperplasia, C57BL/6J mice were subjected to carotid artery ligation. Seven days after injury, protein levels of Atg5, Atg7, Beclin1, and LC3B drastically increased and remained higher in the injured arteries three weeks after the injury. In parallel with the activation of autophagy, vascular injury-induced neointimal hyperplasia as estimated by increased intima/media ratio. The en face staining of carotid artery showed that vascular injury enhanced alpha SMA staining in the intimal cells as compared with the sham operation. Treatment of HASMCs with platelet-derived growth factor (PDGF), one of the major factors for vascular remodeling in response to vascular injury, increased Atg7 and LC3 II protein levels and enhanced autophagosome formation. In addition, aortic ring assay demonstrated that PDGF treated aortic rings displayed an increase in neovessel formation compared with control rings. Whole mount staining for CD31 and alpha SMA in PDGF treated neovessels revealed that the neovessel structures were stained by alpha SMA but not CD31. In contrast, pharmacological and genetic suppression of autophagy inhibits VSMC migration. Especially, gene silencing of Atg7 inhibited VSMC migration induced by PDGF. Furthermore, three weeks after ligation, markedly decreased neointimal formation was found in mice treated with chloroquine, an inhibitor of autophagy. Quantitative morphometric analysis of the injured vessels revealed a marked reduction in the intima/media ratio in the mice treated with chloroquine. Conclusion: Autophagy activation increases VSMC migration while autophagy suppression inhibits VSMC migration. These findings suggest that autophagy suppression may be an important therapeutic strategy for atherosclerosis and intimal hyperplasia.Keywords: autophagy, vascular smooth muscle cell, migration, neointimal formation
Procedia PDF Downloads 3141649 Serum Zinc Level in Patients with Multidrug Resistant Tuberculosis
Authors: Nilima Barman, M. Atiqul Haque, Debabrata Ghosh
Abstract:
Background: Zinc, one of the vital micronutrients, has an incredible role in the immune system. Hypozincemia affects host defense by reducing the number of circulating T cells and phagocytosis activity of other cells which ultimately impair cell-mediated immunity 1, 2. The immune system is detrimentally suppressed in multidrug-resistant tuberculosis (MDR-TB) 3, 4, a major threat of TB control worldwide5. As zinc deficiency causes immune suppression, we assume that it might have a role in the development of MDR-TB. Objectives: To estimate the serum zinc level in newly diagnosed multidrug resistant tuberculosis (MDR-TB) in comparison with that of newly diagnosed pulmonary TB (NdPTB) and healthy individuals. Materials and Methods: This study was carried out in the department of Public Health and Informatics, Bangabandhu Sheikh Mujib Medical University, Dhaka in collaboration with National Institute of Diseases of the Chest Hospital (NIDCH), Bangladesh from March’ 2012 to February 2013. A total of 337 respondents, of them 107 were MDR TB patients enrolled from NIDCH, 69 were NdPTB and 161 were healthy adults. All NdPTB patients and healthy adults were randomly selected from Sirajdikhan subdistrict of Munshiganj District. It is a rural community 22 kilometer south from capital city Dhaka. Serum zinc level was estimated by atomic absorption spectrophotometry method from early morning fasting blood sample. The evaluation of serum zinc level was done according to normal range from 70 to120 µgm/dL6. Results: Males were predominant in study groups (p>0.05). Mean (sd) serum zinc levels in MDR-TB, NdPTB and healthy adult group were 65.14 (12.52), 75.22(15.89), and 87.98 (21.80) μgm/dL respectively and differences were statistically significant (F=52.08, P value<0.001). After multiple comparison test (Bonferroni test) significantly lower level of serum zinc was found in MDRTB group than NdPTB and healthy adults (p<.001). Point biserial correlation showed a negative association of having MDR TB and serum zinc level (r= -.578; p value <0.001). Conclusion: The significant low level of serum zinc in MDR-TB patients suggested impaired immune status. We recommended for further exploration of low level of serum zinc as risk factor of MDR TB.Keywords: Bangladesh, immune status, multidrug-resistant tuberculosis, serum zinc
Procedia PDF Downloads 5891648 Anatomical and Histological Analysis of Salpinx and Ovary in Anatolian Wild Goat (Capra aegagrus aegagrus)
Authors: Gulseren Kirbas, Mushap Kuru, Buket Bakir, Ebru Karadag Sari
Abstract:
