Search results for: research network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28487

Search results for: research network

26987 Understanding Tourism Innovation through Fuzzy Measures

Authors: Marcella De Filippo, Delio Colangelo, Luca Farnia

Abstract:

In recent decades, the hyper-competition of tourism scenario has implicated the maturity of many businesses, attributing a central role to innovative processes and their dissemination in the economy of company management. At the same time, it has defined the need for monitoring the application of innovations, in order to govern and improve the performance of companies and destinations. The study aims to analyze and define the innovation in the tourism sector. The research actions have concerned, on the one hand, some in-depth interviews with experts, identifying innovation in terms of process and product, digitalization, sustainability policies and, on the other hand, to evaluate the interaction between these factors, in terms of substitutability and complementarity in management scenarios, in order to identify which one is essential to be competitive in the global scenario. Fuzzy measures and Choquet integral were used to elicit Experts’ preferences. This method allows not only to evaluate the relative importance of each pillar, but also and more interestingly, the level of interaction, ranging from complementarity to substitutability, between pairs of factors. The results of the survey are the following: in terms of Shapley values, Experts assert that Innovation is the most important factor (32.32), followed by digitalization (31.86), Network (20.57) and Sustainability (15.25). In terms of Interaction indices, given the low degree of consensus among experts, the interaction between couples of criteria on average could be ignored; however, it is worth to note that the factors innovations and digitalization are those in which experts express the highest degree of interaction. However for some of them, these factors have a moderate level of complementarity (with a pick of 57.14), and others consider them moderately substitutes (with a pick of -39.58). Another example, although outlier is the interaction between network and digitalization, in which an expert consider them markedly substitutes (-77.08).

Keywords: innovation, business model, tourism, fuzzy

Procedia PDF Downloads 274
26986 Identifying the Knowledge Management and its Capabilities in Universities: A Case Study of Public Universities in Nigeria

Authors: Hilary Joseph Watsilla

Abstract:

Research work is a vital part of the university system; in Nigeria public universities, research is used in measuring the development of individuals and departments within the academic system. Information technology has impacted the way research is carried out by providing easy access to information and improved collaboration between research and other instruments necessary for research activities. However, access to some of these IT facilities is not readily available in most of the public institutions in Nigeria. Research activities are usually tedious and rigorous and any inadequacy in research resources might affect the quality of research outcome. This study aims to identify the IT capability and knowledge management capabilities necessary for academic researchers in public universities in Nigeria, as it will provide more incite to the knowledge creation processes of research. The research will be conducted using an interpretive lens, which will provide a more qualitative understanding of the subject matter. The outcome of the research will provide an empirical understanding of the IT capabilities, which help in the optimization of the knowledge management capabilities of the university.

Keywords: IT capabilities, KM capabilities, universities, academic research

Procedia PDF Downloads 32
26985 Detection and Tracking for the Protection of the Elderly and Socially Vulnerable People in the Video Surveillance System

Authors: Mobarok Hossain Bhuyain

Abstract:

Video surveillance processing has attracted various security fields transforming it into one of the leading research fields. Today's demand for detection and tracking of human mobility for security is very useful for human security, such as in crowded areas. Accordingly, video surveillance technology has seen a rapid advancement in recent years, with algorithms analyzing the behavior of people under surveillance automatically. The main motivation of this research focuses on the detection and tracking of the elderly and socially vulnerable people in crowded areas. Degenerate people are a major health concern, especially for elderly people and socially vulnerable people. One major disadvantage of video surveillance is the need for continuous monitoring, especially in crowded areas. To assist the security monitoring live surveillance video, image processing, and artificial intelligence methods can be used to automatically send warning signals to the monitoring officers about elderly people and socially vulnerable people.

Keywords: human detection, target tracking, neural network, particle filter

Procedia PDF Downloads 168
26984 Factors Affecting Harvested Rain Water Quality and Quantity in Yatta Area, Palestine

Authors: Nibal Al-Batsh, Issam Al-Khatib, Subha Ghannam

Abstract:

Yatta is the study area for this research, located 9 km south of Hebron City in the West Bank in Palestine. It has been connected to a water network since 1974 serving nearly 85% of the households. The water network is old and inadequate to meet the needs of the population. The water supply made available to the area is also very limited, estimated to be around 20 l/c.d. Residents are thus forced to rely on water vendors which supply water with a lower quality compared to municipal water while being 400% more expensive. As a cheaper and more reliable alternative, rainwater harvesting is a common practice in the area, with the majority of the households owning at least one cistern. Rainwater harvesting is of great socio-economic importance in areas where water sources are scarce or polluted. The quality of harvested rainwater used for drinking and domestic purposes in the Yatta area was assessed throughout a year long period. A total of 100 water samples were collected from (50 rainfed cisterns) with an average capacity of 69 m3, adjacent to cement-roof catchment with an average area of 145 m2. Samples were analyzed for a number of parameters including: pH, Alkalinity, Hardness, Turbidity, Total Dissolved Solids (TDS), NO3, NH4, chloride and salinity. Microbiological contents such as Total Coliforms (TC) and Fecal Coliforms (FC) bacteria were also analyzed. Results showed that most of the rainwater samples were within WHO and EPA guidelines set for chemical parameters while revealing biological contamination. The pH values of mixed water ranged from 6.9 to 8.74 with a mean value of 7.6. collected Rainwater had lower pH values than mixed water ranging from 7.00 to 7.57 with a mean of 7.21. Rainwater also had lower average values of conductivity (389.11 µScm-1) compared to that of mixed water (463.74 µScm-1) thus indicating lower values of salinity (0.75%). The largest TDS value measured in rainwater was 316 mg/l with a mean of 199.86 mg /l. As far as microbiological quality is concerned, TC and FC were detected in 99%, 52% of collected rainwater samples, respectively. The research also addressed the impact of different socio-economic attributes on rainwater harvesting using information collected through a survey from the area. Results indicated that the majority of homeowners have the primary knowledge necessary to collect and store water in cisterns. Most of the respondents clean both the cisterns and the catchment areas. However, the research also arrives at a conclusion that cleaning is not done in a proper manner. Results show that cisterns with an operating capacity of 69 m3 would provide sufficient water to get through the dry summer months. However, the catchment area must exceed 146 m2 to produce sufficient water to fill a cistern of this size in a year receiving average precipitation.

Keywords: rainwater harvesting, runoff coefficient, water quality, microbiological contamination

Procedia PDF Downloads 289
26983 Factors Influencing Agricultural Systems Adoption Success: Evidence from Thailand

Authors: Manirath Wongsim, Ekkachai Naenudorn, Nipotepat Muangkote

Abstract:

Information Technology (IT), play an important role in business management strategies and can provide assistance in all phases of decision making. Thus, many organizations need to be seen as adopting IT, which is critical for a company to organize, manage and operate its processes. In order to implement IT successfully, it is important to understand the underlying factors that influence agricultural system's adoption success. Therefore, this research intends to study this perspective of factors that influence and impact successful IT adoption and related agricultural performance. Case study and survey methodology were adopted for this research. Case studies in two Thai- organizations were carried out. The results of the two main case studies suggested 21 factors that may have an impact on IT adoption in agriculture in Thailand, which led to the development of the preliminary framework. Next, a survey instrument was developed based on the findings from case studies. Survey questionnaires were gathered from 217 respondents from two large-scale surveys were sent to selected members of Thailand farmer, and Thailand computer to test the research framework. The results indicate that the top five critical factors for ensuring IT adoption in agricultural were: 1) network and communication facilities; 2) software; 3) hardware; 4) farmer’s IT knowledge, and; 5) training and education. Therefore, it is now clear which factors are influencing IT adoption and which of those factors are critical success factors for ensuring IT adoption in agricultural organization.

Keywords: agricultural systems adoption, factors influencing IT adoption, factors affecting in agricultural adoption

Procedia PDF Downloads 166
26982 Algorithm and Software Based on Multilayer Perceptron Neural Networks for Estimating Channel Use in the Spectral Decision Stage in Cognitive Radio Networks

Authors: Danilo López, Johana Hernández, Edwin Rivas

Abstract:

The use of the Multilayer Perceptron Neural Networks (MLPNN) technique is presented to estimate the future state of use of a licensed channel by primary users (PUs); this will be useful at the spectral decision stage in cognitive radio networks (CRN) to determine approximately in which time instants of future may secondary users (SUs) opportunistically use the spectral bandwidth to send data through the primary wireless network. To validate the results, sequences of occupancy data of channel were generated by simulation. The results show that the prediction percentage is greater than 60% in some of the tests carried out.

Keywords: cognitive radio, neural network, prediction, primary user

Procedia PDF Downloads 374
26981 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models

Authors: Keyi Wang

Abstract:

Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.

