Search results for: reactive power loss allocation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10426

Search results for: reactive power loss allocation

8926 Evaluation of Sustainable Business Model Innovation in Increasing the Penetration of Renewable Energy in the Ghana Power Sector

Authors: Victor Birikorang Danquah

Abstract:

Ghana's primary energy supply is heavily reliant on petroleum, biomass, and hydropower. Currently, Ghana gets its energy from hydropower (Akosombo and Bui), thermal power plants powered by crude oil, natural gas, and diesel, solar power, and imports from La Cote d'Ivoire. Until the early 2000s, large hydroelectric dams dominated Ghana's electricity generation. Due to unreliable weather patterns, Ghana increased its reliance on thermal power. However, thermal power contributes the highest percentage in terms of electricity generation in Ghana and is predominantly supplied by Independent Power Producers (IPPs). Ghana's electricity industry operates the corporate utility model as its business model. This model is typically' vertically integrated,' with a single corporation selling the majority of power generated by its generation assets to its retail business, which then sells the electricity to retail market consumers. The corporate utility model has a straightforward value proposition that is based on increasing the number of energy units sold. The unit volume business model drives the entire energy value chain to increase throughput, locking system users into unsustainable practices. This report uses the qualitative research approach to explore the electricity industry in Ghana. There is a need for increasing renewable energy, such as wind and solar, in electricity generation. The research recommends two critical business models for the penetration of renewable energy in Ghana's power sector. The first model is the peer-to-peer electricity trading model, which relies on a software platform to connect consumers and generators in order for them to trade energy directly with one another. The second model is about encouraging local energy generation, incentivizing optimal time-of-use behaviour, and allowing any financial gains to be shared among the community members.

Keywords: business model innovation, electricity generation, renewable energy, solar energy, sustainability, wind energy

Procedia PDF Downloads 160
8925 Accelerating Side Channel Analysis with Distributed and Parallelized Processing

Authors: Kyunghee Oh, Dooho Choi

Abstract:

Although there is no theoretical weakness in a cryptographic algorithm, Side Channel Analysis can find out some secret data from the physical implementation of a cryptosystem. The analysis is based on extra information such as timing information, power consumption, electromagnetic leaks or even sound which can be exploited to break the system. Differential Power Analysis is one of the most popular analyses, as computing the statistical correlations of the secret keys and power consumptions. It is usually necessary to calculate huge data and takes a long time. It may take several weeks for some devices with countermeasures. We suggest and evaluate the methods to shorten the time to analyze cryptosystems. Our methods include distributed computing and parallelized processing.

Keywords: DPA, distributed computing, parallelized processing, side channel analysis

Procedia PDF Downloads 406
8924 Effect of MPPT and THD in Grid-Connected Photovoltaic System

Authors: Sajjad Yahaghifar

Abstract:

From the end of the last century, the importance and use of renewable energy sources have gained prominence, due not only by the fossil fuels dependence reduction, but mainly by environmental reasons related to climate change and the effects to the humanity. Consequently, solar energy has been arousing interest in several countries for being a technology considered clean, with reduced environmental impact. The output power of photo voltaic (PV) arrays is always changing with weather conditions,i.e., solar irradiation and atmospheric temperature. Therefore, maximum power point tracking (MPPT) control to extract maximum power from the PV arrays at real time becomes indispensable in PV generation system. This paper Study MPPT and total harmonic distortion (THD) in the city of Tabriz, Iran with the grid-connected PV system as distributed generation.

Keywords: MPPT, THD, grid-connected, PV system

Procedia PDF Downloads 385
8923 Radio Regulation Development and Radio Spectrum Analysis of Earth Station in Motion Service

Authors: Fei Peng, Jun Yuan, Chen Fan, Fan Jiang, Qian Sun, Yudi Liu

Abstract:

Although Earth Station in Motion (ESIM) services are widely used and there is a huge market demand around the world, International Telecommunication Union (ITU) does not have unified conclusion for the use of ESIM yet. ESIM are Mobile Satellite Services (MSS) due to its mobile-based attributes, while multiple administrations want to use ESIM in Fixed Satellite Service (FSS). However, Radio Regulations (RR) have strict distinction between MSS and FSS. In this case, ITU has been very controversial because this kind of application will violate the RR Article and the conflict will bring risks to the global deployment. Thus, this paper illustrates the development of rules, regulations, standards concerning ESIM and the radio spectrum usage of ESIM in different regions around the world. Firstly, the basic rules, standard and definition of ITU’s Radiocommunication Sector (ITU-R) is introduced. Secondly, the World Radiocommunication Conference (WRC) agenda item on radio spectrum allocation for ESIM, e.g. in C/Ku/Ka band, is introduced and multi-view on the radio spectrum allocation is elaborated, especially on 19.7-20.2 GHz & 29.5-30.0 GHz. Then, some ITU-R Recommendations and Reports are analyzed on the specific technique to enable these ESIM to communicate with Geostationary Earth Orbit Satellite (GSO) space stations in the FSS without causing interference at levels in excess of that caused by conventional FSS earth stations. Meanwhile, the opposite opinion on not allocating EISM service in FSS frequency band is also elaborated. Finally, based on the ESIM’s future application, the ITU-R standards development trend is forecasted. In conclusion, using radio spectrum resource in an equitable, rational and efficient manner is the basic guideline of ITU. Although it is not a good approach to obstruct the revise of RR when there is a large demand for radio spectrum resource in satellite industry, still the propulsion and global demand of the whole industry may face difficulties on the unclear application in modify rules of RR.

