Search results for: regional data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26149

Search results for: regional data

24649 Natural Language News Generation from Big Data

Authors: Bastian Haarmann, Likas Sikorski

Abstract:

In this paper, we introduce an NLG application for the automatic creation of ready-to-publish texts from big data. The fully automatic generated stories have a high resemblance to the style in which the human writer would draw up a news story. Topics may include soccer games, stock exchange market reports, weather forecasts and many more. The generation of the texts runs according to the human language production. Each generated text is unique. Ready-to-publish stories written by a computer application can help humans to quickly grasp the outcomes of big data analyses, save time-consuming pre-formulations for journalists and cater to rather small audiences by offering stories that would otherwise not exist.

Keywords: big data, natural language generation, publishing, robotic journalism

Procedia PDF Downloads 430
24648 Performance Evaluation of the Classic seq2seq Model versus a Proposed Semi-supervised Long Short-Term Memory Autoencoder for Time Series Data Forecasting

Authors: Aswathi Thrivikraman, S. Advaith

Abstract:

The study is aimed at designing encoders for deciphering intricacies in time series data by redescribing the dynamics operating on a lower-dimensional manifold. A semi-supervised LSTM autoencoder is devised and investigated to see if the latent representation of the time series data can better forecast the data. End-to-end training of the LSTM autoencoder, together with another LSTM network that is connected to the latent space, forces the hidden states of the encoder to represent the most meaningful latent variables relevant for forecasting. Furthermore, the study compares the predictions with those of a traditional seq2seq model.

Keywords: LSTM, autoencoder, forecasting, seq2seq model

Procedia PDF Downloads 152
24647 Trends of Conservation and Development in Mexican Biosphere Reserves: Spatial Analysis and Linear Mixed Model

Authors: Cecilia Sosa, Fernanda Figueroa, Leonardo Calzada

Abstract:

Biosphere reserves (BR) are considered as the main strategy for biodiversity and ecosystems conservation. Mexican BR are mainly inhabited by rural communities who strongly depend on forests and their resources. Even though the dual objective of conservation and development has been sought in BR, land cover change is a common process in these areas, while most rural communities are highly marginalized, partly as a result of restrictions imposed by conservation to the access and use of resources. Achieving ecosystems conservation and social development face serious challenges. Factors such as financial support for development projects (public/private), environmental conditions, infrastructure and regional economic conditions might influence both land use change and wellbeing. Examining the temporal trends of conservation and development in BR is central for the evaluation of outcomes for these conservation strategies. In this study, we analyzed changes in primary vegetation cover (as a proxy for conservation) and the index of marginalization (as a proxy for development) in Mexican BR (2000-2015); we also explore the influence of various factors affecting these trends, such as conservation-development projects financial support (public or private), geographical distribution in ecoregions (as a proxy for shared environmental conditions) and in economic zones (as a proxy for regional economic conditions). We developed a spatial analysis at the municipal scale (2,458 municipalities nationwide) in ArcGIS, to obtain road densities, geographical distribution in ecoregions and economic zones, the financial support received, and the percent of municipality area under protection by protected areas and, particularly, by BR. Those municipalities with less than 25% of area under protection were regarded as part of the protected area. We obtained marginalization indexes for all municipalities and, using MODIS in Google Earth Engine, the number of pixels covered by primary vegetation. We used a linear mixed model in RStudio for the analysis. We found a positive correlation between the marginalization index and the percent of primary vegetation cover per year (r=0.49-0.5); i.e., municipalities with higher marginalization also show higher percent of primary vegetation cover. Also, those municipalities with higher area under protection have more development projects (r=0.46) and some environmental conditions were relevant for percent of vegetation cover. Time, economic zones and marginalization index were all important. Time was particularly, in 2005, when both marginalization and deforestation decreased. Road densities and financial support for conservation-development projects were irrelevant as factors in the general correlation. Marginalization is still being affected by the conservation strategies applied in BR, even though that this management category considers both conservation and development of local communities as its objectives. Our results suggest that roads densities and support for conservation-development projects have not been a factor of poverty alleviation. As better conservation is being attained in the most impoverished areas, we face the dilemma of how to improve wellbeing in rural communities under conservation, since current strategies have not been able to leave behind the conservation-development contraposition.