Keywords: deep learning, hand gesture recognition, computer vision, image processing

Procedia PDF Downloads 146
26980 Femtocell Stationed Flawless Handover in High Agility Trains

Authors: S. Dhivya, M. Abirami, M. Farjana Parveen, M. Keerthiga

Abstract:

The development of high-speed railway makes people’s lives more and more convenient; meanwhile, handover is the major problem on high-speed railway communication services. In order to overcome that drawback the architecture of Long-Term Evolution (LTE) femtocell networks is used to improve network performance, and the deployment of a femtocell is a key for bandwidth limitation and coverage issues in conventional mobile network system. To increase the handover performance this paper proposed a multiple input multiple output (MIMO) assisted handoff (MAHO) algorithm. It is a technique used in mobile telecom to transfer a mobile phone to a new radio channel with stronger signal strength and improved channel quality.

Keywords: flawless handover, high-speed train, home evolved Node B, LTE, mobile femtocell, RSS

Procedia PDF Downloads 476
26979 Economized Sensor Data Processing with Vehicle Platooning

Authors: Henry Hexmoor, Kailash Yelasani

Abstract:

We present vehicular platooning as a special case of crowd-sensing framework where sharing sensory information among a crowd is used for their collective benefit. After offering an abstract policy that governs processes involving a vehicular platoon, we review several common scenarios and components surrounding vehicular platooning. We then present a simulated prototype that illustrates efficiency of road usage and vehicle travel time derived from platooning. We have argued that one of the paramount benefits of platooning that is overlooked elsewhere, is the substantial computational savings (i.e., economizing benefits) in acquisition and processing of sensory data among vehicles sharing the road. The most capable vehicle can share data gathered from its sensors with nearby vehicles grouped into a platoon.

Keywords: cloud network, collaboration, internet of things, social network

Procedia PDF Downloads 198
26978 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images

Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang

Abstract:

Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.

Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network

Procedia PDF Downloads 98
26977 Processing and Modeling of High-Resolution Geophysical Data for Archaeological Prospection, Nuri Area, Northern Sudan

Authors: M. Ibrahim Ali, M. El Dawi, M. A. Mohamed Ali

Abstract:

In this study, the use of magnetic gradient survey, and the geoelectrical ground methods used together to explore archaeological features in Nuri’s pyramids area. Research methods used and the procedures and methodologies have taken full right during the study. The magnetic survey method was used to search for archaeological features using (Geoscan Fluxgate Gradiometer (FM36)). The study area was divided into a number of squares (networks) exactly equal (20 * 20 meters). These squares were collected at the end of the study to give a major network for each region. Networks also divided to take the sample using nets typically equal to (0.25 * 0.50 meter), in order to give a more specific archaeological features with some small bipolar anomalies that caused by buildings built from fired bricks. This definition is important to monitor many of the archaeological features such as rooms and others. This main network gives us an integrated map displayed for easy presentation, and it also allows for all the operations required using (Geoscan Geoplot software). The parallel traverse is the main way to take readings of the magnetic survey, to get out the high-quality data. The study area is very rich in old buildings that vary from small to very large. According to the proportion of the sand dunes and the loose soil, most of these buildings are not visible from the surface. Because of the proportion of the sandy dry soil, there is no connection between the ground surface and the electrodes. We tried to get electrical readings by adding salty water to the soil, but, unfortunately, we failed to confirm the magnetic readings with electrical readings as previously planned.

Keywords: archaeological features, independent grids, magnetic gradient, Nuri pyramid

Procedia PDF Downloads 485
26976 Unsupervised Images Generation Based on Sloan Digital Sky Survey with Deep Convolutional Generative Neural Networks

Authors: Guanghua Zhang, Fubao Wang, Weijun Duan

Abstract:

Convolution neural network (CNN) has attracted more and more attention on recent years. Especially in the field of computer vision and image classification. However, unsupervised learning with CNN has received less attention than supervised learning. In this work, we use a new powerful tool which is deep convolutional generative adversarial networks (DCGANs) to generate images from Sloan Digital Sky Survey. Training by various star and galaxy images, it shows that both the generator and the discriminator are good for unsupervised learning. In this paper, we also took several experiments to choose the best value for hyper-parameters and which could help to stabilize the training process and promise a good quality of the output.