Keywords: earth station in motion, ITU standards, radio regulations, radio spectrum, satellite communication

Procedia PDF Downloads 269
8922 Performance Evaluation of a Prioritized, Limited Multi-Server Processor-Sharing System that Includes Servers with Various Capacities

Authors: Yoshiaki Shikata, Nobutane Hanayama

Abstract:

We present a prioritized, limited multi-server processor sharing (PS) system where each server has various capacities, and N (≥2) priority classes are allowed in each PS server. In each prioritized, limited server, different service ratio is assigned to each class request, and the number of requests to be processed is limited to less than a certain number. Routing strategies of such prioritized, limited multi-server PS systems that take into account the capacity of each server are also presented, and a performance evaluation procedure for these strategies is discussed. Practical performance measures of these strategies, such as loss probability, mean waiting time, and mean sojourn time, are evaluated via simulation. In the PS server, at the arrival (or departure) of a request, the extension (shortening) of the remaining sojourn time of each request receiving service can be calculated by using the number of requests of each class and the priority ratio. Utilising a simulation program which executes these events and calculations, the performance of the proposed prioritized, limited multi-server PS rule can be analyzed. From the evaluation results, most suitable routing strategy for the loss or waiting system is clarified.

Keywords: processor sharing, multi-server, various capacity, N-priority classes, routing strategy, loss probability, mean sojourn time, mean waiting time, simulation

Procedia PDF Downloads 319
8921 A Study on Behaviour of Normal Strength Concrete and High Strength Concrete Subjected to Elevated Temperatures

Authors: Butchi Kameswara Rao Chittem, Rooban Kumar

Abstract:

Cement concrete is a complex mixture of different materials. Concrete is believed to have a good fire resistance. Behaviour of concrete depends on its mix proportions and its constituent materials when it is subjected to elevated temperatures. Loss in compressive strength, loss in weight or mass, change in colour and spall of concrete are reported in literature as effects of elevated temperature on concrete. In this paper results are reported on the behaviour of normal strength concrete and high strength concrete subjected to temperatures 200°C, 400°C, 600°C, and 800°C and different cooling regimes viz. air cooling, water quenching. Rebound hammer test was also conducted to study the changes in surface hardness of concrete specimens subjected to elevated temperatures.

Keywords: normal strength concrete, high-strength concrete, temperature, NDT

Procedia PDF Downloads 425
8920 Transmission Line Congestion Management Using Hybrid Fish-Bee Algorithm with Unified Power Flow Controller

Authors: P. Valsalal, S. Thangalakshmi

Abstract:

There is a widespread changeover in the electrical power industry universally from old-style monopolistic outline towards a horizontally distributed competitive structure to come across the demand of rising consumption. When the transmission lines of derestricted system are incapable to oblige the entire service needs, the lines are overloaded or congested. The governor between customer and power producer is nominated as Independent System Operator (ISO) to lessen the congestion without obstructing transmission line restrictions. Among the existing approaches for congestion management, the frequently used approaches are reorganizing the generation and load curbing. There is a boundary for reorganizing the generators, and further loads may not be supplemented with the prevailing resources unless more private power producers are added in the system by considerably raising the cost. Hence, congestion is relaxed by appropriate Flexible AC Transmission Systems (FACTS) devices which boost the existing transfer capacity of transmission lines. The FACTs device, namely, Unified Power Flow Controller (UPFC) is preferred, and the correct placement of UPFC is more vital and should be positioned in the highly congested line. Hence, the weak line is identified by using power flow performance index with the new objective function with proposed hybrid Fish – Bee algorithm. Further, the location of UPFC at appropriate line reduces the branch loading and minimizes the voltage deviation. The power transfer capacity of lines is determined with and without UPFC in the identified congested line of IEEE 30 bus structure and the simulated results are compared with prevailing algorithms. It is observed that the transfer capacity of existing line is increased with the presented algorithm and thus alleviating the congestion.

Keywords: available line transfer capability, congestion management, FACTS device, Hybrid Fish-Bee Algorithm, ISO, UPFC

Procedia PDF Downloads 368
8919 Impact of Wind Energy on Cost and Balancing Reserves

Authors: Anil Khanal, Ali Osareh, Gary Lebby

Abstract:

Wind energy offers a significant advantage such as no fuel costs and no emissions from generation. However, wind energy sources are variable and non-dispatchable. The utility grid is able to accommodate the variability of wind in smaller proportion along with the daily load. However, at high penetration levels, the variability can severely impact the utility reserve requirements and the cost associated with it. In this paper, the impact of wind energy is evaluated in detail in formulating the total utility cost. The objective is to minimize the overall cost of generation while ensuring the proper management of the load. Overall cost includes the curtailment cost, reserve cost and the reliability cost as well as any other penalty imposed by the regulatory authority. Different levels of wind penetrations are explored and the cost impacts are evaluated. As the penetration level increases significantly, the reliability becomes a critical question to be answered. Here, we increase the penetration from the wind yet keep the reliability factor within the acceptable limit provided by NERC. This paper uses an economic dispatch (ED) model to incorporate wind generation into the power grid. Power system costs are analyzed at various wind penetration levels using Linear Programming. The goal of this study shows how the increases in wind generation will affect power system economics.

