Search results for: single element
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7286

Search results for: single element

5786 Cardioprotective Effect of Oleanolic Acid and Urosolic Acid against Doxorubicin-Induced Cardiotoxicity in Rats

Authors: Sameer N. Goyal, Chandragauda R. Patil

Abstract:

Oleanolic acid (3/3-hydroxy-olea-12-en-28-oic acid) and its isomer, Ursolic acid (38-hydroxy-urs-12-en-28-oic acid) are triterpenoids compounds which exist widely in plant kingdom in the free acid form or as glycosidic triterpenoids saponins. The aim of the study is to evaluate intravenously administered oleanolic acid and ursolic acid in doxorubicin induced cardiotoxicity. Cardiotoxicity was induced in albino wistar rat with single intravenous injection of doxorubicin at dose of 67.75mg/kg i.v for 48 hrs at 12 hrs interval following doxorubicin administration in the same model cardioprotective effect of amifostine (90 mg/kg i.v, single dose prior 30 min before doxorubicin administration) was evaluated as standard treatment. Induction of cardiotoxicity was confirmed by rise in cardiac markers in serum such as CK–MB, LDH and also by electrocardiographically. The doxorubicin treated group significantly increased in QT interval, serum CK-MB, serum LDH, SGOT, SGPT and antioxidant parameter. Both the treatment group showed significant protective effect on Hemodynamic, electrocardiographic, biochemical, and antioxidant parameters. The oleanolic acid showed slight protective effect in histological lesions in doxorubicin induced cardiotoxicity. Hence, the results indicate that Oleanolic acid has more cardioprotective potential than ursolic acid against doxorubicin induced cardiotoxicity in rats.

Keywords: cardioprotection, doxorubicin, oleanolic acid, ursolic acid

Procedia PDF Downloads 504
5785 Finite Element Study of Coke Shape Deep Beam to Column Moment Connection Subjected to Cyclic Loading

Authors: Robel Wondimu Alemayehu, Sihwa Jung, Manwoo Park, Young K. Ju

Abstract:

Following the aftermath of the 1994 Northridge earthquake, intensive research on beam to column connections is conducted, leading to the current design basis. The current design codes require the use of either a prequalified connection or a connection that passes the requirements of large-scale cyclic qualification test prior to use in intermediate or special moment frames. The second alternative is expensive both in terms of money and time. On the other hand, the maximum beam depth in most of the prequalified connections is limited to 900mm due to the reduced rotation capacity of deeper beams. However, for long span beams the need to use deeper beams may arise. In this study, a beam to column connection detail suitable for deep beams is presented. The connection detail comprises of thicker-tapered beam flange adjacent to the beam to column connection. Within the thicker-tapered flange region, two reduced beam sections are provided with the objective of forming two plastic hinges within the tapered-thicker flange region. In addition, the length, width, and thickness of the tapered-thicker flange region are proportioned in such a way that a third plastic hinge forms at the end of the tapered-thicker flange region. As a result, the total rotation demand is distributed over three plastic zones. Making it suitable for deeper beams that have lower rotation capacity at one plastic hinge. The effectiveness of this connection detail is studied through finite element analysis. For the study, a beam that has a depth of 1200mm is used. Additionally, comparison with welded unreinforced flange-welded web (WUF-W) moment connection and reduced beam section moment connection is made. The results show that the rotation capacity of a WUF-W moment connection is increased from 2.0% to 2.2% by applying the proposed moment connection detail. Furthermore, the maximum moment capacity, energy dissipation capacity and stiffness of the WUF-W moment connection is increased up to 58%, 49%, and 32% respectively. In contrast, applying the reduced beam section detail to the same WUF-W moment connection reduced the rotation capacity from 2.0% to 1.50% plus the maximum moment capacity and stiffness of the connection is reduced by 22% and 6% respectively. The proposed connection develops three plastic hinge regions as intended and it shows improved performance compared to both WUF-W moment connection and reduced beam section moment connection. Moreover, the achieved rotation capacity satisfies the minimum required for use in intermediate moment frames.

Keywords: connections, finite element analysis, seismic design, steel intermediate moment frame

Procedia PDF Downloads 152
5784 Simulation, Design, and 3D Print of Novel Highly Integrated TEG Device with Improved Thermal Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 48
5783 A (Morpho) Phonological Typology of Demonstratives: A Case Study in Sound Symbolism

Authors: Seppo Kittilä, Sonja Dahlgren

Abstract:

In this paper, a (morpho)phonological typology of proximal and distal demonstratives is proposed. Only the most basic proximal (‘this’) and distal (‘that’) forms have been considered, potential more fine-grained distinctions based on proximity are not relevant to our discussion, nor are the other functions the discussed demonstratives may have. The sample comprises 82 languages that represent the linguistic diversity of the world’s languages, although the study is not based on a systematic sample. Four different major types are distinguished; (1) Vowel type: front vs. back; high vs. low vowel (2) Consonant type: front-back consonants (3) Additional element –type (4) Varia. The proposed types can further be subdivided according to whether the attested difference concern only, e.g., vowels, or whether there are also other changes. For example, the first type comprises both languages such as Betta Kurumba, where only the vowel changes (i ‘this’, a ‘that’) and languages like Alyawarra (nhinha vs. nhaka), where there are also other changes. In the second type, demonstratives are distinguished based on whether the consonants are front or back; typically front consonants (e.g., labial and dental) appear on proximal demonstratives and back consonants on distal demonstratives (such as velar or uvular consonants). An example is provided by Bunaq, where bari marks ‘this’ and baqi ‘that’. In the third type, distal demonstratives typically have an additional element, making it longer in form than the proximal one (e.g., Òko òne ‘this’, ònébé ‘that’), but the type also comprises languages where the distal demonstrative is simply phonologically longer (e.g., Ngalakan nu-gaʔye vs. nu-gunʔbiri). Finally, the last type comprises cases that do not fit into the three other types, but a number of strategies are used by the languages of this group. The two first types can be explained by iconicity; front or high phonemes appear on the proximal demonstratives, while back/low phonemes are related to distal demonstratives. This means that proximal demonstratives are pronounced at the front and/or high part of the oral cavity, while distal demonstratives are pronounced lower and more back, which reflects the proximal/distal nature of their referents in the physical world. The first type is clearly the most common in our data (40/82 languages), which suggests a clear association with iconicity. Our findings support earlier findings that proximal and distal demonstratives have an iconic phonemic manifestation. For example, it has been argued that /i/ is related to smallness (small distance). Consonants, however, have not been considered before, or no systematic correspondences have been discovered. The third type, in turn, can be explained by markedness; the distal element is more marked than the proximal demonstrative. Moreover, iconicity is relevant also here: some languages clearly use less linguistic substance for referring to entities close to the speaker, which is manifested in the longer (morpho)phonological form of the distal demonstratives. The fourth type contains different kinds of cases, and systematic generalizations are hard to make.