Keywords: deforestation, local development, marginalization, protected areas

Procedia PDF Downloads 134
24646 The Analysis of Emergency Shutdown Valves Torque Data in Terms of Its Use as a Health Indicator for System Prognostics

Authors: Ewa M. Laskowska, Jorn Vatn

Abstract:

Industry 4.0 focuses on digital optimization of industrial processes. The idea is to use extracted data in order to build a decision support model enabling use of those data for real time decision making. In terms of predictive maintenance, the desired decision support tool would be a model enabling prognostics of system's health based on the current condition of considered equipment. Within area of system prognostics and health management, a commonly used health indicator is Remaining Useful Lifetime (RUL) of a system. Because the RUL is a random variable, it has to be estimated based on available health indicators. Health indicators can be of different types and come from different sources. They can be process variables, equipment performance variables, data related to number of experienced failures, etc. The aim of this study is the analysis of performance variables of emergency shutdown valves (ESV) used in oil and gas industry. ESV is inspected periodically, and at each inspection torque and time of valve operation are registered. The data will be analyzed by means of machine learning or statistical analysis. The purpose is to investigate whether the available data could be used as a health indicator for a prognostic purpose. The second objective is to examine what is the most efficient way to incorporate the data into predictive model. The idea is to check whether the data can be applied in form of explanatory variables in Markov process or whether other stochastic processes would be a more convenient to build an RUL model based on the information coming from registered data.

Keywords: emergency shutdown valves, health indicator, prognostics, remaining useful lifetime, RUL

Procedia PDF Downloads 90
24645 Block Mining: Block Chain Enabled Process Mining Database

Authors: James Newman

Abstract:

Process mining is an emerging technology that looks to serialize enterprise data in time series data. It has been used by many companies and has been the subject of a variety of research papers. However, the majority of current efforts have looked at how to best create process mining from standard relational databases. This paper is the first pass at outlining a database custom-built for the minimal viable product of process mining. We present Block Miner, a blockchain protocol to store process mining data across a distributed network. We demonstrate the feasibility of storing process mining data on the blockchain. We present a proof of concept and show how the intersection of these two technologies helps to solve a variety of issues, including but not limited to ransomware attacks, tax documentation, and conflict resolution.

Keywords: blockchain, process mining, memory optimization, protocol

Procedia PDF Downloads 101
24644 The Influencing Factors of Export Performance Amongst Halal Small and Medium-Sized Enterprises (SMEs) in Malaysia

Authors: Shanorfizah Mohd Safar, Shaizatulaqma Kamalul Ariffin

Abstract:

Internationalization of halal small and medium-sized enterprises (SMEs) is necessary for SMEs to become more involved in regional trade and business cooperation. By internationalization, SMEs' profit can increase, and market expansion of SMEs is basic for rising economies of countries to contend all around in the halal industry globally. There are several modes of internationalization; exporting is one of the first steps for internationalization with less capital needed. The study examines the influential factors of export performance amongst halal SMEs in Malaysia. Specifically, this study examines the positive and significant relationships amongst human capital, managerial capability, Halal Assurance Management System (HAMS), digital transformation, government support, and networking capability on halal SMEs' export performance toward SMEs' competitive advantage. In addition, this study will examine innovation capabilities as a moderator in the relationship between independence variables and competitive advantage. Competitive advantage is the most compelling perspective that drives the export performance of halal SMEs in Malaysia. A quantitative method will be used: an online questionnaire survey distributed through emails and face-to-face toward selected halal-certificated SMEs registered in JAKIM, MATRADE website and SME Corp Malaysia website. Nevertheless, whether the halal SMEs practice global business, they will still be the potential respondents. The data were examined and obtained using the statistical software Smart PLS. The analysis used is reliability, correlation, and regression analysis to meet the research objectives. This study contributes significantly to the theory by integrating Resource Based View (RBV) theory, Technology–Organization–Environment (TOE) framework and Networking theory. In addition, this research extends the RBV by extending a variable, the Halal Assurance Management System. This study also examines a moderating role of innovation capabilities in the framework and competitive advantage as a mediator. This research aims to analyze the factors that will impact the internationalization of halal SMEs.

Keywords: internationalization, halal SMEs, competitive advantage, export performance

Procedia PDF Downloads 74
24643 Vulnerability of Groundwater to Pollution in Akwa Ibom State, Southern Nigeria, using the DRASTIC Model and Geographic Information System (GIS)

Authors: Aniedi A. Udo, Magnus U. Igboekwe, Rasaaq Bello, Francis D. Eyenaka, Michael C. Ohakwere-Eze

Abstract:

Groundwater vulnerability to pollution was assessed in Akwa Ibom State, Southern Nigeria, with the aim of locating areas with high potentials for resource contamination, especially due to anthropogenic influence. The electrical resistivity method was utilized in the collection of the initial field data. Additional data input, which included depth to static water level, drilled well log data, aquifer recharge data, percentage slope, as well as soil information, were sourced from secondary sources. The initial field data were interpreted both manually and with computer modeling to provide information on the geoelectric properties of the subsurface. Interpreted results together with the secondary data were used to develop the DRASTIC thematic maps. A vulnerability assessment was performed using the DRASTIC model in a GIS environment and areas with high vulnerability which needed immediate attention was clearly mapped out and presented using an aquifer vulnerability map. The model was subjected to validation and the rate of validity was 73% within the area of study.