Keywords: wind power generation, wind power penetration, cost analysis, economic dispatch (ED) model

Procedia PDF Downloads 553
8918 Feasibility Study of Utilization and Development of Wind Energy for Electricity Generation in Panjang Island, Serang, Banten, West Java

Authors: Aryo Bayu Tejokusumo, Ivan Hidayat, C. Steffany Yoland

Abstract:

Wind velocity in Panjang Island, Serang, Banten, West Java, measured 10 m above sea level, is about 8 m/s. This wind velocity is potential for electricity generation using wind power. Using ten of Alstom-Haliade 150-6 W turbines, the placement of wind turbines has 7D for vertical distance and 4D for horizontal distance. Installation of the turbines is 100 m above sea level which is produces 98.64 MW per hour. This wind power generation has ecology impacts (the deaths of birds and bats and land exemption) and human impacts (aesthetics, human’s health, and potential disruption of electromagnetics interference), but it could be neglected totally, because of the position of the wind farm. The investment spent 73,819,710.00 IDR. Payback period is 2.23 years, and rate of return is 45.24%. This electricity generation using wind power in Panjang Island is suitable to install despite the high cost of investment since the profit is also high.

Keywords: wind turbine, Panjang island, renewable energy, Indonesia, offshore, power generation

Procedia PDF Downloads 652
8917 Design and Analysis of 1.4 MW Hybrid Saps System for Rural Electrification in Off-Grid Applications

Authors: Arpan Dwivedi, Yogesh Pahariya

Abstract:

In this paper, optimal design of hybrid standalone power supply system (SAPS) is done for off grid applications in remote areas where transmission of power is difficult. The hybrid SAPS system uses two primary energy sources, wind and solar, and in addition to these diesel generator is also connected to meet the load demand in case of failure of wind and solar system. This paper presents mathematical modeling of 1.4 MW hybrid SAPS system for rural electrification. This paper firstly focuses on mathematical modeling of PV module connected in a string, secondly focuses on modeling of permanent magnet wind turbine generator (PMWTG). The hybrid controller is also designed for selection of power from the source available as per the load demand. The power output of hybrid SAPS system is analyzed for meeting load demands at urban as well as for rural areas.

Keywords: SAPS, DG, PMWTG, rural area, off-grid, PV module

Procedia PDF Downloads 234
8916 Control Strategy for Two-Mode Hybrid Electric Vehicle by Using Fuzzy Controller

Authors: Jia-Shiun Chen, Hsiu-Ying Hwang

Abstract:

Hybrid electric vehicles can reduce pollution and improve fuel economy. Power-split hybrid electric vehicles (HEVs) provide two power paths between the internal combustion engine (ICE) and energy storage system (ESS) through the gears of an electrically variable transmission (EVT). EVT allows ICE to operate independently from vehicle speed all the time. Therefore, the ICE can operate in the efficient region of its characteristic brake specific fuel consumption (BSFC) map. The two-mode powertrain can operate in input-split or compound-split EVT modes and in four different fixed gear configurations. Power-split architecture is advantageous because it combines conventional series and parallel power paths. This research focuses on input-split and compound-split modes in the two-mode power-split powertrain. Fuzzy Logic Control (FLC) for an internal combustion engine (ICE) and PI control for electric machines (EMs) are derived for the urban driving cycle simulation. These control algorithms reduce vehicle fuel consumption and improve ICE efficiency while maintaining the state of charge (SOC) of the energy storage system in an efficient range.

Keywords: hybrid electric vehicle, fuel economy, two-mode hybrid, fuzzy control

Procedia PDF Downloads 372
8915 Can Illusions of Control Make Us Happy?

Authors: Martina Kaufmann, Thomas Goetz, Anastasiya A. Lipnevich, Reinhard Pekrun

Abstract:

Positive emotions have been shown to benefit from optimistic perceptions, even if these perceptions are illusory. The current research investigated the impact of illusions of control on positive emotions. There is empirical evidence showing that people are more emotionally attentive to losses than to gains. Hence, we expected that, compared to gains, losses in illusory control would have a stronger impact on positive emotions. The results of two experimental studies support this assumption: Participants who experienced gains in illusory control showed no substantial change in positive emotions. However, positive emotions decreased when they perceived a loss in illusory control. These results suggest that a loss of illusory control (but not a gain thereof) mediates the impact of the situation on individuals’ positive emotions. Implications for emotion theory and practice are discussed.