Capra (mountain goat) is a genus comprising nine species. The domestic goat (C. aegagrus hircus) is a subspecies of the wild goat that is domesticated. This study aimed to determine the anatomical structure of the salpinx and ovary of the Anatolian wild goat (C. aegagrus aegagrus). Animals that were taken to the Kafkas University Wildlife Rescue and Rehabilitation Center, Kars, Turkey, because of various reasons, such as traffic accidents and firearm injuries, were used in this study. The salpinges and ovaries of four wild goats of similar ages, which could not be rescued by the Center despite all interventions, were dissected. Measurements were taken from the right-left salpinx and ovary using digital calipers. The weights of each ovary and salpinx were measured using a precision scale (min: 0.0001 g − max: 220 g, code: XB220A; Precisa, Swiss). The histological structure of the tissues was examined after weighing the organs. The tissue samples were fixed in 10% formaldehyde for 24 h. Then a routine procedure was applied, and the tissues were embedded in paraffin. Mallory’s modified triple staining was used to demonstrate the general structure of the salpinx. The salpinx was found to consist of three different regions (infundibulum, ampulla, and isthmus). These regions consisted of tunica mucosa, tunica muscularis, and tunica serosa. The prismatic epithelial cells were observed in the lamina epithelialis of tunica mucosa in every region, but the prismatic fimbrae cells occurred most in the infundibulum. The ampulla was distinguished by its many mucosal folds. It was the longest region of the salpinx and was joined to the isthmus via the ampullary–isthmus junction. Isthmus was the caudal end of the salpinx joined to the uterus and had the thickest tunica muscularis compared with the other regions. The mean length of the ovary was 13.22 ± 1.27 mm, width was 8.46 ± 0.88 mm, the thickness was 5.67 ± 0.79 mm, and weight was 0.59 ± 0.17 g. The average length of the salpinx was 58.11 ± 14.02 mm, width was 0.80 ± 0.22 mm, the thickness was 0.41 ± 0.01 mm, and weight was 0.30 ± 0.08 g. In conclusion, the Anatolian wild goat, which is included in wildlife diversity in Turkey, has been disappearing due to illegal and uncontrolled hunting as well as traffic accidents in recent years. These findings are believed to contribute to the literature.Keywords: Anatolian wild goat, anatomy, ovary, salpinx
Procedia PDF Downloads 2241647 Quantified Metabolomics for the Determination of Phenotypes and Biomarkers across Species in Health and Disease
Authors: Miroslava Cuperlovic-Culf, Lipu Wang, Ketty Boyle, Nadine Makley, Ian Burton, Anissa Belkaid, Mohamed Touaibia, Marc E. Surrette
Abstract:
Metabolic changes are one of the major factors in the development of a variety of diseases in various species. Metabolism of agricultural plants is altered the following infection with pathogens sometimes contributing to resistance. At the same time, pathogens use metabolites for infection and progression. In humans, metabolism is a hallmark of cancer development for example. Quantified metabolomics data combined with other omics or clinical data and analyzed using various unsupervised and supervised methods can lead to better diagnosis and prognosis. It can also provide information about resistance as well as contribute knowledge of compounds significant for disease progression or prevention. In this work, different methods for metabolomics quantification and analysis from Nuclear Magnetic Resonance (NMR) measurements that are used for investigation of disease development in wheat and human cells will be presented. One-dimensional 1H NMR spectra are used extensively for metabolic profiling due to their high reliability, wide range of applicability, speed, trivial sample preparation and low cost. This presentation will describe a new method for metabolite quantification from NMR data that combines alignment of spectra of standards to sample spectra followed by multivariate linear regression optimization of spectra of assigned metabolites to samples’ spectra. Several different alignment methods were tested and multivariate linear regression result has been compared with other quantification methods. Quantified metabolomics data can be analyzed in the variety of ways and we will present different clustering methods used for phenotype determination, network analysis providing knowledge about the relationships between metabolites through metabolic network as well as biomarker selection providing novel markers. These analysis methods have been utilized for the investigation of fusarium head blight resistance in wheat cultivars as well as analysis of the effect of estrogen receptor and carbonic anhydrase activation and inhibition on breast cancer cell metabolism. Metabolic changes in spikelet’s of wheat cultivars FL62R1, Stettler, MuchMore and Sumai3 following fusarium graminearum infection were explored. Extensive 1D 1H and 2D NMR measurements provided information for detailed