Keywords: groundwater, vulnerability, DRASTIC model, pollution

Procedia PDF Downloads 206
24642 Explore the New Urbanization Patterns of the Varied Terrain Inland Areas: The Case of Hubei Province

Authors: Zhan Chen, Yaping Huang, Xiao Shen, Yichun Li

Abstract:

New urbanization is a strategic fulcrum of China's future development, regional urbanization is a hot research field, different from the contiguous urbanization patterns of the eastern coastal plains and the node type urbanization patterns of the southwest mountainous areas, central inland areas has the realistic conditions of complex terrain conditions and kinds of phases, the dominant power of urbanization development, organizational power, coordination of the urbanization development and the natural environment, will be the core issue in the process of urbanization. This article starts from the characteristics of the typical urbanization development in such areas of Hubei Province, analyzing the current outstanding and typical problems in the process of urbanization in Hubei Province, and propose targeted to promote the basic ideas and implementation paths of the development of new urbanization, in order to provide experience and learn from similar cities of the development of urbanization.

Keywords: varied terrain, inland area, path explore, Hubei Province

Procedia PDF Downloads 354
24641 A Review Paper on Data Security in Precision Agriculture Using Internet of Things

Authors: Tonderai Muchenje, Xolani Mkhwanazi

Abstract:

Precision agriculture uses a number of technologies, devices, protocols, and computing paradigms to optimize agricultural processes. Big data, artificial intelligence, cloud computing, and edge computing are all used to handle the huge amounts of data generated by precision agriculture. However, precision agriculture is still emerging and has a low level of security features. Furthermore, future solutions will demand data availability and accuracy as key points to help farmers, and security is important to build robust and efficient systems. Since precision agriculture comprises a wide variety and quantity of resources, security addresses issues such as compatibility, constrained resources, and massive data. Moreover, conventional protection schemes used in the traditional internet may not be useful for agricultural systems, creating extra demands and opportunities. Therefore, this paper aims at reviewing state of the art of precision agriculture security, particularly in open field agriculture, discussing its architecture, describing security issues, and presenting the major challenges and future directions.

Keywords: precision agriculture, security, IoT, EIDE

Procedia PDF Downloads 88
24640 Commercial Automobile Insurance: A Practical Approach of the Generalized Additive Model

Authors: Nicolas Plamondon, Stuart Atkinson, Shuzi Zhou

Abstract:

The insurance industry is usually not the first topic one has in mind when thinking about applications of data science. However, the use of data science in the finance and insurance industry is growing quickly for several reasons, including an abundance of reliable customer data, ferocious competition requiring more accurate pricing, etc. Among the top use cases of data science, we find pricing optimization, customer segmentation, customer risk assessment, fraud detection, marketing, and triage analytics. The objective of this paper is to present an application of the generalized additive model (GAM) on a commercial automobile insurance product: an individually rated commercial automobile. These are vehicles used for commercial purposes, but for which there is not enough volume to apply pricing to several vehicles at the same time. The GAM model was selected as an improvement over GLM for its ease of use and its wide range of applications. The model was trained using the largest split of the data to determine model parameters. The remaining part of the data was used as testing data to verify the quality of the modeling activity. We used the Gini coefficient to evaluate the performance of the model. For long-term monitoring, commonly used metrics such as RMSE and MAE will be used. Another topic of interest in the insurance industry is to process of producing the model. We will discuss at a high level the interactions between the different teams with an insurance company that needs to work together to produce a model and then monitor the performance of the model over time. Moreover, we will discuss the regulations in place in the insurance industry. Finally, we will discuss the maintenance of the model and the fact that new data does not come constantly and that some metrics can take a long time to become meaningful.

Keywords: insurance, data science, modeling, monitoring, regulation, processes

Procedia PDF Downloads 74
24639 Plans for Villages in the Margin of the Lagoon with an Accentuation on Tourism Advancement, Case Study: Village Rogbeh, Shadegan, Iran

Authors: Seyed Mohammad Mousavi Shalheh, Elham Rostami, Seyed Majid Mousavi, Somayeh Shirin Jani

Abstract:

The aim of this research was to evaluate the potential of Rogbeh village located in Khanafereh, Shadegan city functions in Khuzestan also is the feasibility to build infrastructure and appropriate spaces to attract tourists as well as creating jobs and transforming the village institute of ecotourism in the region. It seems that the village has the potential for developing rural tourism with careful planning, and with regard to job creation and economic recovery programs, social-cultural and environmental-ecological accompanied will be welcomed by the people. Therefore, we can provide a strategy for developing tourism and achieving sustainable advancement of rural tourism. Based on researches carried out and according to regional climate differences and the position of the Rogbeh Village toward the lagoon, this research can be used by other researchers to develop and manage tourism.