Keywords: cognitive appraisal, control, illusions, optimism, positive emotions

Procedia PDF Downloads 626
8914 Comparison of the Thermal Characteristics of Induction Motor, Switched Reluctance Motor and Inset Permanent Magnet Motor for Electric Vehicle Application

Authors: Sadeep Sasidharan, T. B. Isha

Abstract:

Modern day electric vehicles require compact high torque/power density motors for electric propulsion. This necessitates proper thermal management of the electric motors. The main focus of this paper is to compare the steady state thermal analysis of a conventional 20 kW 8/6 Switched Reluctance Motor (SRM) with that of an Induction Motor and Inset Permanent Magnet (IPM) motor of the same rating. The goal is to develop a proper thermal model of the three types of models for Finite Element Thermal Analysis. JMAG software is used for the development and simulation of the thermal models. The results show that the induction motor is subjected to more heating when used for electric vehicle application constantly, compared to the SRM and IPM.

Keywords: electric vehicles, induction motor, inset permanent magnet motor, loss models, switched reluctance motor, thermal analysis

Procedia PDF Downloads 213
8913 Artificial Neural Networks Face to Sudden Load Change for Shunt Active Power Filter

Authors: Dehini Rachid, Ferdi Brahim

Abstract:

The shunt active power filter (SAPF) is not destined only to improve the power factor, but also to compensate the unwanted harmonic currents produced by nonlinear loads. This paper presents a SAPF with identification and control method based on artificial neural network (ANN). To identify harmonics, many techniques are used, among them the conventional p-q theory and the relatively recent one the artificial neural network method. It is difficult to get satisfied identification and control characteristics by using a normal (ANN) due to the nonlinearity of the system (SAPF + fast nonlinear load variations). This work is an attempt to undertake a systematic study of the problem to equip the (SAPF) with the harmonics identification and DC link voltage control method based on (ANN). The latter has been applied to the (SAPF) with fast nonlinear load variations. The results of computer simulations and experiments are given, which can confirm the feasibility of the proposed active power filter.

Keywords: artificial neural networks (ANN), p-q theory, harmonics, total harmonic distortion

Procedia PDF Downloads 370
8912 High Electrochemical Performance of Electrode Material Based On Mesoporous RGO@(Co,Mn)3O4 Nanocomposites

Authors: Charmaine Lamiel, Van Hoa Nguyen, Deivasigamani Ranjith Kumar, Jae-Jin Shim

Abstract:

The quest for alternative sources of energy storage had led to the exploration on supercapacitors. Hybrid supercapacitors, a combination of carbon-based material and transition metals, had yielded long and improved cycle life as well as high energy and power densities. In this study, microwave irradiation was used for the facile and rapid synthesis of mesoporous RGO@(Co,Mn)3O4 nanosheets as an active electrode material. The advantages of this method include the non-use of reducing agents and acidic medium, and no further post-heat treatment. Additionally, it offers shorter reaction time at low temperature and low power requirement, which allows low fabrication and energy cost. The as-prepared electrode material demonstrated a high capacitance of 953 F•g−1 at 1 A•g−1 in a 6 M KOH electrolyte. Furthermore, the electrode exhibited a high energy density of 76.2 Wh•kg−1 (power density of 720 W•kg−1) and a high power density of 7200 W•kg−1 (energy density of 38 Wh•kg−1). The successful synthesis was considered to be efficient and cost-effective, with very promising electrochemical performance that can be used as an active material in supercapacitors.

Keywords: cobalt manganese oxide, electrochemical, graphene, microwave synthesis, supercapacitor

Procedia PDF Downloads 341
8911 Immiscible Polymer Blends with Controlled Nanoparticle Location for Excellent Microwave Absorption: A Compartmentalized Approach

Authors: Sourav Biswas, Goutam Prasanna Kar, Suryasarathi Bose

Abstract:

In order to obtain better materials, control in the precise location of nanoparticles is indispensable. It was shown here that ordered arrangement of nanoparticles, possessing different characteristics (electrical/magnetic dipoles), in the blend structure can result in excellent microwave absorption. This is manifested from a high reflection loss of ca. -67 dB for the best blend structure designed here. To attenuate electromagnetic radiations, the key parameters i.e. high electrical conductivity and large dielectric/magnetic loss are targeted here using a conducting inclusion [multiwall carbon nanotubes, MWNTs]; ferroelectric nanostructured material with associated relaxations in the GHz frequency [barium titanate, BT]; and a loss ferromagnetic nanoparticles [nickel ferrite, NF]. In this study, bi-continuous structures were designed using 50/50 (by wt) blends of polycarbonate (PC) and polyvinylidene fluoride (PVDF). The MWNTs was modified using an electron acceptor molecule; a derivative of perylenediimide, which facilitates π-π stacking with the nanotubes and stimulates efficient charge transport in the blends. The nanoscopic materials have specific affinity towards the PVDF phase. Hence, by introducing surface-active groups, ordered arrangement can be tailored. To accomplish this, both BT and NF was first hydroxylated followed by introducing amine-terminal groups on the surface. The latter facilitated in nucleophilic substitution reaction with PC and resulted in their precise location. In this study, we have shown for the first time that by compartmentalized approach, superior EM attenuation can be achieved. For instance, when the nanoparticles were localized exclusively in the PVDF phase or in both the phases, the minimum reflection loss was ca. -18 dB (for MWNT/BT mixture) and -29 dB (for MWNT/NF mixture), and the shielding was primarily through reflection. Interestingly, by adopting the compartmentalized approach where in, the lossy materials were in the PC phase and the conducting inclusion (MWNT) in PVDF, an outstanding reflection loss of ca. -57 dB (for BT and MWNT combination) and -67 dB (for NF and MWNT combination) was noted and the shielding was primarily through absorption. Thus, the approach demonstrates that nanoscopic structuring in the blends can be achieved under macroscopic processing conditions and this strategy can further be explored to design microwave absorbers.