Keywords: demonstratives, iconicity, language typology, phonology

Procedia PDF Downloads 136
5782 Mathematical Model for Output Yield Obtained by Single Slope Solar Still

Authors: V. Nagaraju, G. Murali, Nagarjunavarma Ganna, Atluri Pavan Kalyan, N. Sree Sai Ganesh, V. S. V. S. Badrinath

Abstract:

The present work focuses on the development of a mathematical model for the yield obtained by single slope solar still incorporated with cylindrical pipes filled with sand. The mathematical results obtained were validated with the experimental results for the 3 cm of water level at the basin. The mathematical model and results obtained with the experimental investigation are within 11% of deviation. The theoretical model to predict the yield obtained due to the capillary effect was proposed first. And then, to predict the total yield obtained, the thermal effect model was integrated with the capillary effect model. With the obtained results, it is understood that the yield obtained is more in the case of solar stills with sand-filled cylindrical pipes when compared to solar stills without sand-filled cylindrical pipes. And later model was used for predicting yield for 1 cm and 2 cm of water levels at the basin. And it is observed that the maximum yield was obtained for a 1 cm water level at the basin. It means solar still produces better yield with the lower depth of water level at the basin; this may be because of the availability of more space in the sand for evaporation.

Keywords: solar still, cylindrical pipes, still efficiency, mathematical modeling, capillary effect model, yield, solar desalination

Procedia PDF Downloads 109
5781 Effect of Zirconium (Zr) Amount on Mechanical and Metallurgical Behavior of ZE41A Magnesium Alloy

Authors: Emrah Yaliniz, Ali Kalkanli

Abstract:

ZE41A magnesium alloy has been extensively used in aerospace industry, especially for use in rotorcraft transmission casings. Due to the improved mechanical properties, the latest generation of magnesium casting alloy EV31A-T6 (Elektron 21® specified in AMS 4429) is seen as a potential replacement for ZE41A in terms of strength. Therefore, the necessity of enhancement has been arisen for ZE41A in order to avoid fully replacement. The main element affecting the strength of ZE41A is Zirconium (Zr), which acts as a grain refiner. The specified range of Zr element for ZE41A alloy is between 0.4 wt % and 1.0 wt % (unless otherwise stated by weight percentage after this point) as stated in AMS 4439. This paper investigates the effects of Zr amount on tensile and metallurgical properties of ZE41A magnesium alloy. The Zr alloying amount for the research has been chosen as 0.5 % and 1 %, which are standard amounts in a commercial alloy (average of 0.4-0.6%) and maximum percent in the standard, separately. 1 % Zr amount has been achieved via Zirmax (66.7 Mg-33.3 Zr) master alloy addition. The ultimate tensile strength of ZE41A with 1% Zr has been increased up to about 220-225 MPa in comparison to 200 MPa given in AMS 4439. The reason for the increase in strength with the addition of Zirmax is based on the decrease in grain size, which was measured about 30 µm. Optical microscope, scanning electron microscopy (SEM) and X-ray Diffraction (XRD) were used to detect the change in the microstructural futures via alloying. The zirconium rich coring at the center of the grains was observed in addition to the grain boundary intermetallic phases and bulk Mg-rich matrix. The solidification characteristics were also identified by using the cooling curve obtained from the sand casting mold during cooling of the alloys.

Keywords: aerospace, grain refinement, magnesium, sand casting, ZE41A

Procedia PDF Downloads 301
5780 Modeling and Characterization of the SiC Single Crystal Growth Process

Authors: T. Wejrzanowski, M. Grybczuk, E. Tymicki, K. J. Kurzydlowski

Abstract:

In the present study numerical simulations silicon carbide single crystal growth process in Physical Vapor Transport reactor are addressed. Silicon Carbide is a perspective material for many applications in modern electronics. One of the main challenges for wider applications of SiC is high price of high quality mono crystals. Improvement of silicon carbide manufacturing process has a significant influence on the product price. Better understanding of crystal growth allows for optimization of the process, and it can be achieved by numerical simulations. In this work Virtual Reactor software was used to simulate the process. Predicted geometrical properties of the final product and information about phenomena occurring inside process reactor were obtained. The latter is especially valuable because reactor chamber is inaccessible during the process due to high temperature inside the reactor (over 2000˚C). Obtained data was used for improvement of the process and reactor geometry. Resultant crystal quality was also predicted basing on crystallization front shape evolution and threading dislocation paths. Obtained results were confronted with experimental data and the results are in good agreement.