Keywords: Shadegan Lagoon, Iranian villages, tourism industry, local architecture, Rogbeh village, landscape design, ecology

Procedia PDF Downloads 170
24638 Modeling Pan Evaporation Using Intelligent Methods of ANN, LSSVM and Tree Model M5 (Case Study: Shahroud and Mayamey Stations)

Authors: Hamidreza Ghazvinian, Khosro Ghazvinian, Touba Khodaiean

Abstract:

The importance of evaporation estimation in water resources and agricultural studies is undeniable. Pan evaporation are used as an indicator to determine the evaporation of lakes and reservoirs around the world due to the ease of interpreting its data. In this research, intelligent models were investigated in estimating pan evaporation on a daily basis. Shahroud and Mayamey were considered as the studied cities. These two cities are located in Semnan province in Iran. The mentioned cities have dry weather conditions that are susceptible to high evaporation potential. Meteorological data of 11 years of synoptic stations of Shahrood and Mayamey cities were used. The intelligent models used in this study are Artificial Neural Network (ANN), Least Squares Support Vector Machine (LSSVM), and M5 tree models. Meteorological parameters of minimum and maximum air temperature (Tmax, Tmin), wind speed (WS), sunshine hours (SH), air pressure (PA), relative humidity (RH) as selected input data and evaporation data from pan (EP) to The output data was considered. 70% of data is used at the education level, and 30 % of the data is used at the test level. Models used with explanation coefficient evaluation (R2) Root of Mean Squares Error (RMSE) and Mean Absolute Error (MAE). The results for the two Shahroud and Mayamey stations showed that the above three models' operations are rather appropriate.

Keywords: pan evaporation, intelligent methods, shahroud, mayamey

Procedia PDF Downloads 73
24637 Generating Insights from Data Using a Hybrid Approach

Authors: Allmin Susaiyah, Aki Härmä, Milan Petković

Abstract:

Automatic generation of insights from data using insight mining systems (IMS) is useful in many applications, such as personal health tracking, patient monitoring, and business process management. Existing IMS face challenges in controlling insight extraction, scaling to large databases, and generalising to unseen domains. In this work, we propose a hybrid approach consisting of rule-based and neural components for generating insights from data while overcoming the aforementioned challenges. Firstly, a rule-based data 2CNL component is used to extract statistically significant insights from data and represent them in a controlled natural language (CNL). Secondly, a BERTSum-based CNL2NL component is used to convert these CNLs into natural language texts. We improve the model using task-specific and domain-specific fine-tuning. Our approach has been evaluated using statistical techniques and standard evaluation metrics. We overcame the aforementioned challenges and observed significant improvement with domain-specific fine-tuning.

Keywords: data mining, insight mining, natural language generation, pre-trained language models

Procedia PDF Downloads 117
24636 Review of K0-Factors and Related Nuclear Data of the Selected Radionuclides for Use in K0-NAA

Authors: Manh-Dung Ho, Van-Giap Pham, Van-Doanh Ho, Quang-Thien Tran, Tuan-Anh Tran

Abstract:

The k0-factors and related nuclear data, i.e. the Q0-factors and effective resonance energies (Ēr) of the selected radionuclides which are used in the k0-based neutron activation analysis (k0-NAA), were critically reviewed to be integrated in the “k0-DALAT” software. The k0- and Q0-factors of some short-lived radionuclides: 46mSc, 110Ag, 116m2In, 165mDy, and 183mW, were experimentally determined at the Dalat research reactor. The other radionuclides selected are: 20F, 36S, 49Ca, 60mCo, 60Co, 75Se, 77mSe, 86mRb, 115Cd, 115mIn, 131Ba, 134mCs, 134Cs, 153Gd, 153Sm, 159Gd, 170Tm, 177mYb, 192Ir, 197mHg, 239U and 239Np. The reviewed data as compared with the literature data were biased within 5.6-7.3% in which the experimental re-determined factors were within 6.1 and 7.3%. The NIST standard reference materials: Oyster Tissue (1566b), Montana II Soil (2711a) and Coal Fly Ash (1633b) were used to validate the new reviewed data showing that the new data gave an improved k0-NAA using the “k0-DALAT” software with a factor of 4.5-6.8% for the investigated radionuclides.

Keywords: neutron activation analysis, k0-based method, k0 factor, Q0 factor, effective resonance energy

Procedia PDF Downloads 123
24635 Optimizing Electric Vehicle Charging with Charging Data Analytics

Authors: Tayyibah Khanam, Mohammad Saad Alam, Sanchari Deb, Yasser Rafat

Abstract:

Electric vehicles are considered as viable replacements to gasoline cars since they help in reducing harmful emissions and stimulate power generation through renewable energy sources, hence contributing to sustainability. However, one of the significant obstacles in the mass deployment of electric vehicles is the charging time anxiety among users and, thus, the subsequent large waiting times for available chargers at charging stations. Data analytics, on the other hand, has revolutionized the decision-making tasks of management and operating systems since its arrival. In this paper, we attempt to optimize the choice of EV charging stations for users in their vicinity by minimizing the time taken to reach the charging stations and the waiting times for available chargers. Time taken to travel to the charging station is calculated by the Google Maps API and the waiting times are predicted by polynomial regression of the historical data stored. The proposed framework utilizes real-time data and historical data from all operating charging stations in the city and assists the user in finding the best suitable charging station for their current situation and can be implemented in a mobile phone application. The algorithm successfully predicts the most optimal choice of a charging station and the minimum required time for various sample data sets.

