Search results for: webpage classification
682 Geographic Information Systems and Remotely Sensed Data for the Hydrological Modelling of Mazowe Dam
Authors: Ellen Nhedzi Gozo
Abstract:
Unavailability of adequate hydro-meteorological data has always limited the analysis and understanding of hydrological behaviour of several dam catchments including Mazowe Dam in Zimbabwe. The problem of insufficient data for Mazowe Dam catchment analysis was solved by extracting catchment characteristics and aerial hydro-meteorological data from ASTER, LANDSAT, Shuttle Radar Topographic Mission SRTM remote sensing (RS) images using ILWIS, ArcGIS and ERDAS Imagine geographic information systems (GIS) software. Available observed hydrological as well as meteorological data complemented the use of the remotely sensed information. Ground truth land cover was mapped using a Garmin Etrex global positioning system (GPS) system. This information was then used to validate land cover classification detail that was obtained from remote sensing images. A bathymetry survey was conducted using a SONAR system connected to GPS. Hydrological modelling using the HBV model was then performed to simulate the hydrological process of the catchment in an effort to verify the reliability of the derived parameters. The model output shows a high Nash-Sutcliffe Coefficient that is close to 1 indicating that the parameters derived from remote sensing and GIS can be applied with confidence in the analysis of Mazowe Dam catchment.Keywords: geographic information systems, hydrological modelling, remote sensing, water resources management
Procedia PDF Downloads 336681 Assessing the Impact of Urbanization on Flood Risk: A Case Study
Authors: Talha Ahmed, Ishtiaq Hassan
Abstract:
Urban areas or metropolitan is portrayed by the very high density of population due to the result of these economic activities. Some critical elements, such as urban expansion and climate change, are driving changes in cities with exposure to the incidence and impacts of pluvial floods. Urban communities are recurrently developed by huge spaces by which water cannot enter impermeable surfaces, such as man-made permanent surfaces and structures, which do not cause the phenomena of infiltration and percolation. Urban sprawl can result in increased run-off volumes, flood stage and flood extents during heavy rainy seasons. The flood risks require a thorough examination of all aspects affecting to severe an event in order to accurately estimate their impacts and other risk factors associated with them. For risk evaluation and its impact due to urbanization, an integrated hydrological modeling approach is used on the study area in Islamabad (Pakistan), focusing on a natural water body that has been adopted in this research. The vulnerability of the physical elements at risk in the research region is analyzed using GIS and SOBEK. The supervised classification of land use containing the images from 1980 to 2020 is used. The modeling of DEM with selected return period is used for modeling a hydrodynamic model for flood event inundation. The selected return periods are 50,75 and 100 years which are used in flood modeling. The findings of this study provided useful information on high-risk places and at-risk properties.Keywords: urbanization, flood, flood risk, GIS
Procedia PDF Downloads 175680 A Comprehensive Review on Health Hazards and Challenges for Microbial Remediation of Persistent Organic Pollutants
Authors: Nisha Gaur, K.Narasimhulu, Pydi Setty Yelamarthy
Abstract:
Persistent organic pollutants (POPs) have become a great concern due to their toxicity, transformation and bioaccumulation property. Therefore, this review highlights the types, sources, classification health hazards and mobility of organochlorine pesticides, industrial chemicals and their by-products. Moreover, with the signing of Aarhus and Stockholm convention on POPs there is an increased demand to identify and characterise such chemicals from industries and environment which are toxic in nature or to existing biota. Due to long life, persistent nature they enter into body through food and transfer to all tropic levels of ecological unit. In addition, POPs are lipophilic in nature and accumulate in lipid-containing tissues and organs which further indicates the adverse symptoms after the threshold limit. Though, several potential enzymes are reported from various categories of microorganism and their interaction with POPs may break down the complex compounds either through biodegradation, biostimulation or bioaugmentation process, however technological advancement and human activities have also indicated to explore the possibilities for the role of genetically modified organisms and metagenomics and metabolomics. Though many studies have been done to develop low cost, effective and reliable method for detection, determination and removal of ultra-trace concentration of persistent organic pollutants (POPs) but due to insufficient knowledge and non-feasibility of technique, the safe management of POPs is still a global challenge.Keywords: persistent organic pollutants, bioaccumulation, biostimulation, microbial remediation
Procedia PDF Downloads 298679 Staphylococcus argenteus: An Emerging Subclinical Bovine Mastitis Pathogen in Thailand
Authors: Natapol Pumipuntu
Abstract:
Staphylococcus argenteus is the emerging species of S. aureus complex. It was generally misidentified as S. aureus by standard techniques and their features. S. argenteus is possibly emerging in both humans and animals, as well as increasing worldwide distribution. The objective of this study was to differentiate and identify S. argenteus from S. aureus, which has been collected and isolated from milk samples of subclinical bovine mastitis cases in Maha Sarakham province, Northeastern of Thailand. Twenty-one isolates of S. aureus, which confirmed by conventional methods and immune-agglutination method were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and multilocus sequence typing (MLST). The result from MALDI-TOF MS and MLST showed 6 from 42 isolates were confirmed as S. argenteus, and 36 isolates were S. aureus, respectively. This study indicated that the identification and classification method by using MALDI-TOF MS and MLST could accurately differentiate the emerging species, S. argenteus, from S. aureus complex which usually misdiagnosed. In addition, the identification of S. argenteus seems to be very limited despite the fact that it may be the important causative pathogen in bovine mastitis as well as pathogenic bacteria in food and milk. Therefore, it is very necessary for both bovine medicine and veterinary public health to emphasize and recognize this bacterial pathogen as the emerging disease of Staphylococcal bacteria and need further study about S. argenteus infection.Keywords: Staphylococcus argenteus, subclinical bovine mastitis, Staphylococcus aureus complex, mass spectrometry, MLST
Procedia PDF Downloads 151678 Design of an Ensemble Learning Behavior Anomaly Detection Framework
Authors: Abdoulaye Diop, Nahid Emad, Thierry Winter, Mohamed Hilia
Abstract:
Data assets protection is a crucial issue in the cybersecurity field. Companies use logical access control tools to vault their information assets and protect them against external threats, but they lack solutions to counter insider threats. Nowadays, insider threats are the most significant concern of security analysts. They are mainly individuals with legitimate access to companies information systems, which use their rights with malicious intents. In several fields, behavior anomaly detection is the method used by cyber specialists to counter the threats of user malicious activities effectively. In this paper, we present the step toward the construction of a user and entity behavior analysis framework by proposing a behavior anomaly detection model. This model combines machine learning classification techniques and graph-based methods, relying on linear algebra and parallel computing techniques. We show the utility of an ensemble learning approach in this context. We present some detection methods tests results on an representative access control dataset. The use of some explored classifiers gives results up to 99% of accuracy.Keywords: cybersecurity, data protection, access control, insider threat, user behavior analysis, ensemble learning, high performance computing
Procedia PDF Downloads 128677 Segmentation of Liver Using Random Forest Classifier
Authors: Gajendra Kumar Mourya, Dinesh Bhatia, Akash Handique, Sunita Warjri, Syed Achaab Amir
Abstract:
Nowadays, Medical imaging has become an integral part of modern healthcare. Abdominal CT images are an invaluable mean for abdominal organ investigation and have been widely studied in the recent years. Diagnosis of liver pathologies is one of the major areas of current interests in the field of medical image processing and is still an open problem. To deeply study and diagnose the liver, segmentation of liver is done to identify which part of the liver is mostly affected. Manual segmentation of the liver in CT images is time-consuming and suffers from inter- and intra-observer differences. However, automatic or semi-automatic computer aided segmentation of the Liver is a challenging task due to inter-patient Liver shape and size variability. In this paper, we present a technique for automatic segmenting the liver from CT images using Random Forest Classifier. Random forests or random decision forests are an ensemble learning method for classification that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes of the individual trees. After comparing with various other techniques, it was found that Random Forest Classifier provide a better segmentation results with respect to accuracy and speed. We have done the validation of our results using various techniques and it shows above 89% accuracy in all the cases.Keywords: CT images, image validation, random forest, segmentation
Procedia PDF Downloads 313676 Estimating Air Particulate Matter 10 Using Satellite Data and Analyzing Its Annual Temporal Pattern over Gaza Strip, Palestine
Authors: ِAbdallah A. A. Shaheen
Abstract:
Gaza Strip faces economic and political issues such as conflict, siege and urbanization; all these have led to an increase in the air pollution over Gaza Strip. In this study, Particulate matter 10 (PM10) concentration over Gaza Strip has been estimated by Landsat Thematic Mapper (TM) and Landsat Enhanced Thematic Mapper Plus (ETM+) data, based on a multispectral algorithm. Simultaneously, in-situ measurements for the corresponding particulate are acquired for selected time period. Landsat and ground data for eleven years are used to develop the algorithm while four years data (2002, 2006, 2010 and 2014) have been used to validate the results of algorithm. The developed algorithm gives highest regression, R coefficient value i.e. 0.86; RMSE value as 9.71 µg/m³; P values as 0. Average validation of algorithm show that calculated PM10 strongly correlates with measured PM10, indicating high efficiency of algorithm for the mapping of PM10 concentration during the years 2000 to 2014. Overall results show increase in minimum, maximum and average yearly PM10 concentrations, also presents similar trend over urban area. The rate of urbanization has been evaluated by supervised classification of the Landsat image. Urban sprawl from year 2000 to 2014 results in a high concentration of PM10 in the study area.Keywords: PM10, landsat, atmospheric reflectance, Gaza strip, urbanization
Procedia PDF Downloads 253675 Land Suitability Approach as an Effort to Design a Sustainable Tourism Area in Pacet Mojokerto
Authors: Erina Wulansari, Bambang Soemardiono, Ispurwono Soemarno
Abstract:
Designing sustainable tourism area is defined as an attempt to design an area, that brings the natural environmental conditions as components are available with a wealth of social conditions and the conservation of natural and cultural heritage. To understanding tourism area in this study is not only focus on the location of the tourist object, but rather to a tourist attraction around the area, tourism objects such as the existence of residential area (settlement), a commercial area, public service area, and the natural environmental area. The principle of success in designing a sustainable tourism area is able to integrate and balance between the limited space and the variety of activities that’s always continuously to growth up. The limited space in this area of tourism needs to be managed properly to minimize the damage of environmental as a result of tourism activities hue. This research aims to identify space in this area of tourism through land suitability approach as an effort to create a sustainable design, especially in terms of ecological. This study will be used several analytical techniques to achieve the research objectives as superimposing analysis with GIS 9.3 software and Analysis Hierarchy Process. Expected outcomes are in the form of classification and criteria of usable space in designing embodiment tourism area. In addition, this study can provide input to the order of settlement patterns as part of the environment in the area of sustainable tourism.Keywords: sustainable tourism area, land suitability, limited space, environment, criteria
Procedia PDF Downloads 503674 Using Computer Vision to Detect and Localize Fractures in Wrist X-ray Images
Authors: John Paul Q. Tomas, Mark Wilson L. de los Reyes, Kirsten Joyce P. Vasquez
Abstract:
The most frequent type of fracture is a wrist fracture, which often makes it difficult for medical professionals to find and locate. In this study, fractures in wrist x-ray pictures were located and identified using deep learning and computer vision. The researchers used image filtering, masking, morphological operations, and data augmentation for the image preprocessing and trained the RetinaNet and Faster R-CNN models with ResNet50 backbones and Adam optimizers separately for each image filtering technique and projection. The RetinaNet model with Anisotropic Diffusion Smoothing filter trained with 50 epochs has obtained the greatest accuracy of 99.14%, precision of 100%, sensitivity/recall of 98.41%, specificity of 100%, and an IoU score of 56.44% for the Posteroanterior projection utilizing augmented data. For the Lateral projection using augmented data, the RetinaNet model with an Anisotropic Diffusion filter trained with 50 epochs has produced the highest accuracy of 98.40%, precision of 98.36%, sensitivity/recall of 98.36%, specificity of 98.43%, and an IoU score of 58.69%. When comparing the test results of the different individual projections, models, and image filtering techniques, the Anisotropic Diffusion filter trained with 50 epochs has produced the best classification and regression scores for both projections.Keywords: Artificial Intelligence, Computer Vision, Wrist Fracture, Deep Learning
Procedia PDF Downloads 73673 Intelligent Fishers Harness Aquatic Organisms and Climate Change
Authors: Shih-Fang Lo, Tzu-Wei Guo, Chih-Hsuan Lee
Abstract:
Tropical fisheries are vulnerable to the physical and biogeochemical oceanic changes associated with climate change. Warmer temperatures and extreme weather have beendamaging the abundance and growth patterns of aquatic organisms. In recent year, the shrinking of fish stock and labor shortage have increased the threat to global aquacultural production. Thus, building a climate-resilient and sustainable mechanism becomes an urgent, important task for global citizens. To tackle the problem, Taiwanese fishermen applies the artificial intelligence (AI) technology. In brief, the AI system (1) measures real-time water quality and chemical parameters infish ponds; (2) monitors fish stock through segmentation, detection, and classification; and (3) implements fishermen’sprevious experiences, perceptions, and real-life practices. Applying this system can stabilize the aquacultural production and potentially increase the labor force. Furthermore, this AI technology can build up a more resilient and sustainable system for the fishermen so that they can mitigate the influence of extreme weather while maintaining or even increasing their aquacultural production. In the future, when the AI system collected and analyzed more and more data, it can be applied to different regions of the world or even adapt to the future technological or societal changes, continuously providing the most relevant and useful information for fishermen in the world.Keywords: aquaculture, artificial intelligence (AI), real-time system, sustainable fishery
Procedia PDF Downloads 111672 Gender Differences in Adolescent Avatars: Gender Consistency and Masculinity-Femininity of Nicknames and Characters
Authors: Monika Paleczna, Małgorzata Holda
Abstract:
Choosing an avatar's gender in a computer game is one of the key elements in the process of creating an online identity. The selection of a male or female avatar can define the entirety of subsequent decisions regarding both appearance and behavior. However, when the most popular games available for the Nintendo console in 1998 were analyzed, it turned out that 41% of computer games did not have female characters. Nowadays, players create their avatars based mainly on binary gender classification, with male and female characters to choose from. The main aim of the poster is to explore gender differences in adolescent avatars. 130 adolescents aged 15-17 participated in the study. They created their avatars and then played a computer game. The creation of the avatar was based on the choice of gender, then physical and mental characteristics. Data on gender consistency (consistency between participant’s sex and gender selected for the avatar) and masculinity-femininity of avatar nicknames and appearance will be presented. The masculinity-femininity of avatar nicknames and appearance was assessed by expert raters on a very masculine to very feminine scale. Additionally, data on the relationships of the perceived levels of masculinity-femininity with hostility-friendliness and the intelligence of avatars will be shown. The dimensions of hostility-friendliness and intelligence were also assessed by expert raters on scales ranging from very hostile to very friendly and from very low intelligence to very high intelligence.Keywords: gender, avatar, adolescence, computer games