Keywords: barium titanate, EMI shielding, MWNTs, nickel ferrite

Procedia PDF Downloads 432
8910 Experimental Analysis of Control in Electric Vehicle Charging Station Based Grid Tied Photovoltaic-Battery System

Authors: A. Hassoune, M. Khafallah, A. Mesbahi, T. Bouragba

Abstract:

This work presents an improved strategy of control for charging a lithium-ion battery in an electric vehicle charging station using two charger topologies i.e. single ended primary inductor converter (SEPIC) and forward converter. In terms of rapidity and accuracy, the power system consists of a topology/control diagram that would overcome the performance constraints, for instance the power instability, the battery overloading and how the energy conversion blocks would react efficiently to any kind of perturbations. Simulation results show the effectiveness of the proposed topologies operated with a power management algorithm based on voltage/peak current mode controls. In order to provide credible findings, a low power prototype is developed to test the control strategy via experimental evaluations of the converter topology and its controls.

Keywords: battery storage buffer, charging station, electric vehicle, experimental analysis, management algorithm, switches control

Procedia PDF Downloads 155
8909 Street Begging: A Loss of Human Resource in Nigeria

Authors: Sulaiman Kassim Ibrahim

Abstract:

Human Resource is one of the most important elements in any country. They are very important in actualizing the potential of every sector in the country, i.e Agric, Education, Finance, Judiciary and all formal and informal sectors. The purpose of this study is to investigate the loss of human resource in Nigeria through street begging. The study used intensive literature review. Finding from the review indicate that a significant number of human resource are into street begging in the country undeveloped and untapped. The paper recommend that policy should be initiated to discourage street begging, develop this resource through education and empowerment, stop rural-urban migration by providing infrastructure in the rural areas and abolish informal (Almajiri or beggars school) and transform it into formal school.

Keywords: human resource, street begging, Nigeria, Almajiri

Procedia PDF Downloads 237
8908 Participatory Culture and Value Perception Amongst the Korean and Chinese Drama International Fandom

Authors: Patricia P. M. C. Lourenco, Javier Bringué Sala, Anaisa D. A. de Sena

Abstract:

Almost everyone in Dramaland knows the names of big Korean stars that grace their computer screens on a roll through social media and video streaming platforms that enable awareness of Korean dramas and lifestyle at a click. A surface culture instilled with notions of belonging has redefined the meaning of friendship and challenged deep inner values. Not everyone, however, knows Chinese Dramas or their stars, which is a consequence of Dramaland's focus on Korean dramas and promoting the Korean experience. Despite a parity in terms of production quality, star power, scripts and compelling visual settings, Chinese Dramas have been playing catch up to their famous counterparts. While they might have a strong competitive soft power for international drama fans, the soft power of Korean dramas is imbued with substantial societal values that they want to share with others. Those values are portrayed in an artistic way that connects with audiences who experience loneliness in the non-virtual world contrary to the way Chinese Dramas are perceived.

Keywords: Chinese dramas, fandom, Korean dramas, participatory culture, value perception, soft power, surface culture

Procedia PDF Downloads 155
8907 Night Shift Work as an Oxidative Stressor: A Systematic Review

Authors: Madeline Gibson

Abstract:

Night shift workers make up an essential part of the modern workforce. However, night shift workers have higher incidences of late in life diseases and earlier mortality. Night shift workers are exposed to constant light and experience circadian rhythm disruption. Sleep disruption is thought to increase oxidative stress, defined as an imbalance of excess pro-oxidative factors and reactive oxygen species over anti-oxidative activity. Oxidative stress can damage cells, proteins and DNA and can eventually lead to varied chronic diseases such as cancer, diabetes, cardiovascular disease, Alzheimer’s and dementia. This review aimed to understand whether night shift workers were at greater risk of oxidative stress and to contribute to a consensus on this relationship. Twelve studies published in 2001-2019 examining 2,081 workers were included in the review. Studies compared both the impact of working a single shift and in comparisons between those who regularly work night shifts and only day shifts. All studies had evidence to support this relationship across a range of oxidative stress indicators, including increased DNA damage, reduced DNA repair capacity, increased lipid peroxidation, higher levels of reactive oxygen species, and to a lesser extent, a reduction in antioxidant defense. This research supports the theory that melatonin and the sleep-wake cycle mediate the relationship between shift work and oxidative stress. It is concluded that night shift work increases the risk for oxidative stress and, therefore, future disease. Recommendations are made to promote the long-term health of shift workers considering these findings.