Keywords: charging data, electric vehicles, machine learning, waiting times

Procedia PDF Downloads 192
24634 Finding Data Envelopment Analysis Targets Using Multi-Objective Programming in DEA-R with Stochastic Data

Authors: R. Shamsi, F. Sharifi

Abstract:

In this paper, we obtain the projection of inefficient units in data envelopment analysis (DEA) in the case of stochastic inputs and outputs using the multi-objective programming (MOP) structure. In some problems, the inputs might be stochastic while the outputs are deterministic, and vice versa. In such cases, we propose a multi-objective DEA-R model because in some cases (e.g., when unnecessary and irrational weights by the BCC model reduce the efficiency score), an efficient decision-making unit (DMU) is introduced as inefficient by the BCC model, whereas the DMU is considered efficient by the DEA-R model. In some other cases, only the ratio of stochastic data may be available (e.g., the ratio of stochastic inputs to stochastic outputs). Thus, we provide a multi-objective DEA model without explicit outputs and prove that the input-oriented MOP DEA-R model in the invariable return to scale case can be replaced by the MOP-DEA model without explicit outputs in the variable return to scale and vice versa. Using the interactive methods for solving the proposed model yields a projection corresponding to the viewpoint of the DM and the analyst, which is nearer to reality and more practical. Finally, an application is provided.

Keywords: DEA-R, multi-objective programming, stochastic data, data envelopment analysis

Procedia PDF Downloads 104
24633 Integrated Model for Enhancing Data Security Processing Time in Cloud Computing

Authors: Amani A. Saad, Ahmed A. El-Farag, El-Sayed A. Helali

Abstract:

Cloud computing is an important and promising field in the recent decade. Cloud computing allows sharing resources, services and information among the people of the whole world. Although the advantages of using clouds are great, but there are many risks in a cloud. The data security is the most important and critical problem of cloud computing. In this research a new security model for cloud computing is proposed for ensuring secure communication system, hiding information from other users and saving the user's times. In this proposed model Blowfish encryption algorithm is used for exchanging information or data, and SHA-2 cryptographic hash algorithm is used for data integrity. For user authentication process a simple user-name and password is used, the password uses SHA-2 for one way encryption. The proposed system shows an improvement of the processing time of uploading and downloading files on the cloud in secure form.

Keywords: cloud computing, data security, SAAS, PAAS, IAAS, Blowfish

Procedia PDF Downloads 356
24632 India’s Foreign Policy toward its South Asian Neighbors: Retrospect and Prospect

Authors: Debasish Nandy

Abstract:

India’s foreign policy towards all of her neighbor countries is determinate on the basis of multi-dimensional factors. India’s relations with its South Asian neighbor can be classified into three categories. In the first category, there are four countries -Sri Lanka, Bangladesh, Nepal, and Afghanistan- whose bilateral relationships have encompassed cooperation, irritants, problems and crisis at different points in time. With Pakistan, the relationship has been perpetually adversarial. The third category includes Bhutan and Maldives whose relations are marked by friendship and cooperation, free of any bilateral problems. It is needless to say that Jawaharlal Nehru emphasized on friendly relations with the neighboring countries. The subsequent Prime Ministers of India especially I.K. Gujral had advocated in making of peaceful and friendly relations with the subcontinental countries. He had given a unique idea to foster bilateral relations with the neighbors. His idea is known as ‘Gujral Doctrine’. A dramatical change has been witnessed in Indian foreign policy since 1991.In the post-Cold War period, India’s national security has been vehemently threatened by terrorism, which originated from Pakistan-Afghanistan and partly Bangladesh. India has required a cooperative security, which can be made by mutual understanding among the South Asian countries. Additionally, the countries of South Asia need to evolve the concept of ‘Cooperative Security’ to explain the underlying logic of regional cooperation. According to C. Rajamohan, ‘cooperative security could be understood, as policies of governments, which see themselves as former adversaries or potential adversaries to shift from or avoid confrontationist policies.’ A cooperative security essentially reflects a policy of dealing peacefully with conflicts, not merely by abstention from violence or threats but by active engagement in negotiation, a search for practical solutions and with a commitment to preventive measures. Cooperative assumes the existence of a condition in which the two sides possess the military capabilities to harm each other. Establishing cooperative security runs into a complex process building confidence. South Asian nations often engaged with hostility to each other. Extra-regional powers have been influencing their powers in this region since a long time. South Asian nations are busy to purchase military equipment. In spite of weakened economic systems, these states are spending a huge amount of money for their security. India is the big power in this region in every aspect. The big states- small states syndrome is a negative factor in this respect. However, India will have to an initiative to extended ‘track II diplomacy’ or soft diplomacy for its security as well as the security of this region.Confidence building measures could help rejuvenate not only SAARC but also build trust and mutual confidence between India and its neighbors in South Asia. In this paper, I will focus on different aspects of India’s policy towards it, South-Asian neighbors. It will also be searched that how India is dealing with these countries by using a mixed type of diplomacy – both idealistic and realistic points of view. Security and cooperation are two major determinants of India’s foreign policy towards its South Asian neighbors.