Procedia PDF Downloads 214671 Baseline Study for Performance Evaluation of New Generation Solar Insulation Films for Windows: A Test Bed in Singapore
Authors: Priya Pawar, Rithika Susan Thomas, Emmanuel Blonkowski
Abstract:
Due to the solar geometry of Singapore, which lay within the geographical classification of equatorial tropics, there is a great deal of thermal energy transfer to the inside of the buildings. With changing face of economic development of cities like Singapore, more and more buildings are designed to be lightweight using transparent construction materials such as glass. Increased demand for energy efficiency and reduced cooling load demands make it important for building designer and operators to adopt new and non-invasive technologies to achieve building energy efficiency targets. A real time performance evaluation study was undertaken at School of Art Design and Media (SADM), Singapore, to determine the efficiency potential of a new generation solar insulation film. The building has a window to wall ratio (WWR) of 100% and is fitted with high performance (low emissivity) double glazed units. The empirical data collected was then used to calibrate a computerized simulation model to understand the annual energy consumption based on existing conditions (baseline performance). It was found that the correlations of various parameters such as solar irradiance, solar heat flux, and outdoor air-temperatures quantification are significantly important to determine the cooling load during a particular period of testing.Keywords: solar insulation film, building energy efficiency, tropics, cooling load
Procedia PDF Downloads 193670 Identification and Classification of Gliadin Genes in Iranian Diploid Wheat
Authors: Jafar Ahmadi, Alireza Pour-Aboughadareh
Abstract:
Wheat is the first and the most important grain of the world and its bakery property is due to glutenin and gliadin qualities. Wheat seed proteins were divided into four groups according to solubility. Two groups are albumin and globulin dissolving in water and salt solutions possessing metabolic activities. Two other groups are inactive and non-dissolvable and contain glutelins or glutenins and prolamins or gliadins. Gliadins are major components of the storage proteins in wheat endosperm. Gliadin proteins are separated into three groups based on electrophoretic mobility: α/β-gliadin, γ-gliadin, and ω-gliadin. It seems that little information is available about gliadin genes in Iranian wild relatives of wheat. Thus, the aim of this study was the evaluation of the wheat wild relatives collected from different origins of Zagros Mountains in Iran, involving coding gliadin genes using specific primers. For this, forty accessions of Triticum boeoticum and Triticum urartu were selected. For each accession, genomic DNA was extracted and PCRs were performed in total volumes of 15 μl. The amplification products were separated on 1.5% agarose gels. In results, for Gli-2A locus, three allelic variants were detected by Gli-2As primer pairs. The sizes of PCR products for these alleles were 210, 490 and 700 bp. Only five (13%) and two accessions (5%) produced 700 and 490 bp fragments when their DNA was amplified with the Gli.As.2 primer pairs. However, 37 of the 40 accessions (93%) carried 210 bp allele, and three accessions (8%) did not yield any product for this marker. Therefore, these germplasm could be used as rich gene pool to broaden the genetic base of bread wheat.Keywords: diploied wheat, gliadin, Triticum boeoticum, Triticum urartu
Procedia PDF Downloads 251669 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm
Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn
Abstract:
Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.Keywords: binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct
Procedia PDF Downloads 225668 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home
Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.Keywords: situation-awareness, smart home, IoT, machine learning, classifier
Procedia PDF Downloads 422667 Relevance of the Variation in the Angulation of Palatal Throat Form to the Orientation of the Occlusal Plane- A Cephalometric Study
Authors: Sanath Kumar Shetty, Sanya Sinha, K. Kamalakanth Shenoy
Abstract:
The posterior reference for the ala tragal line is a cause of confusion, with different authors suggesting different locations as to the superior, middle or inferior part of the tragus. This study was conducted on 200 subjects to evaluate if any correlation exists between the variation of angulation of palatal throat form and the relative parallelism of occlusal plane to ala-tragal line at different tragal levels. A Custom made Occlusal Plane Analyzer was used to check the parallelism between the ala-tragal line and occlusal plane. A lateral cephalogram was shot for each subject to measure the angulation of the palatal throat form. Fisher’s exact test was used to evaluate the correlation between the angulation of the palatal throat form and the relative parallelism of occlusal plane to the ala tragal line. Also, a classification was formulated for the palatal throat form, based on confidence interval. From the results of the study, the inferior part, middle part and superior part of the tragus were seen as the reference points in 49.5%, 32% and 18.5% of the subjects respectively. Class I palatal throat form (41degree-50 degree), Class II palatal throat form (below 41 degree) and Class III palatal throat form (above 50 degree) were seen in 42%, 43% and 15% of the subjects respectively. It was also concluded that there is no significant correlation between the variation in the angulations of the palatal throat form and the relative parallelism of occlusal plane to the ala-tragal line.Keywords: Ala-Tragal line, occlusal plane, palatal throat form, cephalometry
Procedia PDF Downloads 310666 Hydrologic Impacts of Climate Change and Urbanization on Quetta Watershed, Pakistan