Keywords: night shift work, coxidative stress, circadian rhythm, melatonin, disease, circadian rhythm disruption

Procedia PDF Downloads 245
8906 Demonstration Operation of Distributed Power Generation System Based on Carbonized Biomass Gasification

Authors: Kunio Yoshikawa, Ding Lu

Abstract:

Small-scale, distributed and low-cost biomass power generation technologies are highly required in the modern society. There are big needs for these technologies in the disaster areas of developed countries and un-electrified rural areas of developing countries. This work aims to present a technical feasibility of the portable ultra-small power generation system based on the gasification of carbonized wood pellets/briquettes. Our project is designed for enabling independent energy production from various kinds of biomass resources in the open-field. The whole process mainly consists of two processes: biomass and waste pretreatment; gasification and power generation. The first process includes carbonization, densification (briquetting or pelletization), and the second includes updraft fixed bed gasification of carbonized pellets/briquettes, syngas purification, and power generation employing an internal combustion gas engine. A combined pretreatment processes including carbonization without external energy and densification were adopted to deal with various biomass. Carbonized pellets showed a better gasification performance than carbonized briquettes and their mixture. The 100-hour continuous operation results indicated that pelletization/briquetting of carbonized fuel realized the stable operation of an updraft gasifier if there were no blocking issues caused by the accumulation of tar. The cold gas efficiency and the carbon conversion during carbonized wood pellets gasification was about 49.2% and 70.5% with the air equivalence ratio value of around 0.32, and the corresponding overall efficiency of the gas engine was 20.3% during the stable stage. Moreover, the maximum output power was 21 kW at the air flow rate of 40 Nm³·h⁻¹. Therefore, the comprehensive system covering biomass carbonization, densification, gasification, syngas purification, and engine system is feasible for portable, ultra-small power generation. This work has been supported by Innovative Science and Technology Initiative for Security (Ministry of Defence, Japan).

Keywords: biomass carbonization, densification, distributed power generation, gasification

Procedia PDF Downloads 147
8905 Optimal Placement of Phasor Measurement Units (PMU) Using Mixed Integer Programming (MIP) for Complete Observability in Power System Network

Authors: Harshith Gowda K. S, Tejaskumar N, Shubhanga R. B, Gowtham N, Deekshith Gowda H. S

Abstract:

Phasor measurement units (PMU) are playing an important role in the current power system for state estimation. It is necessary to have complete observability of the power system while minimizing the cost. For this purpose, the optimal location of the phasor measurement units in the power system is essential. In a bus system, zero injection buses need to be evaluated to minimize the number of PMUs. In this paper, the optimization problem is formulated using mixed integer programming to obtain the optimal location of the PMUs with increased observability. The formulation consists of with and without zero injection bus as constraints. The formulated problem is simulated using a CPLEX solver in the GAMS software package. The proposed method is tested on IEEE 30, IEEE 39, IEEE 57, and IEEE 118 bus systems. The results obtained show that the number of PMUs required is minimal with increased observability.

Keywords: PMU, observability, mixed integer programming (MIP), zero injection buses (ZIB)

Procedia PDF Downloads 152
8904 The Application of Maintenance Strategy in Energy Power Plant: A Case Study

Authors: Steven Vusmuzi Mashego, Opeyeolu Timothy Laseinde

Abstract:

This paper presents a case study on applying maintenance strategies observed in a turbo-generator at a coal power plant. Turbo generators are one of the primary and critical components in energy generation. It is essential to apply correct maintenance strategies and apply operational procedures accordingly. The maintenance strategies are implemented to ensure the high reliability of the equipment. The study was carried out at a coal power station which will transit to a cleaner energy source in the nearest future. The study is relevant as lessons learned in this system will support plans and operational models implemented when cleaner energy sources replace coal-powered turbines. This paper first outlines different maintenance strategies executed on the turbo-generator modules. Secondly, the impacts of human factors on a coal power station are discussed, and the findings prompted recommendations for future actions.

Keywords: maintenance strategies, turbo generator, operational error, human factor, electricity generation

Procedia PDF Downloads 94
8903 Optimizing Organizational Performance: The Critical Role of Headcount Budgeting in Strategic Alignment and Financial Stability

Authors: Shobhit Mittal

Abstract:

Headcount budgeting stands as a pivotal element in organizational financial management, extending beyond traditional budgeting to encompass strategic resource allocation for workforce-related expenses. This process is integral to maintaining financial stability and fostering a productive workforce, requiring a comprehensive analysis of factors such as market trends, business growth projections, and evolving workforce skill requirements. It demands a collaborative approach, primarily involving Human Resources (HR) and finance departments, to align workforce planning with an organization's financial capabilities and strategic objectives. The dynamic nature of headcount budgeting necessitates continuous monitoring and adjustment in response to economic fluctuations, business strategy shifts, technological advancements, and market dynamics. Its significance in talent management is also highlighted, aligning financial planning with talent acquisition and retention strategies to ensure a competitive edge in the market. The consequences of incorrect headcount budgeting are explored, showing how it can lead to financial strain, operational inefficiencies, and hindered strategic objectives. Examining case studies like IBM's strategic workforce rebalancing and Microsoft's shift for long-term success, the importance of aligning headcount budgeting with organizational goals is underscored. These examples illustrate that effective headcount budgeting transcends its role as a financial tool, emerging as a strategic element crucial for an organization's success. This necessitates continuous refinement and adaptation to align with evolving business goals and market conditions, highlighting its role as a key driver in organizational success and sustainability.