metabolite assignment and quantification leading to possible metabolic markers discriminating resistance level in wheat subtypes. Quantification data is compared to results obtained using other published methods. Fusarium infection induced metabolic changes in different wheat varieties are discussed in the context of metabolic network and resistance. Quantitative metabolomics has been used for the investigation of the effect of targeted enzyme inhibition in cancer. In this work, the effect of 17 β -estradiol and ferulic acid on metabolism of ER+ breast cancer cells has been compared to their effect on ER- control cells. The effect of the inhibitors of carbonic anhydrase on the observed metabolic changes resulting from ER activation has also been determined. Metabolic profiles were studied using 1D and 2D metabolomic NMR experiments, combined with the identification and quantification of metabolites, and the annotation of the results is provided in the context of biochemical pathways.Keywords: metabolic biomarkers, metabolic network, metabolomics, multivariate linear regression, NMR quantification, quantified metabolomics, spectral alignment
Procedia PDF Downloads 3381646 Improved Morphology in Sequential Deposition of the Inverted Type Planar Heterojunction Solar Cells Using Cheap Additive (DI-H₂O)
Authors: Asmat Nawaz, Ceylan Zafer, Ali K. Erdinc, Kaiying Wang, M. Nadeem Akram
Abstract:
Hybrid halide Perovskites with the general formula ABX₃, where X = Cl, Br or I, are considered as an ideal candidates for the preparation of photovoltaic devices. The most commonly and successfully used hybrid halide perovskite for photovoltaic applications is CH₃NH₃PbI₃ and its analogue prepared from lead chloride, commonly symbolized as CH₃NH₃PbI₃_ₓClₓ. Some researcher groups are using lead free (Sn replaces Pb) and mixed halide perovskites for the fabrication of the devices. Both mesoporous and planar structures have been developed. By Comparing mesoporous structure in which the perovskite materials infiltrate into mesoporous metal oxide scaffold, the planar architecture is much simpler and easy for device fabrication. In a typical perovskite solar cell, a perovskite absorber layer is sandwiched between the hole and electron transport. Upon the irradiation, carriers are created in the absorber layer that can travel through hole and electron transport layers and the interface in between. We fabricated inverted planar heterojunction structure ITO/PEDOT/ Perovskite/PCBM/Al, based solar cell via two-step spin coating method. This is also called Sequential deposition method. A small amount of cheap additive H₂O was added into PbI₂/DMF to make a homogeneous solution. We prepared four different solution such as (W/O H₂O, 1% H₂O, 2% H₂O, 3% H₂O). After preparing, the whole night stirring at 60℃ is essential for the homogenous precursor solutions. We observed that the solution with 1% H₂O was much more homogenous at room temperature as compared to others. The solution with 3% H₂O was precipitated at once at room temperature. The four different films of PbI₂ were formed on PEDOT substrates by spin coating and after that immediately (before drying the PbI₂) the substrates were immersed in the methyl ammonium iodide solution (prepared in isopropanol) for the completion of the desired perovskite film. After getting desired films, rinse the substrates with isopropanol to remove the excess amount of methyl ammonium iodide and finally dried it on hot plate only for 1-2 minutes. In this study, we added H₂O in the PbI₂/DMF precursor solution. The concept of additive is widely used in the bulk- heterojunction solar cells to manipulate the surface morphology, leading to the enhancement of the photovoltaic performance. There are two most important parameters for the selection of additives. (a) Higher boiling point w.r.t host material (b) good interaction with the precursor materials. We observed that the morphology of the films was improved and we achieved a denser, uniform with less cavities and almost full surface coverage films but only using precursor solution having 1% H₂O. Therefore, we fabricated the complete perovskite solar cell by sequential deposition technique with precursor solution having 1% H₂O. We concluded that with the addition of additives in the precursor solutions one can easily be manipulate the morphology of the perovskite film. In the sequential deposition method, thickness of perovskite film is in µm and the charge diffusion length of PbI₂ is in nm. Therefore, by controlling the thickness using other deposition methods for the fabrication of solar cells, we can achieve the better efficiency.Keywords: methylammonium lead iodide, perovskite solar cell, precursor composition, sequential deposition
Procedia PDF Downloads 246