Authors: Malik Muhammad Akhtar, Tanzeel Khan
Abstract:
Various natural and anthropogenic factors are affecting recharge processes in urban areas due to intense urban expansion; land-use/landcover change (LULC) and climate considerably influence the ecosystem functions. In Quetta, a terrible transformation of LULC has occurred due to an increase in human population and rapid urbanization over the past years; according to the Pakistan Bureau of Statistics, the increase of population from 252,577 in 1972 to 2,275,699 in 2017 shows an abrupt rise which in turn has affected the aquifer recharge capability, vegetation, and precipitation at Quetta. This study focuses on the influence of population growth and LULC on groundwater table level by employing multi-temporal, multispectral satellite data during the selected years, i.e. 2014, 2017, and 2020. The results of land classification showed that barren land had shown a considerable decrease, whereas the urban area has increased over time from 152.4sq/km in 2014 to 195.5sq/km in 2017 to 283.3sq/km in 2020, whereas surface-water area coverage has increased since 2014 because of construction of few dams around the valley. Rapid urbanization stresses limited hydrology resources, and this needs to be addressed to conserve/sustain the resources through educating the local community, awareness regarding water use and climate change, and supporting artificial recharge of the aquifers.Keywords: climate changes, urbanization, GIS, land use, Quetta, watershed
Procedia PDF Downloads 123665 The Climate Impact Due to Clouds and Selected Greenhouse Gases by Short Wave Upwelling Radiative Flux within Spectral Range of Space-Orbiting Argus1000 Micro-Spectrometer
Authors: Rehan Siddiqui, Brendan Quine
Abstract:
The Radiance Enhancement (RE) and integrated absorption technique is applied to develop a synthetic model to determine the enhancement in radiance due to cloud scene and Shortwave upwelling Radiances (SHupR) by O2, H2O, CO2 and CH4. This new model is used to estimate the magnitude variation for RE and SHupR over spectral range of 900 nm to 1700 nm by varying surface altitude, mixing ratios and surface reflectivity. In this work, we employ satellite real observation of space orbiting Argus 1000 especially for O2, H2O, CO2 and CH4 together with synthetic model by using line by line GENSPECT radiative transfer model. All the radiative transfer simulations have been performed by varying over a different range of percentages of water vapor contents and carbon dioxide with the fixed concentration oxygen and methane. We calculate and compare both the synthetic and real measured observed data set of different week per pass of Argus flight. Results are found to be comparable for both approaches, after allowing for the differences with the real and synthetic technique. The methodology based on RE and SHupR of the space spectral data can be promising for the instant and reliable classification of the cloud scenes.Keywords: radiance enhancement, radiative transfer, shortwave upwelling radiative flux, cloud reflectivity, greenhouse gases
Procedia PDF Downloads 336664 Major Depressive Disorder: Diagnosis based on Electroencephalogram Analysis
Authors: Wajid Mumtaz, Aamir Saeed Malik, Syed Saad Azhar Ali, Mohd Azhar Mohd Yasin
Abstract:
In this paper, a technique based on electroencephalogram (EEG) analysis is presented, aiming for diagnosing major depressive disorder (MDD) among a potential population of MDD patients and healthy controls. EEG is recognized as a clinical modality during applications such as seizure diagnosis, index for anesthesia, detection of brain death or stroke. However, its usability for psychiatric illnesses such as MDD is less studied. Therefore, in this study, for the sake of diagnosis, 2 groups of study participants were recruited, 1) MDD patients, 2) healthy people as controls. EEG data acquired from both groups were analyzed involving inter-hemispheric asymmetry and composite permutation entropy index (CPEI). To automate the process, derived quantities from EEG were utilized as inputs to classifier such as logistic regression (LR) and support vector machine (SVM). The learning of these classification models was tested with a test dataset. Their learning efficiency is provided as accuracy of classifying MDD patients from controls, their sensitivities and specificities were reported, accordingly (LR =81.7 % and SVM =81.5 %). Based on the results, it is concluded that the derived measures are indicators for diagnosing MDD from a potential population of normal controls. In addition, the results motivate further exploring other measures for the same purpose.Keywords: major depressive disorder, diagnosis based on EEG, EEG derived features, CPEI, inter-hemispheric asymmetry
Procedia PDF Downloads 546663 Data Mining Approach: Classification Model Evaluation
Authors: Lubabatu Sada Sodangi
Abstract:
The rapid growth in exchange and accessibility of information via the internet makes many organisations acquire data on their own operation. The aim of data mining is to analyse the different behaviour of a dataset using observation. Although, the subset of the dataset being analysed may not display all the behaviours and relationships of the entire data and, therefore, may not represent other parts that exist in the dataset. There is a range of techniques used in data mining to determine the hidden or unknown information in datasets. In this paper, the performance of two algorithms Chi-Square Automatic Interaction Detection (CHAID) and multilayer perceptron (MLP) would be matched using an Adult dataset to find out the percentage of an/the adults that earn > 50k and those that earn <= 50k per year. The two algorithms were studied and compared using IBM SPSS statistics software. The result for CHAID shows that the most important predictors are relationship and education. The algorithm shows that those are married (husband) and have qualification: Bachelor, Masters, Doctorate or Prof-school whose their age is > 41<57 earn > 50k. Also, multilayer perceptron displays marital status and capital gain as the most important predictors of the income. It also shows that individuals that their capital gain is less than 6,849 and are single, separated or widow, earn <= 50K, whereas individuals with their capital gain is > 6,849, work > 35 hrs/wk, and > 27yrs their income will be > 50k. By comparing the two algorithms, it is observed that both algorithms are reliable but there is strong reliability in CHAID which clearly shows that relation and education contribute to the prediction as displayed in the data visualisation.Keywords: data mining, CHAID, multi-layer perceptron, SPSS, Adult dataset