Keywords: convolution neural network, discriminator, generator, unsupervised learning

Procedia PDF Downloads 271
26975 Modified RSA in Mobile Communication

Authors: Nagaratna Rajur, J. D. Mallapur, Y. B. Kirankumar

Abstract:

The security in mobile communication is very different from the internet or telecommunication, because of its poor user interface and limited processing capacity, as well as combination of complex network protocols. Hence, it poses a challenge for less memory usage and low computation speed based security system. Security involves all the activities that are undertaken to protect the value and on-going usability of assets and the integrity and continuity of operations. An effective network security strategies requires identifying threats and then choosing the most effective set of tools to combat them. Cryptography is a simple and efficient way to provide security in communication. RSA is an asymmetric key approach that is highly reliable and widely used in internet communication. However, it has not been efficiently implemented in mobile communication due its computational complexity and large memory utilization. The proposed algorithm modifies the current RSA to be useful in mobile communication by reducing its computational complexity and memory utilization.

Keywords: M-RSA, sensor networks, sensor applications, security

Procedia PDF Downloads 345
26974 An Exploration of Why Insider Fraud Is the Biggest Threat to Your Business

Authors: Claire Norman-Maillet

Abstract:

Insider fraud, otherwise known as occupational, employee, or internal fraud, is a financial crime threat. Perpetrated by defrauding (or attempting to defraud) one’s current, prospective, or past employer, an ‘employee’ covers anyone employed by the company, including board members and contractors. The Coronavirus pandemic has forced insider fraud into the spotlight, and it isn’t dimming. As the focus of most academics and practitioners has historically been on that of ‘external fraud’, insider fraud is often overlooked or not considered to be a real threat. However, since COVID-19 changed the working world, pushing most of us into remote or hybrid working, employers cannot easily keep an eye on what their staff are doing, which has led to reliance on trust and transparency. This, therefore, brings about an increased risk of insider fraud perpetration. The objective of this paper is to explore why insider fraud is, therefore, now the biggest threat to a business. To achieve the research objective, participating individuals within the financial crime sector (either as a practitioner or consultants) attended semi-structured interviews with the researcher. The principal recruitment strategy for these individuals was via the researcher’s LinkedIn network. The main findings in the research suggest that insider fraud has been ignored and rejected as a threat to a business, owing to a reluctance to admit that a colleague may perpetrate. A positive of the Coronavirus pandemic is that it has forced insider fraud into a more prominent position and giving it more importance on a business’ agenda and risk register. Despite insider fraud always having been a possibility (and therefore a risk) within any business, it is very rare that a business has given it the attention it requires until now, if at all. The research concludes that insider fraud needs to prioritised by all businesses, and even ahead of external fraud. The research also provides advice on how a business can add new or enhance existing controls to mitigate the risk.

Keywords: insider fraud, occupational fraud, COVID-19, COVID, coronavirus, pandemic, internal fraud, financial crime, economic crime

Procedia PDF Downloads 69
26973 Energy Efficient Heterogeneous System for Wireless Sensor Networks (WSN)

Authors: José Anderson Rodrigues de Souza, Teles de Sales Bezerra, Saulo Aislan da Silva Eleuterio, Jeronimo Silva Rocha

Abstract:

Mobile devices are increasingly occupying sectors of society and one of its most important features is mobility. However, the use of mobile devices is subject to the lifetime of the batteries. Thus, the use of energy batteries has become an important issue in the study of wireless network technologies. In this context, new solutions that enable aggregate energy efficiency not only through energy saving, and principally they are evaluated from a more realistic model of energy discharge, if easy adaptation to existing protocols. This paper presents a study on the energy needed and the lifetime for Wireless Sensor Networks (WSN) using a heterogeneous network and applying the LEACH protocol.

Keywords: wireless sensor networks, energy efficiency, heterogeneous, LEACH protocol

Procedia PDF Downloads 585
26972 The Network Effect on Green Information on Taiwan Social Network Sites

Authors: Pi Hsia Liang

Abstract:

The rise of Facebook, Twitter, and other social networks significantly changes in interconnections between people, enhancing the process of information dissemination and amplify the influence of that information. Therefore, to develop informational efficiency or signaling equilibrium type of information environment among social networks, without adverse selection effects, becomes an important issue. Thus, someone may post a piece of intentional information in relation to personal interest for trying to create marginal influence. Therefore, economists are seeking to establish theories of informational efficiency under social network environment in order to resolve adverse selection issues. Reputation could be one of the important factors in the process of creating informational efficiency. Additionally, investors how to process green information, or information of corporate social responsibility is a very important study. This study essentially employs experimental study for examining how investors use stock relevant green information in Facebook and various Taiwan local networks. Facebook, and blogs of Money DJ, Technews and cnYES, respectively, are the primary sites for this examination that also allow to differentiate effects between Facebook and other local social networks. Questionnaire is developed for such an experimental testing. Note that questionnaire allows this study to group, for example, decision frequency and length of time duration focusing on social networks that are used for discriminating investor type and competence of informed investor. This study selects 500 investors that can be separated into two respective 250 samples as the control group and 250 samples in such an experimental. The quantity of sample investor sufficiently results in statistic significance of this experimental study. The empirical results of this study can be used for explaining how financial information in relation to corporate social responsibility would be disseminated in social websites. Therefore, we can lead to better interpretation of price/earnings relationship type of study and empirical studies of green information usefulness or informational efficiency Note that the above mentioned empirical studies did not exist any social network and annual report of corporate social responsibility. This study expects to find the results that both network degree and network cluster significantly affected green information dissemination frequency. In other words, investors with more connections and with high clustered connections might exert a greater influence on their green information dissemination process. The preferred users of financial social networks could make better stock decision that could amplify effects of green information. In addition, Facebook would be more influential than other local Taiwan financial social networks, although Facebook is not a specialized financial social network. In other words, the popularity and reputation effects of Facebook significantly contribute to usefulness of green information and influence of green information. Third, it has a better chance to find rumor or cheating information in local Taiwan financial social networks than Facebook. In other words, Facebook possesses reputation effect, or a better informational efficiency. Or, even though Taiwan local financial social networks have marginal informational effects on stock price, because of shortage of informational efficiency or monitoring system, information could be a tool for those whom owning superior information.

Keywords: network effect on financial services, informational efficiency theory, social networks, social websites

Procedia PDF Downloads 251
26971 Pathway to Sustainable Shipping: Electric Ships

Authors: Wei Wang, Yannick Liu, Lu Zhen, H. Wang

Abstract:

Maritime transport plays an important role in global economic development but also inevitably faces increasing pressures from all sides, such as ship operating cost reduction and environmental protection. An ideal innovation to address these pressures is electric ships. The electric ship is in the early stage. Considering the special characteristics of electric ships, i.e., travel range limit, to guarantee the efficient operation of electric ships, the service network needs to be re-designed carefully. This research designs a cost-efficient and environmentally friendly service network for electric ships, including the location of charging stations, charging plan, route planning, ship scheduling, and ship deployment. The problem is formulated as a mixed-integer linear programming model with the objective of minimizing total cost comprised of charging cost, the construction cost of charging stations, and fixed cost of ships. A case study using data of the shipping network along the Yangtze River is conducted to evaluate the performance of the model. Two operating scenarios are used: an electric ship scenario where all the transportation tasks are fulfilled by electric ships and a conventional ship scenario where all the transportation tasks are fulfilled by fuel oil ships. Results unveil that the total cost of using electric ships is only 42.8% of using conventional ships. Using electric ships can reduce 80% SOx, 93.47% NOx, 89.47% PM, and 42.62% CO2, but will consume 2.78% more time to fulfill all the transportation tasks. Extensive sensitivity analyses are also conducted for key operating factors, including battery capacity, charging speed, volume capacity, and a service time limit of transportation task. Implications from the results are as follows: 1) it is necessary to equip the ship with a large capacity battery when the number of charging stations is low; 2) battery capacity will influence the number of ships deployed on each route; 3) increasing battery capacity will make the electric ship more cost-effective; 4) charging speed does not affect charging amount and location of charging station, but will influence the schedule of ships on each route; 5) there exists an optimal volume capacity, at which all costs and total delivery time are lowest; 6) service time limit will influence ship schedule and ship cost.

Keywords: cost reduction, electric ship, environmental protection, sustainable shipping

Procedia PDF Downloads 84
26970 Application of ANN for Estimation of Power Demand of Villages in Sulaymaniyah Governorate

Authors: A. Majeed, P. Ali

Abstract:

Before designing an electrical system, the estimation of load is necessary for unit sizing and demand-generation balancing. The system could be a stand-alone system for a village or grid connected or integrated renewable energy to grid connection, especially as there are non–electrified villages in developing countries. In the classical model, the energy demand was found by estimating the household appliances multiplied with the amount of their rating and the duration of their operation, but in this paper, information exists for electrified villages could be used to predict the demand, as villages almost have the same life style. This paper describes a method used to predict the average energy consumed in each two months for every consumer living in a village by Artificial Neural Network (ANN). The input data are collected using a regional survey for samples of consumers representing typical types of different living, household appliances and energy consumption by a list of information, and the output data are collected from administration office of Piramagrun for each corresponding consumer. The result of this study shows that the average demand for different consumers from four villages in different months throughout the year is approximately 12 kWh/day, this model estimates the average demand/day for every consumer with a mean absolute percent error of 11.8%, and MathWorks software package MATLAB version 7.6.0 that contains and facilitate Neural Network Toolbox was used.