Keywords: strategic planning, fiscal budget, headcount planning, resource allocation, financial management, decision-making, operational efficiency, risk management, headcount budget

Procedia PDF Downloads 40
8902 Study of Radiation Response in Lactobacillus Species

Authors: Kanika Arora, Madhu Bala

Abstract:

The small intestine epithelium is highly sensitive and major targets of ionizing radiation. Radiation causes gastrointestinal toxicity either by direct deposition of energy or indirectly (inflammation or bystander effects) generating free radicals and reactive oxygen species. Oxidative stress generated as a result of radiation causes active inflammation within the intestinal mucosa leading to structural and functional impairment of gut epithelial barrier. As a result, there is a loss of tolerance to normal dietary antigens and commensal flora together with exaggerated response to pathogens. Dysbiosis may therefore thought to play a role in radiation enteropathy and can contribute towards radiation induced bowel toxicity. Lactobacilli residing in the gut shares a long conjoined evolutionary history with their hosts and by doing so these organisms have developed an intimate and complex symbiotic relationships. The objective behind this study was to look for the strains with varying resistance to ionizing radiation and to see whether the niche of the bacteria is playing any role in radiation resistance property of bacteria. In this study, we have isolated the Lactobacillus spp. from probiotic preparation and murine gastrointestinal tract, both of which were supposed to be the important source for its isolation. Biochemical characterization did not show a significant difference in the properties, while a significant preference was observed in carbohydrate utilization capacity by the isolates. Effect of ionizing radiations induced by Co60 gamma radiation (10 Gy) on lactobacilli cells was investigated. A cellular survival curve versus absorbed doses was determined. Radiation resistance studies showed that the response of isolates towards cobalt-60 gamma radiation differs from each other and significant decrease in survival was observed in a dose-dependent manner. Thus the present study revealed that the property of radioresistance in Lactobacillus depends upon the source from where they have been isolated.

Keywords: dysbiosis, lactobacillus, mitigation, radiation

Procedia PDF Downloads 120
8901 Laboratory and Numerical Hydraulic Modelling of Annular Pipe Electrocoagulation Reactors

Authors: Alejandra Martin-Dominguez, Javier Canto-Rios, Velitchko Tzatchkov

Abstract:

Electrocoagulation is a water treatment technology that consists of generating coagulant species in situ by electrolytic oxidation of sacrificial anode materials triggered by electric current. It removes suspended solids, heavy metals, emulsified oils, bacteria, colloidal solids and particles, soluble inorganic pollutants and other contaminants from water, offering an alternative to the use of metal salts or polymers and polyelectrolyte addition for breaking stable emulsions and suspensions. The method essentially consists of passing the water being treated through pairs of consumable conductive metal plates in parallel, which act as monopolar electrodes, commonly known as ‘sacrificial electrodes’. Physicochemical, electrochemical and hydraulic processes are involved in the efficiency of this type of treatment. While the physicochemical and electrochemical aspects of the technology have been extensively studied, little is known about the influence of the hydraulics. However, the hydraulic process is fundamental for the reactions that take place at the electrode boundary layers and for the coagulant mixing. Electrocoagulation reactors can be open (with free water surface) and closed (pressurized). Independently of the type of rector, hydraulic head loss is an important factor for its design. The present work focuses on the study of the total hydraulic head loss and flow velocity and pressure distribution in electrocoagulation reactors with single or multiple concentric annular cross sections. An analysis of the head loss produced by hydraulic wall shear friction and accessories (minor head losses) is presented, and compared to the head loss measured on a semi-pilot scale laboratory model for different flow rates through the reactor. The tests included laminar, transitional and turbulent flow. The observed head loss was compared also to the head loss predicted by several known conceptual theoretical and empirical equations, specific for flow in concentric annular pipes. Four single concentric annular cross section and one multiple concentric annular cross section reactor configuration were studied. The theoretical head loss resulted higher than the observed in the laboratory model in some of the tests, and lower in others of them, depending also on the assumed value for the wall roughness. Most of the theoretical models assume that the fluid elements in all annular sections have the same velocity, and that flow is steady, uniform and one-dimensional, with the same pressure and velocity profiles in all reactor sections. To check the validity of such assumptions, a computational fluid dynamics (CFD) model of the concentric annular pipe reactor was implemented using the ANSYS Fluent software, demonstrating that pressure and flow velocity distribution inside the reactor actually is not uniform. Based on the analysis, the equations that predict better the head loss in single and multiple annular sections were obtained. Other factors that may impact the head loss, such as the generation of coagulants and gases during the electrochemical reaction, the accumulation of hydroxides inside the reactor, and the change of the electrode material with time, are also discussed. The results can be used as tools for design and scale-up of electrocoagulation reactors, to be integrated into new or existing water treatment plants.

Keywords: electrocoagulation reactors, hydraulic head loss, concentric annular pipes, computational fluid dynamics model

Procedia PDF Downloads 210
8900 Intelligent Electric Vehicle Charging System (IEVCS)

Authors: Prateek Saxena, Sanjeev Singh, Julius Roy

Abstract:

The security of the power distribution grid remains a paramount to the utility professionals while enhancing and making it more efficient. The most serious threat to the system can be maintaining the transformers, as the load is ever increasing with the addition of elements like electric vehicles. In this paper, intelligent transformer monitoring and grid management has been proposed. The engineering is done to use the evolving data from the smart meter for grid analytics and diagnostics for preventive maintenance. The two-tier architecture for hardware and software integration is coupled to form a robust system for the smart grid. The proposal also presents interoperable meter standards for easy integration. Distribution transformer analytics based on real-time data benefits utilities preventing outages, protects the revenue loss, improves the return on asset and reduces overall maintenance cost by predictive monitoring.