Procedia PDF Downloads 378662 Proposed Framework based on Classification of Vertical Handover Decision Strategies in Heterogeneous Wireless Networks
Authors: Shidrokh Goudarzi, Wan Haslina Hassan
Abstract:
Heterogeneous wireless networks are converging towards an all-IP network as part of the so-called next-generation network. In this paradigm, different access technologies need to be interconnected; thus, vertical handovers or vertical handoffs are necessary for seamless mobility. In this paper, we conduct a review of existing vertical handover decision-making mechanisms that aim to provide ubiquitous connectivity to mobile users. To offer a systematic comparison, we categorize these vertical handover measurement and decision structures based on their respective methodology and parameters. Subsequently, we analyze several vertical handover approaches in the literature and compare them according to their advantages and weaknesses. The paper compares the algorithms based on the network selection methods, complexity of the technologies used and efficiency in order to introduce our vertical handover decision framework. We find that vertical handovers on heterogeneous wireless networks suffer from the lack of a standard and efficient method to satisfy both user and network quality of service requirements at different levels including architectural, decision-making and protocols. Also, the consolidation of network terminal, cross-layer information, multi packet casting and intelligent network selection algorithm appears to be an optimum solution for achieving seamless service continuity in order to facilitate seamless connectivity.Keywords: heterogeneous wireless networks, vertical handovers, vertical handover metric, decision-making algorithms
Procedia PDF Downloads 393661 Health Care Waste Management Practices in Liberia: An Investigative Case Study
Authors: V. Emery David Jr., J. Wenchao, D. Mmereki, Y. John, F. Heriniaina
Abstract:
Healthcare waste management continues to present an array of challenges for developing countries, and Liberia is of no exception. There is insufficient information available regarding the generation, handling, and disposal of health care waste. This face serves as an impediment to healthcare management schemes. The specific objective of this study is to present an evaluation of the current health care management practices in Liberia. It also presented procedures, techniques used, methods of handling, transportation, and disposal methods of wastes as well as the quantity and composition of health care waste. This study was conducted as an investigative case study, covering three different health care facilities; a hospital, a health center, and a clinic in Monrovia, Montserrado County. The average waste generation was found to be 0-7kg per day at the clinic and health center and 8-15kg per/day at the hospital. The composition of the waste includes hazardous and non-hazardous waste i.e. plastic, papers, sharps, and pathological elements etc. Nevertheless, the investigation showed that the healthcare waste generated by the surveyed healthcare facilities were not properly handled because of insufficient guidelines for separate collection, and classification, and adequate methods for storage and proper disposal of generated wastes. This therefore indicates that there is a need for improvement within the healthcare waste management system to improve the existing situation.Keywords: disposal, healthcare waste, management, Montserrado County, Monrovia
Procedia PDF Downloads 345660 Attachment Patterns in a Sample of South African Children at Risk in Middle Childhood
Authors: Renate Gericke, Carol Long
Abstract:
Despite the robust empirical support of attachment, advancement in the description and conceptualization of attachment has been slow and has not significantly advanced beyond the identification of attachment security or type (namely, secure, avoidant, ambivalent and disorganized). This has continued despite papers arguing for theoretical refinement in the classification of attachment presentations. For thinking and practice to advance, it is critically important that these categories and their assessment be interrogated in different contexts and across developmental age. To achieve this, a quantitative design was used with descriptive and inferential statistics, and general linear models were employed to analyze the data. The Attachment Story Completion Test (ASCT) was administered to 105 children between the ages of eight and twelve from socio-economically deprived contexts with high exposure to trauma. A staggering 93% of the children had insecure attachments (specifically, avoidant 37%, disorganized 34% and ambivalent 22%) and attachment was more complex than currently conceptualized in the attachment literature. Primary attachment did not only present as one of four discreet categories, but 70% of the sample had a complex attachment with more than one type of maternal attachment style. Attachment intensity also varied along a continuum (between 1 and 5). The findings have implications for a) research that has not considered the potential complexity of attachment or attachment intensity, b) policy to more actively support mother-infant dyads, particularly in high-risk contexts and c) question the applicability of a western conceptualization of a primary maternal attachment figure in non-western collectivist societies.Keywords: attachment, children at risk, middle childhood, non-western context