Keywords: artificial neural network, load estimation, regional survey, rural electrification

Procedia PDF Downloads 129
26969 Women Academics' Insecure Identity at Work: A Millennials Phenomenon

Authors: Emmanouil Papavasileiou, Nikos Bozionelos, Liza Howe-Walsh, Sarah Turnbull

Abstract:

Purpose: The research focuses on women academics’ insecure identity at work and examines its link with generational identity. The aim is to enrich understanding of identities at work as a crucial attribute of managing academics in the context of the proliferation of managerialist controls of audit, accountability, monitoring, and performativity. Methodology: Positivist quantitative methodology was utilized. Data were collected from the Scientific Women's Academic Network (SWAN) Charter. Responses from 155 women academics based in the British Higher Education system were analysed. Findings: Analysis showed high prevalence of strong imposter feelings among participants, suggesting high insecurity at work among women academics in the United Kingdom. Generational identity was related to imposter feelings. In particular, Millennials scored significantly higher than the other generational groups. Research implications: The study shows that imposter feelings are variously manifested among the prevalent generations of women academics, while generational identity is a significant antecedent of such feelings. Research limitations: Caution should be exercised in generalizing the findings to national cultural contexts beyond the United Kingdom. Practical and social implications: Contrary to popular depictions of Millennials as self-centered, narcissistic, materialistic and demanding, women academics who are members of this generational group appear significantly more insecure than the preceding generations. Value: The study provides insightful understandings into women academics’ identity at work as a function of generational identity, and provides a fruitful avenue for further research within and beyond this gender group and profession.

Keywords: academics, generational diversity, imposter feelings, United Kingdom, women, work identity

Procedia PDF Downloads 150
26968 Nine-Level Shunt Active Power Filter Associated with a Photovoltaic Array Coupled to the Electrical Distribution Network

Authors: Zahzouh Zoubir, Bouzaouit Azzeddine, Gahgah Mounir

Abstract:

The use of more and more electronic power switches with a nonlinear behavior generates non-sinusoidal currents in distribution networks, which causes damage to domestic and industrial equipment. The multi-level shunt power active filter is subsequently shown to be an adequate solution to the problem raised. Nevertheless, the difficulty of adjusting the active filter DC supply voltage requires another technology to ensure it. In this article, a photovoltaic generator is associated with the DC bus power terminals of the active filter. The proposed system consists of a field of solar panels, three multi-level voltage inverters connected to the power grid and a non-linear load consisting of a six-diode rectifier bridge supplying a resistive-inductive load. Current control techniques of active and reactive power are used to compensate for both harmonic currents and reactive power as well as to inject active solar power into the distribution network. An algorithm of the search method of the maximum power point of type Perturb and observe is applied. Simulation results of the system proposed under the MATLAB/Simulink environment shows that the performance of control commands that reassure the solar power injection in the network, harmonic current compensation and power factor correction.

Keywords: Actif power filter, MPPT, pertub&observe algorithm, PV array, PWM-control

Procedia PDF Downloads 342
26967 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour

Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale

Abstract:

Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.

Keywords: artificial neural network, back-propagation, tide data, training algorithm

Procedia PDF Downloads 486
26966 Neuro-Fuzzy Approach to Improve Reliability in Auxiliary Power Supply System for Nuclear Power Plant

Authors: John K. Avor, Choong-Koo Chang

Abstract:

The transfer of electrical loads at power generation stations from Standby Auxiliary Transformer (SAT) to Unit Auxiliary Transformer (UAT) and vice versa is through a fast bus transfer scheme. Fast bus transfer is a time-critical application where the transfer process depends on various parameters, thus transfer schemes apply advance algorithms to ensure power supply reliability and continuity. In a nuclear power generation station, supply continuity is essential, especially for critical class 1E electrical loads. Bus transfers must, therefore, be executed accurately within 4 to 10 cycles in order to achieve safety system requirements. However, the main problem is that there are instances where transfer schemes scrambled due to inaccurate interpretation of key parameters; and consequently, have failed to transfer several critical loads from UAT to the SAT during main generator trip event. Although several techniques have been adopted to develop robust transfer schemes, a combination of Artificial Neural Network and Fuzzy Systems (Neuro-Fuzzy) has not been extensively used. In this paper, we apply the concept of Neuro-Fuzzy to determine plant operating mode and dynamic prediction of the appropriate bus transfer algorithm to be selected based on the first cycle of voltage information. The performance of Sequential Fast Transfer and Residual Bus Transfer schemes was evaluated through simulation and integration of the Neuro-Fuzzy system. The objective for adopting Neuro-Fuzzy approach in the bus transfer scheme is to utilize the signal validation capabilities of artificial neural network, specifically the back-propagation algorithm which is very accurate in learning completely new systems. This research presents a combined effect of artificial neural network and fuzzy systems to accurately interpret key bus transfer parameters such as magnitude of the residual voltage, decay time, and the associated phase angle of the residual voltage in order to determine the possibility of high speed bus transfer for a particular bus and the corresponding transfer algorithm. This demonstrates potential for general applicability to improve reliability of the auxiliary power distribution system. The performance of the scheme is implemented on APR1400 nuclear power plant auxiliary system.