Keywords: Finite Volume Method, semiconductors, Physical Vapor Transport, silicon carbide

Procedia PDF Downloads 516
5779 Characterization and Geochemical Modeling of Cu and Zn Sorption Using Mixed Mineral Systems Injected with Iron Sulfide under Sulfidic-Anoxic Conditions I: Case Study of Cwmheidol Mine Waste Water, Wales, United Kingdom

Authors: D. E. Egirani, J. E. Andrews, A. R. Baker

Abstract:

This study investigates sorption of Cu and Zn contained in natural mine wastewater, using mixed mineral systems in sulfidic-anoxic condition. The mine wastewater was obtained from disused mine workings at Cwmheidol in Wales, United Kingdom. These contaminants flow into water courses. These water courses include River Rheidol. In this River fishing activities exist. In an attempt to reduce Cu-Zn levels of fish intake in the watercourses, single mineral systems and 1:1 mixed mineral systems of clay and goethite were tested with the mine waste water for copper and zinc removal at variable pH. Modelling of hydroxyl complexes was carried out using phreeqc method. Reactions using batch mode technique was conducted at room temperature. There was significant differences in the behaviour of copper and zinc removal using mixed mineral systems when compared  to single mineral systems. All mixed mineral systems sorb more Cu than Zn when tested with mine wastewater.

Keywords: Cu- Zn, hydroxyl complexes, kinetics, mixed mineral systems, reactivity

Procedia PDF Downloads 484
5778 Seismic Performance Evaluation of the Composite Structural System with Separated Gravity and Lateral Resistant Systems

Authors: Zi-Ang Li, Mu-Xuan Tao

Abstract:

During the process of the industrialization of steel structure housing, a composite structural system with separated gravity and lateral resistant systems has been applied in engineering practices, which consists of composite frame with hinged beam-column joints, steel brace and RC shear wall. As an attempt in steel structural system area, seismic performance evaluation of the separated composite structure is important for further application in steel housing. This paper focuses on the seismic performance comparison of the separated composite structural system and traditional steel frame-shear wall system under the same inter-story drift ratio (IDR) provision limit. The same architectural layout of a high-rise building is designed as two different structural systems at the same IDR level, and finite element analysis using pushover method is carried out. Static pushover analysis implies that the separated structural system exhibits different lateral deformation mode and failure mechanism with traditional steel frame-shear wall system. Different indexes are adopted and discussed in seismic performance evaluation, including IDR, safe factor (SF), shear wall damage, etc. The performance under maximum considered earthquake (MCE) demand spectrum shows that the shear wall damage of two structural systems are similar; the separated composite structural system exhibits less plastic hinges; and the SF index value of the separated composite structural system is higher than the steel frame shear wall structural system.

Keywords: finite element analysis, new composite structural system, seismic performance evaluation, static pushover analysis

Procedia PDF Downloads 117
5777 Discrete Element Simulations of Composite Ceramic Powders

Authors: Julia Cristina Bonaldo, Christophe L. Martin, Severine Romero Baivier, Stephane Mazerat

Abstract:

Alumina refractories are commonly used in steel and foundry industries. These refractories are prepared through a powder metallurgy route. They are a mixture of hard alumina particles and graphite platelets embedded into a soft carbonic matrix (binder). The powder can be cold pressed isostatically or uniaxially, depending on the application. The compact is then fired to obtain the final product. The quality of the product is governed by the microstructure of the composite and by the process parameters. The compaction behavior and the mechanical properties of the fired product depend greatly on the amount of each phase, on their morphology and on the initial microstructure. In order to better understand the link between these parameters and the macroscopic behavior, we use the Discrete Element Method (DEM) to simulate the compaction process and the fracture behavior of the fired composite. These simulations are coupled with well-designed experiments. Four mixes with various amounts of Al₂O₃ and binder were tested both experimentally and numerically. In DEM, each particle is modelled and the interactions between particles are taken into account through appropriate contact or bonding laws. Here, we model a bimodal mixture of large Al₂O₃ and small Al₂O₃ covered with a soft binder. This composite is itself mixed with graphite platelets. X-ray tomography images are used to analyze the morphologies of the different components. Large Al₂O₃ particles and graphite platelets are modelled in DEM as sets of particles bonded together. The binder is modelled as a soft shell that covers both large and small Al₂O₃ particles. When two particles with binder indent each other, they first interact through this soft shell. Once a critical indentation is reached (towards the end of compaction), hard Al₂O₃ - Al₂O₃ contacts appear. In accordance with experimental data, DEM simulations show that the amount of Al₂O₃ and the amount of binder play a major role for the compaction behavior. The graphite platelets bend and break during the compaction, also contributing to the macroscopic stress. Firing step is modeled in DEM by ascribing bonds to particles which contact each other after compaction. The fracture behavior of the compacted mixture is also simulated and compared with experimental data. Both diametrical tests (Brazilian tests) and triaxial tests are carried out. Again, the link between the amount of Al₂O₃ particles and the fracture behavior is investigated. The methodology described here can be generalized to other particulate materials that are used in the ceramic industry.