Procedia PDF Downloads 192659 Principle Component Analysis on Colon Cancer Detection
Authors: N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Rita Magdalena, R. D. Atmaja, Sofia Saidah, Ocky Tiaramukti
Abstract:
Colon cancer or colorectal cancer is a type of cancer that attacks the last part of the human digestive system. Lymphoma and carcinoma are types of cancer that attack human’s colon. Colon cancer causes deaths about half a million people every year. In Indonesia, colon cancer is the third largest cancer case for women and second in men. Unhealthy lifestyles such as minimum consumption of fiber, rarely exercising and lack of awareness for early detection are factors that cause high cases of colon cancer. The aim of this project is to produce a system that can detect and classify images into type of colon cancer lymphoma, carcinoma, or normal. The designed system used 198 data colon cancer tissue pathology, consist of 66 images for Lymphoma cancer, 66 images for carcinoma cancer and 66 for normal / healthy colon condition. This system will classify colon cancer starting from image preprocessing, feature extraction using Principal Component Analysis (PCA) and classification using K-Nearest Neighbor (K-NN) method. Several stages in preprocessing are resize, convert RGB image to grayscale, edge detection and last, histogram equalization. Tests will be done by trying some K-NN input parameter setting. The result of this project is an image processing system that can detect and classify the type of colon cancer with high accuracy and low computation time.Keywords: carcinoma, colorectal cancer, k-nearest neighbor, lymphoma, principle component analysis
Procedia PDF Downloads 205658 Automatic Early Breast Cancer Segmentation Enhancement by Image Analysis and Hough Transform
Authors: David Jurado, Carlos Ávila
Abstract:
Detection of early signs of breast cancer development is crucial to quickly diagnose the disease and to define adequate treatment to increase the survival probability of the patient. Computer Aided Detection systems (CADs), along with modern data techniques such as Machine Learning (ML) and Neural Networks (NN), have shown an overall improvement in digital mammography cancer diagnosis, reducing the false positive and false negative rates becoming important tools for the diagnostic evaluations performed by specialized radiologists. However, ML and NN-based algorithms rely on datasets that might bring issues to the segmentation tasks. In the present work, an automatic segmentation and detection algorithm is described. This algorithm uses image processing techniques along with the Hough transform to automatically identify microcalcifications that are highly correlated with breast cancer development in the early stages. Along with image processing, automatic segmentation of high-contrast objects is done using edge extraction and circle Hough transform. This provides the geometrical features needed for an automatic mask design which extracts statistical features of the regions of interest. The results shown in this study prove the potential of this tool for further diagnostics and classification of mammographic images due to the low sensitivity to noisy images and low contrast mammographies.Keywords: breast cancer, segmentation, X-ray imaging, hough transform, image analysis
Procedia PDF Downloads 83657 Poli4SDG: An Application for Environmental Crises Management and Gender Support
Authors: Angelica S. Valeriani, Lorenzo Biasiolo
Abstract:
In recent years, the scale of the impact of climate change and its related side effects has become ever more massive and devastating. Sustainable Development Goals (SDGs), promoted by United Nations, aim to front issues related to climate change, among others. In particular, the project CROWD4SDG focuses on a bunch of SDGs since it promotes environmental activities and climate-related issues. In this context, we developed a prototype of an application, under advanced development considering web design, that focuses on SDG 13 (SDG on climate action) by providing users with useful instruments to face environmental crises and climate-related disasters. Our prototype is thought and structured for both web and mobile development. The main goal of the application, POLI4SDG, is to help users to get through emergency services. To this extent, an organized overview and classification prove to be very effective and helpful to people in need. A careful analysis of data related to environmental crises prompted us to integrate the user contribution, i.e., exploiting a core principle of Citizen Science, into the realization of a public catalog, available for consulting and organized according to typology and specific features. In addition, gender equality and opportunity features are considered in the prototype in order to allow women, often the most vulnerable category, to have direct support. The overall description of the application functionalities is detailed. Moreover, the implementation features and properties of the prototype are discussed.Keywords: crowdsourcing, social media, SDG, climate change, natural disasters, gender equality
Procedia PDF Downloads 110656 Gender Inequality and Human Trafficking
Authors: Kimberly McCabe
Abstract:
The trafficking of women and children for abuse and exploitation is not a new problem under the umbrella of human trafficking; however, over the last decade, the problem has attracted increased attention from international governments and non-profits attempting to reduce victimization and provide services for survivors. Research on human trafficking suggests that the trafficking of human beings is, largely, a symptom of poverty. As the trafficking of human beings may be viewed as a response to the demand for people for various forms of exploitation, a product of poverty, and a consequence of the subordinate positions of women and children in society, it reaches beyond randomized victimization. Hence, human trafficking, and especially the trafficking of women and children, goes beyond the realm of poorness. Therefore, to begin to understand the reasons for the existence of human trafficking, one must identify and consider not only the immediate causes but also those underlying structural determinants that facilitate this form of victimization. Specifically, one must acknowledge the economic, social, and cultural factors that support human trafficking. This research attempts to study human trafficking at the country level by focusing on economic, social, and cultural characteristics. This study focuses on inequality and, in particular, gender inequality as related to legislative attempts to address human trafficking. Within the design of this project is the use of the US State Department’s tier classification system for Trafficking in Persons (TIP) and the USA CIA Fact Sheet of country characteristics for over 150 countries in an attempt to model legal outcomes as related to human trafficking. Results of this research demonstrate the significance of characteristics beyond poverty as related to country-level responses to human trafficking.Keywords: child trafficking, gender inequality, human trafficking, inequality
Procedia PDF Downloads 240655 A Prospective Study of a Modified Pin-In-Plaster Technique for Treatment of Distal Radius Fractures
Authors: S. alireza Mirghasemi, Shervin Rashidinia, Mohammadsaleh Sadeghi, Mohsen Talebizadeh, Narges Rahimi Gabaran, S. Shahin Eftekhari, Sara Shahmoradi
Abstract:
Purpose: There are various pin-in-plaster methods for treating distal radius fractures. This study is meant to introduce a modified technique of pin-in-plaster. Materials and methods: Fifty-four patients with distal radius fractures were followed up for one year. Patients were excluded if they had type B fractures according to AO classification, multiple injuries or pathological fractures, and were treated more than 7 days after injury. Range of motion and functional results were evaluated. Radiographic parameters including radial inclination, tilt, and height, were measured preoperatively and postoperatively. Results: The average radial tilt was 10.6° and radial height was 10.2 mm at the sixth month postoperatively. Three cases of pin tract infection were recorded, who were treated totally with oral antibiotics. There was no case of pin loosening. Of total 73 patients underwent surgery, three cases of radial nerve irritation were recorded at the time of cast removal. All of them resolved at the 6th month follow up. No median nerve compression and carpal tunnel syndrome have found. We also had no case of tendon injury. Conclusion: Our modified technique is effective to restore anatomic congruity and maintain reduction.Keywords: distal radius fracture, percutaneous pinning, pin-in-plaster, modified method of pin-in-plaster, operative treatment
Procedia PDF Downloads 509654 D3Advert: Data-Driven Decision Making for Ad Personalization through Personality Analysis Using BiLSTM Network
Authors: Sandesh Achar
Abstract:
Personalized advertising holds greater potential for higher conversion rates compared to generic advertisements. However, its widespread application in the retail industry faces challenges due to complex implementation processes. These complexities impede the swift adoption of personalized advertisement on a large scale. Personalized advertisement, being a data-driven approach, necessitates consumer-related data, adding to its complexity. This paper introduces an innovative data-driven decision-making framework, D3Advert, which personalizes advertisements by analyzing personalities using a BiLSTM network. The framework utilizes the Myers–Briggs Type Indicator (MBTI) dataset for development. The employed BiLSTM network, specifically designed and optimized for D3Advert, classifies user personalities into one of the sixteen MBTI categories based on their social media posts. The classification accuracy is 86.42%, with precision, recall, and F1-Score values of 85.11%, 84.14%, and 83.89%, respectively. The D3Advert framework personalizes advertisements based on these personality classifications. Experimental implementation and performance analysis of D3Advert demonstrate a 40% improvement in impressions. D3Advert’s innovative and straightforward approach has the potential to transform personalized advertising and foster widespread personalized advertisement adoption in marketing.Keywords: personalized advertisement, deep Learning, MBTI dataset, BiLSTM network, NLP.
Procedia PDF Downloads 44653 BIM-Based Tool for Sustainability Assessment and Certification Documents Provision
Authors: Taki Eddine Seghier, Mohd Hamdan Ahmad, Yaik-Wah Lim, Samuel Opeyemi Williams
Abstract:
The assessment of building sustainability to achieve a specific green benchmark and the preparation of the required documents in order to receive a green building certification, both are considered as major challenging tasks for green building design team. However, this labor and time-consuming process can take advantage of the available Building Information Modeling (BIM) features such as material take-off and scheduling. Furthermore, the workflow can be automated in order to track potentially achievable credit points and provide rating feedback for several design options by using integrated Visual Programing (VP) to handle the stored parameters within the BIM model. Hence, this study proposes a BIM-based tool that uses Green Building Index (GBI) rating system requirements as a unique input case to evaluate the building sustainability in the design stage of the building project life cycle. The tool covers two key models for data extraction, firstly, a model for data extraction, calculation and the classification of achievable credit points in a green template, secondly, a model for the generation of the required documents for green building certification. The tool was validated on a BIM model of residential building and it serves as proof of concept that building sustainability assessment of GBI certification can be automatically evaluated and documented through BIM.Keywords: green building rating system, GBRS, building information modeling, BIM, visual programming, VP, sustainability assessment
Procedia PDF Downloads 326