Keywords: auxiliary power system, bus transfer scheme, fuzzy logic, neural networks, reliability

Procedia PDF Downloads 174
26965 A Long Range Wide Area Network-Based Smart Pest Monitoring System

Authors: Yun-Chung Yu, Yan-Wen Wang, Min-Sheng Liao, Joe-Air Jiang, Yuen-Chung Lee

Abstract:

This paper proposes to use a Long Range Wide Area Network (LoRaWAN) for a smart pest monitoring system which aims at the oriental fruit fly (Bactrocera dorsalis) to improve the communication efficiency of the system. The oriental fruit fly is one of the main pests in Southeast Asia and the Pacific Rim. Different smart pest monitoring systems based on the Internet of Things (IoT) architecture have been developed to solve problems of employing manual measurement. These systems often use Octopus II, a communication module following the 2.4GHz IEEE 802.15.4 ZigBee specification, as sensor nodes. The Octopus II is commonly used in low-power and short-distance communication. However, the energy consumption increase as the logical topology becomes more complicate to have enough coverage in the large area. By comparison, LoRaWAN follows the Low Power Wide Area Network (LPWAN) specification, which targets the key requirements of the IoT technology, such as secure bi-directional communication, mobility, and localization services. The LoRaWAN network has advantages of long range communication, high stability, and low energy consumption. The 433MHz LoRaWAN model has two superiorities over the 2.4GHz ZigBee model: greater diffraction and less interference. In this paper, The Octopus II module is replaced by a LoRa model to increase the coverage of the monitoring system, improve the communication performance, and prolong the network lifetime. The performance of the LoRa-based system is compared with a ZigBee-based system using three indexes: the packet receiving rate, delay time, and energy consumption, and the experiments are done in different settings (e.g. distances and environmental conditions). In the distance experiment, a pest monitoring system using the two communication specifications is deployed in an area with various obstacles, such as buildings and living creatures, and the performance of employing the two communication specifications is examined. The experiment results show that the packet receiving the rate of the LoRa-based system is 96% , which is much higher than that of the ZigBee system when the distance between any two modules is about 500m. These results indicate the capability of a LoRaWAN-based monitoring system in long range transmission and ensure the stability of the system.

Keywords: LoRaWan, oriental fruit fly, IoT, Octopus II

Procedia PDF Downloads 356
26964 Voice over IP Quality of Service Evaluation for Mobile Ad Hoc Network in an Indoor Environment for Different Voice Codecs

Authors: Lina Abou Haibeh, Nadir Hakem, Ousama Abu Safia

Abstract:

In this paper, the performance and quality of Voice over IP (VoIP) calls carried over a Mobile Ad Hoc Network (MANET) which has a number of SIP nodes registered on a SIP Proxy are analyzed. The testing campaigns are carried out in an indoor corridor structure having a well-defined channel’s characteristics and model for the different voice codecs, G.711, G.727 and G.723.1. These voice codecs are commonly used in VoIP technology. The calls’ quality are evaluated using four Quality of Service (QoS) metrics, namely, mean opinion score (MOS), jitter, delay, and packet loss. The relationship between the wireless channel’s parameters and the optimum codec is well-established. According to the experimental results, the voice codec G.711 has the best performance for the proposed MANET topology

Keywords: wireless channel modelling, Voip, MANET, session initiation protocol (SIP), QoS

Procedia PDF Downloads 232
26963 Random Subspace Ensemble of CMAC Classifiers

Authors: Somaiyeh Dehghan, Mohammad Reza Kheirkhahan Haghighi

Abstract:

The rapid growth of domains that have data with a large number of features, while the number of samples is limited has caused difficulty in constructing strong classifiers. To reduce the dimensionality of the feature space becomes an essential step in classification task. Random subspace method (or attribute bagging) is an ensemble classifier that consists of several classifiers that each base learner in ensemble has subset of features. In the present paper, we introduce Random Subspace Ensemble of CMAC neural network (RSE-CMAC), each of which has training with subset of features. Then we use this model for classification task. For evaluation performance of our model, we compare it with bagging algorithm on 36 UCI datasets. The results reveal that the new model has better performance.