Keywords: cold compaction, composites, discrete element method, refractory materials, x-ray tomography

Procedia PDF Downloads 129
5776 Proxisch: An Optimization Approach of Large-Scale Unstable Proxy Servers Scheduling

Authors: Xiaoming Jiang, Jinqiao Shi, Qingfeng Tan, Wentao Zhang, Xuebin Wang, Muqian Chen

Abstract:

Nowadays, big companies such as Google, Microsoft, which have adequate proxy servers, have perfectly implemented their web crawlers for a certain website in parallel. But due to lack of expensive proxy servers, it is still a puzzle for researchers to crawl large amounts of information from a single website in parallel. In this case, it is a good choice for researchers to use free public proxy servers which are crawled from the Internet. In order to improve efficiency of web crawler, the following two issues should be considered primarily: (1) Tasks may fail owing to the instability of free proxy servers; (2) A proxy server will be blocked if it visits a single website frequently. In this paper, we propose Proxisch, an optimization approach of large-scale unstable proxy servers scheduling, which allow anyone with extremely low cost to run a web crawler efficiently. Proxisch is designed to work efficiently by making maximum use of reliable proxy servers. To solve second problem, it establishes a frequency control mechanism which can ensure the visiting frequency of any chosen proxy server below the website’s limit. The results show that our approach performs better than the other scheduling algorithms.

Keywords: proxy server, priority queue, optimization algorithm, distributed web crawling

Procedia PDF Downloads 200
5775 Numerical Investigation of a Spiral Bladed Tidal Turbine

Authors: Mohammad Fereidoonnezhad, Seán Leen, Stephen Nash, Patrick McGarry

Abstract:

From the perspective of research innovation, the tidal energy industry is still in its early stages. While a very small number of turbines have progressed to utility-scale deployment, blade breakage is commonly reported due to the enormous hydrodynamic loading applied to devices. The aim of this study is the development of computer simulation technologies for the design of next-generation fibre-reinforced composite tidal turbines. This will require significant technical advances in the areas of tidal turbine testing and multi-scale computational modelling. The complex turbine blade profiles are designed to incorporate non-linear distributions of airfoil sections to optimize power output and self-starting capability while reducing power fluctuations. A number of candidate blade geometries are investigated, ranging from spiral geometries to parabolic geometries, with blades arranged in both cylindrical and spherical configurations on a vertical axis turbine. A combined blade element theory (BET-start-up model) is developed in MATLAB to perform computationally efficient parametric design optimisation for a range of turbine blade geometries. Finite element models are developed to identify optimal fibre-reinforced composite designs to increase blade strength and fatigue life. Advanced fluid-structure-interaction models are also carried out to compute blade deflections following design optimisation.

Keywords: tidal turbine, composite materials, fluid-structure-interaction, start-up capability

Procedia PDF Downloads 104
5774 Selection of Green Fluorescent Protein and mCherry Nanobodies Using the Yeast Surface Display Method

Authors: Lavinia Ruta, Ileana Farcasanu

Abstract:

The yeast surface display (YSD) technique enables the expression of proteins on yeast cell surfaces, facilitating the identification and isolation of proteins with targeted binding properties, such as nanobodies. Nanobodies, derived from camelid species, are single-domain antibody fragments renowned for their high affinity and specificity towards target proteins, making them valuable in research and potentially in therapeutics. Their advantages include a compact size (~15 kDa), robust stability, and the ability to target challenging epitopes. The project endeavors to establish and validate a platform for producing Green Fluorescent Protein (GFP) and mCherry nanobodies using the yeast surface display method. mCherry, a prevalent red fluorescent protein sourced from coral species, is commonly utilized as a genetic marker in biological studies due to its vibrant red fluorescence. The GFP-nanobody, a single variable domain of heavy-chain antibodies (VHH), exhibits specific binding to GFP, offering a potent means for isolating and engineering fluorescent protein fusions across various biological research domains. Both GFP and mCherry nanobodies find specific utility in cellular imaging and protein analysis applications.

Keywords: YSD, nanobodies, GFP, Saccharomyces cerevisiae

Procedia PDF Downloads 39
5773 Finite Element Analysis of Hollow Structural Shape (HSS) Steel Brace with Infill Reinforcement under Cyclic Loading

Authors: Chui-Hsin Chen, Yu-Ting Chen

Abstract:

Special concentrically braced frames is one of the seismic load resisting systems, which dissipates seismic energy when bracing members within the frames undergo yielding and buckling while sustaining their axial tension and compression load capacities. Most of the inelastic deformation of a buckling bracing member concentrates in the mid-length region. While experiencing cyclic loading, the region dissipates most of the seismic energy being input into the frame. Such a concentration makes the braces vulnerable to failure modes associated with low-cycle fatigue. In this research, a strategy to improve the cyclic behavior of the conventional steel bracing member is proposed by filling the Hollow Structural Shape (HSS) member with reinforcement. It prevents the local section from concentrating large plastic deformation caused by cyclic loading. The infill helps spread over the plastic hinge region into a wider area hence postpone the initiation of local buckling or even the rupture of the braces. The finite element method is introduced to simulate the complicated bracing member behavior and member-versus-infill interaction under cyclic loading. Fifteen 3-D-element-based models are built by ABAQUS software. The verification of the FEM model is done with unreinforced (UR) HSS bracing members’ cyclic test data and aluminum honeycomb plates’ bending test data. Numerical models include UR and filled HSS bracing members with various compactness ratios based on the specification of AISC-2016 and AISC-1989. The primary variables to be investigated include the relative bending stiffness and the material of the filling reinforcement. The distributions of von Mises stress and equivalent plastic strain (PEEQ) are used as indices to tell the strengths and shortcomings of each model. The result indicates that the change of relative bending stiffness of the infill is much more influential than the change of material in use to increase the energy dissipation capacity. Strengthen the relative bending stiffness of the reinforcement results in additional energy dissipation capacity to the extent of 24% and 46% in model based on AISC-2016 (16-series) and AISC-1989 (89-series), respectively. HSS members with infill show growth in 𝜂Local Buckling, normalized energy cumulated until the happening of local buckling, comparing to UR bracing members. The 89-series infill-reinforced members have more energy dissipation capacity than unreinforced 16-series members by 117% to 166%. The flexural rigidity of infills should be less than 29% and 13% of the member section itself for 16-series and 89-series bracing members accordingly, thereby guaranteeing the spread over of the plastic hinge and the happening of it within the reinforced section. If the parameters are properly configured, the ductility, energy dissipation capacity, and fatigue-life of HSS SCBF bracing members can be improved prominently by the infill-reinforced method.