Keywords: bilateral, diplomacy, infiltration, terrorism

Procedia PDF Downloads 538
24631 Analysis of the Effects of Institutions on the Sub-National Distribution of Aid Using Geo-Referenced AidData

Authors: Savas Yildiz

Abstract:

The article assesses the performance of international aid donors to determine the sub-national distribution of their aid projects dependent on recipient countries’ governance. The present paper extends the scope from a cross-country perspective to a more detailed analysis by looking at the effects of institutional qualities on the sub-national distribution of foreign aid. The analysis examines geo-referenced aid project in 37 countries and 404 regions at the first administrative division level in Sub-Saharan Africa from the World Bank (WB) and the African Development Bank (ADB) that were approved between the years 2000 and 2011. To measure the influence of institutional qualities on the distribution of aid the following measures are used: control of corruption, government effectiveness, regulatory quality and rule of law from the World Governance Indicators (WGI) and the corruption perception index from Transparency International. Furthermore, to assess the importance of ethnic heterogeneity on the sub-national distribution of aid projects, the study also includes interaction terms measuring ethnic fragmentation. The regression results indicate a general skew of aid projects towards regions which hold capital cities, however, being incumbent presidents’ birth region does not increase the allocation of aid projects significantly. Nevertheless, with increasing quality of institutions aid projects are less skewed towards capital regions and the previously estimated coefficients loose significance in most cases. Higher ethnic fragmentation also seems to impede the possibility to allocate aid projects mainly in capital city regions and presidents’ birth places. Additionally, to assess the performance of the WB based on its own proclaimed goal to aim the poor in a country, the study also includes sub-national wealth data from the Demographic and Health Surveys (DSH), and finds that, even with better institutional qualities, regions with a larger share from the richest quintile receive significantly more aid than regions with a larger share of poor people. With increasing ethnic diversity, the allocation of aid projects towards regions where the richest citizens reside diminishes, but still remains high and significant. However, regions with a larger share of poor people still do not receive significantly more aid. This might imply that the sub-national distribution of aid projects increases in general with higher ethnic fragmentation, independent of the diverse regional needs. The results provide evidence that institutional qualities matter to undermine the influence of incumbent presidents on the allocation of aid projects towards their birth regions and capital regions. Moreover, even for countries with better institutional qualities the WB and the ADB do not seem to be able to aim the poor in a country with their aid projects. Even, if one considers need-based variables, such as infant mortality and child mortality rates, aid projects do not seem to be allocated in districts with a larger share of people in need. Therefore, the study provides further evidence using more detailed information on the sub-national distribution of aid projects that aid is not being allocated effectively towards regions with a larger share of poor people to alleviate poverty in recipient countries directly. Institutions do not have any significant influence on the sub-national distribution of aid towards the poor.

Keywords: aid allocation, georeferenced data, institutions, spatial analysis

Procedia PDF Downloads 118
24630 Comparison of Statistical Methods for Estimating Missing Precipitation Data in the River Subbasin Lenguazaque, Colombia

Authors: Miguel Cañon, Darwin Mena, Ivan Cabeza

Abstract:

In this work was compared and evaluated the applicability of statistical methods for the estimation of missing precipitations data in the basin of the river Lenguazaque located in the departments of Cundinamarca and Boyacá, Colombia. The methods used were the method of simple linear regression, distance rate, local averages, mean rates, correlation with nearly stations and multiple regression method. The analysis used to determine the effectiveness of the methods is performed by using three statistical tools, the correlation coefficient (r2), standard error of estimation and the test of agreement of Bland and Altmant. The analysis was performed using real rainfall values removed randomly in each of the seasons and then estimated using the methodologies mentioned to complete the missing data values. So it was determined that the methods with the highest performance and accuracy in the estimation of data according to conditions that were counted are the method of multiple regressions with three nearby stations and a random application scheme supported in the precipitation behavior of related data sets.

Keywords: statistical comparison, precipitation data, river subbasin, Bland and Altmant

Procedia PDF Downloads 466
24629 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network

Authors: Li Qingjian, Li Ke, He Chun, Huang Yong

Abstract:

In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.

Keywords: DBN, SOM, pattern classification, hyperspectral, data compression

Procedia PDF Downloads 340
24628 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images

Authors: Masood Varshosaz, Kamyar Hasanpour

Abstract:

In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.