Keywords: classification, random subspace, ensemble, CMAC neural network

Procedia PDF Downloads 335
26962 Projective Lag Synchronization in Drive-Response Dynamical Networks via Hybrid Feedback Control

Authors: Mohd Salmi Md Noorani, Ghada Al-Mahbashi, Sakhinah Abu Bakar

Abstract:

This paper investigates projective lag synchronization (PLS) behavior in drive response dynamical networks (DRDNs) model with identical nodes. A hybrid feedback control method is designed to achieve the PLS with mismatch and without mismatch terms. The stability of the error dynamics is proven theoretically using the Lyapunov stability theory. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Moreover, the numerical simulations results demonstrate the validity of the proposed method.

Keywords: drive-response dynamical network, projective lag synchronization, hybrid feedback control, stability theory

Procedia PDF Downloads 399
26961 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network

Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang

Abstract:

‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.

Keywords: deep learning network, smart metering, water end use, water-energy data

Procedia PDF Downloads 308
26960 The Impact of Supply Chain Relationship Quality on Cooperative Strategy and Visibility

Authors: Jung-Hsuan Hsu

Abstract:

Due to intense competition within the industry, companies have increasingly recognized partnerships with other companies. In addition, with outsourcing and globalization of the supply chain, it leads to companies' increasing reliance on external resources. Consequently, supply chain network becomes complex, so that it reduces the visibility of the manufacturing process. Therefore, this study is going to focus on the impact of supply chain relationship quality (SCRQ) on cooperative strategy and visibility. Questionnaire survey is going to be conducted as research method, using the organic food industry as the research subject, and the sampling method is random sampling. Finally, the data analysis will use SPSS statistical software and AMOS software to analyze and verify the hypothesis. The expected results in this study is to evaluate the supply chain relationship quality between Taiwan's food manufacturing and their suppliers regarding whether it has a positive impact for the persistence, frequency and diversity of cooperative strategy, as well as the dimensions of supply chain relationship quality on visibility regarding whether it has a positive effect.

Keywords: supply chain relationship quality (SCRQ), cooperative strategy, visibility, competition

Procedia PDF Downloads 454
26959 Neural Network Motion Control of VTAV by NARMA-L2 Controller for Enhanced Situational Awareness

Authors: Igor Astrov, Natalya Berezovski

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a neural network motion control procedure to address the dynamics variation and performance requirement difference of flight trajectory for a VTAV. This control strategy with using of NARMA-L2 neurocontroller for chosen model of VTAV has been verified by simulation of take-off and forward maneuvers using software package Simulink and demonstrated good performance for fast stabilization of motors, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.

Keywords: NARMA-L2 neurocontroller, situational awareness, vectored thrust aerial vehicle, aviation

Procedia PDF Downloads 425
26958 Urban Design as a Tool to Address Safety in a Crime Ridden Area: A Case Study of Malviya Nagar, New Delhi

Authors: Shramana Mondal

Abstract:

As a city is growing in population, sprawl, and complexity, use of public spaces increases variably and thus ensuring safety for the people becomes an utmost priority. While active monitoring measures may be necessary in some places, urban design can play a major role in devising self-policing and encourage active public life. This paper aims to explore the various spatial and psychological reasons for the occurrence of crime and the role of ‘urban design’ to address this issue. In this research, the principles of urban design are examined, as well as projected on actual site by addressing the issue with urban design principles. In this review the sociological, psychological, typological and morphological factors are addressed which affect the safety of a space and the possible framing guidelines, controls and urban design strategies are explored to address a safe neighborhood. On the basis of statistical survey, the residential and street network of Malviya Nagar in Delhi is chosen as the area of demonstration. The programs inhibit a safe neighborhood and a movement network that are addressed based on the four principles of natural surveillance, territoriality, community building, and connectivity. The paper concludes with a discussion of the urban design as an effective tool by creating an intense active zone with mixed use feature to ensure throughout activity and also ensuring safe pedestrian zone by introducing sense of community feeling and territoriality thus achieving active, useful and public friendly space.

Keywords: crime, public life, safety, urban design

Procedia PDF Downloads 403