Keywords: special concentrically braced frames, HSS, cyclic loading, infill reinforcement, finite element analysis, PEEQ

Procedia PDF Downloads 83
5772 Parameters Identification of Granular Soils around PMT Test by Inverse Analysis

Authors: Younes Abed

Abstract:

The successful application of in-situ testing of soils heavily depends on development of interpretation methods of tests. The pressuremeter test simulates the expansion of a cylindrical cavity and because it has well defined boundary conditions, it is more unable to rigorous theoretical analysis (i. e. cavity expansion theory) then most other in-situ tests. In this article, and in order to make the identification process more convenient, we propose a relatively simple procedure which involves the numerical identification of some mechanical parameters of a granular soil, especially, the elastic modulus and the friction angle from a pressuremeter curve. The procedure, applied here to identify the parameters of generalised prager model associated to the Drucker & Prager criterion from a pressuremeter curve, is based on an inverse analysis approach, which consists of minimizing the function representing the difference between the experimental curve and the curve obtained by integrating the model along the loading path in in-situ testing. The numerical process implemented here is based on the established finite element program. We present a validation of the proposed approach by a database of tests on expansion of cylindrical cavity. This database consists of four types of tests; thick cylinder tests carried out on the Hostun RF sand, pressuremeter tests carried out on the Hostun sand, in-situ pressuremeter tests carried out at the site of Fos with marine self-boring pressuremeter and in-situ pressuremeter tests realized on the site of Labenne with Menard pressuremeter.

Keywords: granular soils, cavity expansion, pressuremeter test, finite element method, identification procedure

Procedia PDF Downloads 278
5771 Label Survey in Romania: A Study on How Consumers Use Food Labeling

Authors: Gabriela Iordachescu, Mariana Cretu Stuparu, Mirela Praisler, Camelia Busila, Doina Voinescu, Camelia Vizireanu

Abstract:

The aim of the study was to evaluate the consumers’ degree of confidence in food labeling, how they use and understand the label and respectively food labeling elements. The label is a bridge between producers, suppliers, and consumers. It has to offer enough information in terms of public health and food safety, statement of ingredients, nutritional information, warnings and advisory statements, producing date and shelf-life, instructions for storage and preparation (if required). The survey was conducted on 500 consumers group in Romania, aged 15+, males and females, from urban and rural areas and with different graduation levels. The questionnaire was distributed face to face and online. It had single or multiple choices questions and label images for the efficiency and best understanding of the question. The law 1169/2011 applied to food products from 13 of December 2016 improved and adapted the requirements for labeling in a clear manner. The questions were divided on following topics: interest and general trust in labeling, use and understanding of label elements, understanding of the ingredient list and safety information, nutrition information, advisory statements, serving sizes, best before/use by meanings, intelligent labeling, and demographic data. Three choice selection exercises were also included. In this case, the consumers had to choose between two similar products and evaluate which label element is most important in product choice. The data were analysed using MINITAB 17 and PCA analysis. Most of the respondents trust the food label, taking into account some elements especially when they buy the first time the product. They usually check the sugar content and type of sugar, saturated fat and use the mandatory label elements and nutrition information panel. Also, the consumers pay attention to advisory statements, especially if one of the items is relevant to them or the family. Intelligent labeling is a challenging option. In addition, the paper underlines that the consumer is more careful and selective with the food consumption and the label is the main helper for these.

Keywords: consumers, food safety information, labeling, labeling nutritional information

Procedia PDF Downloads 196
5770 Effect of Threshold Corrections on Proton Lifetime and Emergence of Topological Defects in Grand Unified Theories

Authors: Rinku Maji, Joydeep Chakrabortty, Stephen F. King

Abstract:

The grand unified theory (GUT) rationales the arbitrariness of the standard model (SM) and explains many enigmas of nature at the outset of a single gauge group. The GUTs predict the proton decay and, the spontaneous symmetry breaking (SSB) of the higher symmetry group may lead to the formation of topological defects, which are indispensable in the context of the cosmological observations. The Super-Kamiokande (Super-K) experiment sets sacrosanct bounds on the partial lifetime (τ) of the proton decay for different channels, e.g., τ(p → e+ π0) > 1.6×10³⁴ years which is the most relevant channel to test the viability of the nonsupersymmetric GUTs. The GUTs based on the gauge groups SO(10) and E(6) are broken to the SM spontaneously through one and two intermediate gauge symmetries with the manifestation of the left-right symmetry at least at a single intermediate stage and the proton lifetime for these breaking chains has been computed. The impact of the threshold corrections, as a consequence of integrating out the heavy fields at the breaking scale alter the running of the gauge couplings, which eventually, are found to keep many GUTs off the Super-K bound. The possible topological defects arising in the course of SSB at different breaking scales for all breaking chains have been studied.