Keywords: human recognition, deep learning, drones, disaster mitigation

Procedia PDF Downloads 91
24627 Emotional Artificial Intelligence and the Right to Privacy

Authors: Emine Akar

Abstract:

The majority of privacy-related regulation has traditionally focused on concepts that are perceived to be well-understood or easily describable, such as certain categories of data and personal information or images. In the past century, such regulation appeared reasonably suitable for its purposes. However, technologies such as AI, combined with ever-increasing capabilities to collect, process, and store “big data”, not only require calibration of these traditional understandings but may require re-thinking of entire categories of privacy law. In the presentation, it will be explained, against the background of various emerging technologies under the umbrella term “emotional artificial intelligence”, why modern privacy law will need to embrace human emotions as potentially private subject matter. This argument can be made on a jurisprudential level, given that human emotions can plausibly be accommodated within the various concepts that are traditionally regarded as the underlying foundation of privacy protection, such as, for example, dignity, autonomy, and liberal values. However, the practical reasons for regarding human emotions as potentially private subject matter are perhaps more important (and very likely more convincing from the perspective of regulators). In that respect, it should be regarded as alarming that, according to most projections, the usefulness of emotional data to governments and, particularly, private companies will not only lead to radically increased processing and analysing of such data but, concerningly, to an exponential growth in the collection of such data. In light of this, it is also necessity to discuss options for how regulators could address this emerging threat.

Keywords: AI, privacy law, data protection, big data

Procedia PDF Downloads 87
24626 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform

Authors: Reza Mohammadzadeh

Abstract:

The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.

Keywords: data model, geotechnical risks, machine learning, underground coal mining

Procedia PDF Downloads 274
24625 Classification of Poverty Level Data in Indonesia Using the Naïve Bayes Method

Authors: Anung Style Bukhori, Ani Dijah Rahajoe

Abstract:

Poverty poses a significant challenge in Indonesia, requiring an effective analytical approach to understand and address this issue. In this research, we applied the Naïve Bayes classification method to examine and classify poverty data in Indonesia. The main focus is on classifying data using RapidMiner, a powerful data analysis platform. The analysis process involves data splitting to train and test the classification model. First, we collected and prepared a poverty dataset that includes various factors such as education, employment, and health..The experimental results indicate that the Naïve Bayes classification model can provide accurate predictions regarding the risk of poverty. The use of RapidMiner in the analysis process offers flexibility and efficiency in evaluating the model's performance. The classification produces several values to serve as the standard for classifying poverty data in Indonesia using Naive Bayes. The accuracy result obtained is 40.26%, with a moderate recall result of 35.94%, a high recall result of 63.16%, and a low recall result of 38.03%. The precision for the moderate class is 58.97%, for the high class is 17.39%, and for the low class is 58.70%. These results can be seen from the graph below.

Keywords: poverty, classification, naïve bayes, Indonesia

Procedia PDF Downloads 53
24624 Web Search Engine Based Naming Procedure for Independent Topic

Authors: Takahiro Nishigaki, Takashi Onoda

Abstract:

In recent years, the number of document data has been increasing since the spread of the Internet. Many methods have been studied for extracting topics from large document data. We proposed Independent Topic Analysis (ITA) to extract topics independent of each other from large document data such as newspaper data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis. The topic represented by ITA is represented by a set of words. However, the set of words is quite different from the topics the user imagines. For example, the top five words with high independence of a topic are as follows. Topic1 = {"scor", "game", "lead", "quarter", "rebound"}. This Topic 1 is considered to represent the topic of "SPORTS". This topic name "SPORTS" has to be attached by the user. ITA cannot name topics. Therefore, in this research, we propose a method to obtain topics easy for people to understand by using the web search engine, topics given by the set of words given by independent topic analysis. In particular, we search a set of topical words, and the title of the homepage of the search result is taken as the topic name. And we also use the proposed method for some data and verify its effectiveness.

Keywords: independent topic analysis, topic extraction, topic naming, web search engine

Procedia PDF Downloads 118
24623 Extracting Terrain Points from Airborne Laser Scanning Data in Densely Forested Areas

Authors: Ziad Abdeldayem, Jakub Markiewicz, Kunal Kansara, Laura Edwards

Abstract:

Airborne Laser Scanning (ALS) is one of the main technologies for generating high-resolution digital terrain models (DTMs). DTMs are crucial to several applications, such as topographic mapping, flood zone delineation, geographic information systems (GIS), hydrological modelling, spatial analysis, etc. Laser scanning system generates irregularly spaced three-dimensional cloud of points. Raw ALS data are mainly ground points (that represent the bare earth) and non-ground points (that represent buildings, trees, cars, etc.). Removing all the non-ground points from the raw data is referred to as filtering. Filtering heavily forested areas is considered a difficult and challenging task as the canopy stops laser pulses from reaching the terrain surface. This research presents an approach for removing non-ground points from raw ALS data in densely forested areas. Smoothing splines are exploited to interpolate and fit the noisy ALS data. The presented filter utilizes a weight function to allocate weights for each point of the data. Furthermore, unlike most of the methods, the presented filtering algorithm is designed to be automatic. Three different forested areas in the United Kingdom are used to assess the performance of the algorithm. The results show that the generated DTMs from the filtered data are accurate (when compared against reference terrain data) and the performance of the method is stable for all the heavily forested data samples. The average root mean square error (RMSE) value is 0.35 m.