Keywords: grand unified theories, proton decay, threshold correction, topological defects

Procedia PDF Downloads 161
5769 Numerical Modelling of Skin Tumor Diagnostics through Dynamic Thermography

Authors: Luiz Carlos Wrobel, Matjaz Hribersek, Jure Marn, Jurij Iljaz

Abstract:

Dynamic thermography has been clinically proven to be a valuable diagnostic technique for skin tumor detection as well as for other medical applications such as breast cancer diagnostics, diagnostics of vascular diseases, fever screening, dermatological and other applications. Thermography for medical screening can be done in two different ways, observing the temperature response under steady-state conditions (passive or static thermography), and by inducing thermal stresses by cooling or heating the observed tissue and measuring the thermal response during the recovery phase (active or dynamic thermography). The numerical modelling of heat transfer phenomena in biological tissue during dynamic thermography can aid the technique by improving process parameters or by estimating unknown tissue parameters based on measured data. This paper presents a nonlinear numerical model of multilayer skin tissue containing a skin tumor, together with the thermoregulation response of the tissue during the cooling-rewarming processes of dynamic thermography. The model is based on the Pennes bioheat equation and solved numerically by using a subdomain boundary element method which treats the problem as axisymmetric. The paper includes computational tests and numerical results for Clark II and Clark IV tumors, comparing the models using constant and temperature-dependent thermophysical properties, which showed noticeable differences and highlighted the importance of using a local thermoregulation model.

Keywords: boundary element method, dynamic thermography, static thermography, skin tumor diagnostic

Procedia PDF Downloads 91
5768 Study the Effect of Leading-Edge Serration at Owl Wing Feathers on Flow-Induced Noise Generation

Authors: Suprabha Islam, Sifat Ullah Tanzil

Abstract:

During past few decades, being amazed by the excellent silent flight of owl, scientists have been trying to demystify the unique features of its wing feathers. Our present study is dedicated to taking our understanding further on this phenomenon. In this present study, a numerical investigation was performed to analyze how the shape of the leading-edge serration at owl wing feathers effects the flow-induced noise generation. For the analysis, an owl inspired single feather wing model was prepared for both with and without serrations at the leading edge. The serration profiles were taken at different positions of the vane length for a single feather. The broadband noise was studied to quantify the local contribution to the total acoustic power generated by the flow, where the results clearly showed the effect of serrations in reducing the noise generation. It was also clearly visible that the shape of the serration has a very strong influence on noise generation. The frequency spectrum of noise was also analyzed and a strong relation was found between the shape of the serration and the noise generation. It showed that the noise suppression is strongly influenced by the height to length ratio of the serration. With the increase in height to length ratio, the noise suppression is enhanced further.

Keywords: aeroacoustics, aerodynamic, biomimetics, serrations

Procedia PDF Downloads 158
5767 Development of Methods for Plastic Injection Mold Weight Reduction

Authors: Bita Mohajernia, R. J. Urbanic

Abstract:

Mold making techniques have focused on meeting the customers’ functional and process requirements; however, today, molds are increasing in size and sophistication, and are difficult to manufacture, transport, and set up due to their size and mass. Presently, mold weight saving techniques focus on pockets to reduce the mass of the mold, but the overall size is still large, which introduces costs related to the stock material purchase, processing time for process planning, machining and validation, and excess waste materials. Reducing the overall size of the mold is desirable for many reasons, but the functional requirements, tool life, and durability cannot be compromised in the process. It is proposed to use Finite Element Analysis simulation tools to model the forces, and pressures to determine where the material can be removed. The potential results of this project will reduce manufacturing costs. In this study, a light weight structure is defined by an optimal distribution of material to carry external loads. The optimization objective of this research is to determine methods to provide the optimum layout for the mold structure. The topology optimization method is utilized to improve structural stiffness while decreasing the weight using the OptiStruct software. The optimized CAD model is compared with the primary geometry of the mold from the NX software. Results of optimization show an 8% weight reduction while the actual performance of the optimized structure, validated by physical testing, is similar to the original structure.

Keywords: finite element analysis, plastic injection molding, topology optimization, weight reduction

Procedia PDF Downloads 277
5766 1,8-Naphthalimide Substituted 4,4-Difluoroboradiaza-S-Indacene Dyads: Synthesis, Structure, Properties and Live-Cell Imaging

Authors: Madhurima Poddar, Vinay Sharma, Shaikh M. Mobin, Rajneesh Misra

Abstract:

Three 1,8-naphthalimide (NPI) substituted 4,4-difluoroboradiaza-s-indacene (BODIPY) dyads were synthesized via Pd-catalyzed Sonogashira cross-coupling reaction of ethynyl substituted NPI with the meso-, β- and α-halogenated BODIPYs, respectively. The photophysical and electrochemical data reveals considerable electronic communication between the BODIPY and NPI moieties. The electronic absorption spectrum reveals that the substitution of NPI at α position of BODIPY exhibit better electronic communication between the NPI and the BODIPY units. The electronic structures of all the dyads exhibit planar geometries which are in a good correlation with the structures obtained from single crystal X-ray diffraction. The crystal structures of the dyads exhibit interesting supramolecular interactions. The dyads show good cytocompatibility with the potential of multicolor live-cell imaging; making them excellent candidates for biological applications. The work provides an important strategy of screening the substitution pattern at different position of BODIPYs which will be useful for the design of BODIPY based organic molecules for various optoelectronic applications as well as bio-imaging.

Keywords: bio-imaging studies, cross-coupling, cyclic voltammetry, density functional calculations, fluorescence spectra, single crystal XRD, UV/Vis spectroscopy

Procedia PDF Downloads 134
5765 Functionality Based Composition of Web Services to Attain Maximum Quality of Service

Authors: M. Mohemmed Sha Mohamed Kunju, Abdalla A. Al-Ameen Abdurahman, T. Manesh Thankappan, A. Mohamed Mustaq Ahmed Hameed

Abstract:

Web service composition is an effective approach to complete the web based tasks with desired quality. A single web service with limited functionality is inadequate to execute a specific task with series of action. So, it is very much required to combine multiple web services with different functionalities to reach the target. Also, it will become more and more challenging, when these services are from different providers with identical functionalities and varying QoS, so while composing the web services, the overall QoS is considered to be the major factor. Also, it is not true that the expected QoS is always attained when the task is completed. A single web service in the composed chain may affect the overall performance of the task. So care should be taken in different aspects such as functionality of the service, while composition. Dynamic and automatic service composition is one of the main option available. But to achieve the actual functionality of the task, quality of the individual web services are also important. Normally the QoS of the individual service can be evaluated by using the non-functional parameters such as response time, throughput, reliability, availability, etc. At the same time, the QoS is not needed to be at the same level for all the composed services. So this paper proposes a framework that allows composing the services in terms of QoS by setting the appropriate weight to the non-functional parameters of each individual web service involved in the task. Experimental results show that the importance given to the non-functional parameter while composition will definitely improve the performance of the web services.

Keywords: composition, non-functional parameters, quality of service, web service

Procedia PDF Downloads 315
5764 Elastoplastic Collapse Analysis of Pipe Bends Using Finite Element Analysis

Authors: Tawanda Mushiri, Charles Mbohwa

Abstract:

When an external load is applied to one of its ends, a pipe’s bends cross section tends to deform significantly both in and out of its end plane. This shell type behaviour characteristic of pipe bends and mainly due to their curves geometry accounts for their greater flexibility. This added flexibility is also accompanied by stressed and strains that are much higher than those present in a straight pipe. The primary goal of this research is to study the elastic-plastic behaviour of pipe bends under out of plane moment loading. It is also required to study the effects of changing the value of the pipe bend factor and the value of the internal pressure on that behaviour and to determine the value of the limit moments in each case. The results of these analyses are presented in the form of load deflection plots for each load case belonging to each model. From the load deflection curves, the limit moments of each case are obtained. The limit loads are then compared to those computed using some of the analytical and empirical equation available in the literature. The effects of modelling parameters are also studied. The results obtained from small displacement and large displacement analyses are compared and the effects of using a strain hardened material model are also investigated. To better understand the behaviour of pipe elbows under out of plane bending and internal pressure, it was deemed important to know how the cross section deforms and to study the distribution of stresses that cause it to deform in a particular manner. An elbow with pipe bend factor h=0.1 to h=1 is considered and the results of the detailed analysis are thereof examined.

Keywords: elasto-plastic, finite element analysis, pipe bends, simulation

Procedia PDF Downloads 315
5763 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks

Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha

Abstract:

Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs –Sigmoid, ReLU, and Tanh–have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment with multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLUReLU) combination. Our results show that using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).

Keywords: activation function, universal approximation function, neural networks, convergence

Procedia PDF Downloads 140
5762 Automation of Finite Element Simulations for the Design Space Exploration and Optimization of Type IV Pressure Vessel

Authors: Weili Jiang, Simon Cadavid Lopera, Klaus Drechsler

Abstract:

Fuel cell vehicle has become the most competitive solution for the transportation sector in the hydrogen economy. Type IV pressure vessel is currently the most popular and widely developed technology for the on-board storage, based on their high reliability and relatively low cost. Due to the stringent requirement on mechanical performance, the pressure vessel is subject to great amount of composite material, a major cost driver for the hydrogen tanks. Evidently, the optimization of composite layup design shows great potential in reducing the overall material usage, yet requires comprehensive understanding on underlying mechanisms as well as the influence of different design parameters on mechanical performance. Given the type of materials and manufacturing processes by which the type IV pressure vessels are manufactured, the design and optimization are a nuanced subject. The manifold of stacking sequence and fiber orientation variation possibilities have an out-standing effect on vessel strength due to the anisotropic property of carbon fiber composites, which make the design space high dimensional. Each variation of design parameters requires computational resources. Using finite element analysis to evaluate different designs is the most common method, however, the model-ing, setup and simulation process can be very time consuming and result in high computational cost. For this reason, it is necessary to build a reliable automation scheme to set up and analyze the di-verse composite layups. In this research, the simulation process of different tank designs regarding various parameters is conducted and automatized in a commercial finite element analysis framework Abaqus. Worth mentioning, the modeling of the composite overwrap is automatically generated using an Abaqus-Python scripting interface. The prediction of the winding angle of each layer and corresponding thickness variation on dome region is the most crucial step of the modeling, which is calculated and implemented using analytical methods. Subsequently, these different composites layups are simulated as axisymmetric models to facilitate the computational complexity and reduce the calculation time. Finally, the results are evaluated and compared regarding the ultimate tank strength. By automatically modeling, evaluating and comparing various composites layups, this system is applicable for the optimization of the tanks structures. As mentioned above, the mechanical property of the pressure vessel is highly dependent on composites layup, which requires big amount of simulations. Consequently, to automatize the simulation process gains a rapid way to compare the various designs and provide an indication of the optimum one. Moreover, this automation process can also be operated for creating a data bank of layups and corresponding mechanical properties with few preliminary configuration steps for the further case analysis. Subsequently, using e.g. machine learning to gather the optimum by the data pool directly without the simulation process.

Keywords: type IV pressure vessels, carbon composites, finite element analy-sis, automation of simulation process

Procedia PDF Downloads 112
5761 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network

Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao

Abstract:

The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.

Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations

Procedia PDF Downloads 137
5760 Formation of Human Resources in the Light of Sustainable Development and the Achievement of Full Employment

Authors: Kaddour Fellague Mohammed

Abstract:

The world has seen in recent years, significant developments affected various aspects of life and influenced the different types of institutions, thus was born a new world is a world of globalization, which dominated the scientific revolution and the tremendous technological developments, and that contributed to the re-formation of human resources in contemporary organizations, and made patterns new regulatory and at the same time raised and strongly values and new ideas, the organizations have become more flexible, and faster response to consumer and environmental conditions, and exceeded the problem of time and place in the framework of communication and human interaction and use of advanced information technology and adoption mainly mechanism in running its operations , focused on performance and based strategic thinking and approach in order to achieve its strategic goals high degrees of superiority and excellence, this new reality created an increasing need for a new type of human resources, quality aims to renew and aspire to be a strategic player in managing the organization and drafting of various strategies, think globally and act locally, to accommodate local variables in the international markets, which began organizations tend to strongly as well as the ability to work under different cultures. Human resources management of the most important management functions to focus on the human element, which is considered the most valuable resource of the Department and the most influential in productivity at all, that the management and development of human resources Tattabra a cornerstone in the majority of organizations which aims to strengthen the organizational capacity, and enable companies to attract and rehabilitation of the necessary competencies and are able to keep up with current and future challenges, human resources can contribute to and strongly in achieving the objectives and profit organization, and even expand more than contribute to the creation of new jobs to alleviate unemployment and achieve full operation, administration and human resources mean short optimal use of the human element is available and expected, where he was the efficiency and capabilities, and experience of this human element, and his enthusiasm for the work stop the efficiency and success in reaching their goals, so interested administration scientists developed the principles and foundations that help to make the most of each individual benefit in the organization through human resources management, these foundations start of the planning and selection, training and incentives and evaluation, which is not separate from each other, but are integrated with each other as a system systemic order to reach the efficient functioning of the human resources management and has been the organization as a whole in the context of development sustainable.

Keywords: configuration, training, development, human resources, operating

Procedia PDF Downloads 421
5759 Visualizing the Commercial Activity of a City by Analyzing the Data Information in Layers

Authors: Taras Agryzkov, Jose L. Oliver, Leandro Tortosa, Jose Vicent

Abstract:

This paper aims to demonstrate how network models can be used to understand and to deal with some aspects of urban complexity. As it is well known, the Theory of Architecture and Urbanism has been using for decades’ intellectual tools based on the ‘sciences of complexity’ as a strategy to propose theoretical approaches about cities and about architecture. In this sense, it is possible to find a vast literature in which for instance network theory is used as an instrument to understand very diverse questions about cities: from their commercial activity to their heritage condition. The contribution of this research consists in adding one step of complexity to this process: instead of working with one single primal graph as it is usually done, we will show how new network models arise from the consideration of two different primal graphs interacting in two layers. When we model an urban network through a mathematical structure like a graph, the city is usually represented by a set of nodes and edges that reproduce its topology, with the data generated or extracted from the city embedded in it. All this information is normally displayed in a single layer. Here, we propose to separate the information in two layers so that we can evaluate the interaction between them. Besides, both layers may be composed of structures that do not have to coincide: from this bi-layer system, groups of interactions emerge, suggesting reflections and in consequence, possible actions.

Keywords: graphs, mathematics, networks, urban studies

Procedia PDF Downloads 165
5758 A Review on Aviation Emissions and Their Role in Climate Change Scenarios

Authors: J. Niemisto, A. Nissinen, S. Soimakallio

Abstract:

Aviation causes carbon dioxide (CO2) emissions and other climate forcers which increase the contribution of aviation on climate change. Aviation industry and number of air travellers are constantly increasing. Aviation industry has an ambitious goal to strongly cut net CO2 emissions. Modern fleet, alternative jet fuels technologies and route optimisation are important technological tools in the emission reduction. Faster approaches are needed as well. Emission trade systems, voluntary carbon offset compensation schemes and taxation are already in operation. Global scenarios of aviation industry and its greenhouse gas emissions and other climate forcers are discussed in this review study based on literature and other published data. The focus is on the aviation in Nordic countries, but also European and global situation are considered. Different emission reduction technologies and compensation modes are examined. In addition, the role of aviation in a single passenger’s (a Finnish consumer) annual carbon footprint is analysed and a comparison of available emission calculators and carbon offset systems is performed. Long-haul fights have a significant role in a single consumer´s and company´s carbon footprint, but remarkable change in global emission level would need a huge change in attitudes towards flying.

Keywords: aviation, climate change, emissions, environment

Procedia PDF Downloads 194
5757 A Brief Trauma Treatment Program for Survivors of Trauma: A Single-Case Design

Authors: Duane Booysen, Ashraf Kagee

Abstract:

There is a high prevalence of violent crime and trauma exposure in South African society. Considering the prevalence of continuous violent crimes and traumatization in South Africa, the public mental health sector is required to combat the burgeoning effect of traumatic stress in South Africa. Trauma counselors, especially, provide important mental health services at primary health care to persons affected by traumatic events. Therefore, the evaluation and implementation of evidence-based trauma therapies is essential at a primary health care level in treating traumatic stress. A single-case design was used to evaluate the treatment effect of a Brief Trauma Treatment Programme treating persons who present with symptoms of posttraumatic stress disorder at a primary care trauma centre in Cape Town, South Africa. The sample consisted of six adult participants who presented with symptoms of posttraumatic stress and were assessed at baseline, during treatment, post-intervention and at 3-month follow. All participants received six sessions of trauma therapy. Assessment measures included the posttraumatic stress disorder symptom scale interviews for Diagnostic and Statistical Manual fifth edition (DSM5), the posttraumatic disorder checklist for DSM5, Beck Depression Inventory and Beck Anxiety Inventory. Results demonstrate that participants had noticeable reduced symptoms for traumatic stress, anxiety and depression despite living in contexts of violent crime and trauma. In conclusion, the article critically reflects on the need to evaluate and implement evidence-based treatments for the South African context, and how evidence-based treatments are used in developing socio-economic and cultural diverse contexts with continuous levels of violence and traumatization.

Keywords: psychological interventions, public mental health, traumatic stress, single-case design

Procedia PDF Downloads 142