Keywords: airborne laser scanning, digital terrain models, filtering, forested areas

Procedia PDF Downloads 138
24622 Estimating the Life-Distribution Parameters of Weibull-Life PV Systems Utilizing Non-Parametric Analysis

Authors: Saleem Z. Ramadan

Abstract:

In this paper, a model is proposed to determine the life distribution parameters of the useful life region for the PV system utilizing a combination of non-parametric and linear regression analysis for the failure data of these systems. Results showed that this method is dependable for analyzing failure time data for such reliable systems when the data is scarce.

Keywords: masking, bathtub model, reliability, non-parametric analysis, useful life

Procedia PDF Downloads 560
24621 Peripheral Neuropathy after Locoregional Anesthesia

Authors: Dalila Chaid, Bennameur Fedilli, Mohammed Amine Bellelou

Abstract:

The study focuses on the experience of lower-limb amputees, who face both physical and psychological challenges due to their disability. Chronic neuropathic pain and various types of limb pain are common in these patients. They often require orthopaedic interventions for issues such as dressings, infection, ulceration, and bone-related problems. Research Aim: The aim of this study is to determine the most suitable anaesthetic technique for lower-limb amputees, which can provide them with the greatest comfort and prolonged analgesia. The study also aims to demonstrate the effectiveness and cost-effectiveness of ultrasound-guided local regional anaesthesia (LRA) in this patient population. Methodology: The study is an observational analytical study conducted over a period of eight years, from 2010 to 2018. It includes a total of 955 cases of revisions performed on lower limb stumps. The parameters analyzed in this study include the effectiveness of the block and the use of sedation, the duration of the block, the post-operative visual analog scale (VAS) scores, and patient comfort. Findings: The study findings highlight the benefits of ultrasound-guided LRA in providing comfort by optimizing post-operative analgesia, which can contribute to psychological and bodily repair in lower-limb amputees. Additionally, the study emphasizes the use of alpha2 agonist adjuvants with sedative and analgesic properties, long-acting local anaesthetics, and larger volumes for better outcomes. Theoretical Importance: This study contributes to the existing knowledge by emphasizing the importance of choosing an appropriate anaesthetic technique for lower-limb amputees. It highlights the potential of ultrasound-guided LRA and the use of specific adjuvants and local anaesthetics in improving post-operative analgesia and overall patient outcomes. Data Collection and Analysis Procedures: Data for this study were collected through the analysis of medical records and relevant documentation related to the 955 cases included in the study. The effectiveness of the anaesthetic technique, duration of the block, post-operative pain scores, and patient comfort were analyzed using statistical methods. Question Addressed: The study addresses the question of which anaesthetic technique would be most suitable for lower-limb amputees to provide them with optimal comfort and prolonged analgesia. Conclusion: The study concludes that ultrasound-guided LRA, along with the use of alpha2 agonist adjuvants, long-acting local anaesthetics, and larger volumes, can be an effective approach in providing comfort and improving post-operative analgesia for lower-limb amputees. This technique can potentially contribute to the psychological and bodily repair of these patients. The findings of this study have implications for clinical practice in the management of lower-limb amputees, highlighting the importance of personalized anaesthetic approaches for better outcomes.

Keywords: neuropathic pain, ultrasound-guided peripheral nerve block, DN4 quiz, EMG

Procedia PDF Downloads 77
24620 Local Gambling Attitudes, Corporate R&D Investment and Long-Term Financial Performance

Authors: Hong Fan, Lifang Gao, Feng Zhan

Abstract:

This paper examines the influence of local gambling attitudes on a firm's long-term financial performance. Firms located in gambling-prone regions may be more willing to take risks, thus spending more on innovative projects. However, firms in such regions may also be likely to choose projects impulsively and allocate resources inefficiently. By studying Chinese publicly listed firms from 2010 to 2017, we find that firms in more gambling-prone regions invest more in R&D. Both local gambling attitudes and firms’ R&D spending are positively associated with firms’ long-term financial performance. More importantly, our study reveals that the positive impact of R&D spending on firms’ long-term financial performance is weakened by gambling-friendly attitudes, probably because firms in gambling-prone regions are more likely to overinvest in risky projects. This effect is stronger for larger firms, state-owned enterprises (SOEs), firms with more government subsidies, and firms with weaker internal control.

Keywords: regional gambling attitudes, long-term financial performance, R&D, risk, local bias

Procedia PDF Downloads 113