Keywords: electric vehicle charging, transformer monitoring, data analytics, intelligent grid

Procedia PDF Downloads 776
8899 Assessing the Environmental Efficiency of China’s Power System: A Spatial Network Data Envelopment Analysis Approach

Authors: Jianli Jiang, Bai-Chen Xie

Abstract:

The climate issue has aroused global concern. Achieving sustainable development is a good path for countries to mitigate environmental and climatic pressures, although there are many difficulties. The first step towards sustainable development is to evaluate the environmental efficiency of the energy industry with proper methods. The power sector is a major source of CO2, SO2, and NOx emissions. Evaluating the environmental efficiency (EE) of power systems is the premise to alleviate the terrible situation of energy and the environment. Data Envelopment Analysis (DEA) has been widely used in efficiency studies. However, measuring the efficiency of a system (be it a nation, region, sector, or business) is a challenging task. The classic DEA takes the decision-making units (DMUs) as independent, which neglects the interaction between DMUs. While ignoring these inter-regional links may result in a systematic bias in the efficiency analysis; for instance, the renewable power generated in a certain region may benefit the adjacent regions while the SO2 and CO2 emissions act oppositely. This study proposes a spatial network DEA (SNDEA) with a slack measure that can capture the spatial spillover effects of inputs/outputs among DMUs to measure efficiency. This approach is used to study the EE of China's power system, which consists of generation, transmission, and distribution departments, using a panel dataset from 2014 to 2020. In the empirical example, the energy and patent inputs, the undesirable CO2 output, and the renewable energy (RE) power variables are tested for a significant spatial spillover effect. Compared with the classic network DEA, the SNDEA result shows an obvious difference tested by the global Moran' I index. From a dynamic perspective, the EE of the power system experiences a visible surge from 2015, then a sharp downtrend from 2019, which keeps the same trend with the power transmission department. This phenomenon benefits from the market-oriented reform in the Chinese power grid enacted in 2015. The rapid decline in the environmental efficiency of the transmission department in 2020 was mainly due to the Covid-19 epidemic, which hinders economic development seriously. While the EE of the power generation department witnesses a declining trend overall, this is reasonable, taking the RE power into consideration. The installed capacity of RE power in 2020 is 4.40 times that in 2014, while the power generation is 3.97 times; in other words, the power generation per installed capacity shrank. In addition, the consumption cost of renewable power increases rapidly with the increase of RE power generation. These two aspects make the EE of the power generation department show a declining trend. Incorporation of the interactions among inputs/outputs into the DEA model, this paper proposes an efficiency evaluation method on the basis of the DEA framework, which sheds some light on efficiency evaluation in regional studies. Furthermore, the SNDEA model and the spatial DEA concept can be extended to other fields, such as industry, country, and so on.

Keywords: spatial network DEA, environmental efficiency, sustainable development, power system

Procedia PDF Downloads 87
8898 Novel Technique for calculating Surface Potential Gradient of Overhead Line Conductors

Authors: Sudip Sudhir Godbole

Abstract:

In transmission line surface potential gradient is a critical design parameter for planning overhead line, as it determines the level of corona loss (CL), radio interference (RI) and audible noise (AN).With increase of transmission line voltage level bulk power transfer is possible, using bundle conductor configuration used, it is more complex to find accurate surface stress in bundle configuration. The majority of existing models for surface gradient calculations are based on analytical methods which restrict their application in simulating complex surface geometry. This paper proposes a novel technique which utilizes both analytical and numerical procedure to predict the surface gradient. One of 400 kV transmission line configurations has been selected as an example to compare the results for different methods. The different strand shapes are a key variable in determining.

Keywords: surface gradient, Maxwell potential coefficient method, market and Mengele’s method, successive images method, charge simulation method, finite element method

Procedia PDF Downloads 524
8897 Effects of a 6-Month Caloric Restriction Induced-Weight Loss Program in Obese Postmenopausal Women with and without the Metabolic Syndrome: A MONET Study

Authors: Ahmed Ghachem, Denis Prud’homme, Rémi-Rabasa-Lhoret, M. Brochu

Abstract:

Objective: To compare the effects of a CR on body composition, lipid profile and glucose homeostasis in obese postmenopausal women with and without MetS. Methods: Secondary analyses were performed on seventy-three inactive obese postmenopausal women (age: 57.7 ± 4.8 yrs; body mass index: 32.4 ± 4.6 kg/m2) who participated in the 6-month caloric restriction arm of a study of the Montreal-Ottawa New Emerging Team. The harmonized MetS definition was used to categorized participants with MetS [n = 20, 27.39%] and without MetS [n = 53, 72.61%]. Variables of interest were: body composition (DXA), body fat distribution (CT scan), glucose homeostasis at the fasting state and during a euglycemic/hyperinsulinemic clamp, fasting lipids and resting blood pressure. Results: By design, the MetS group had a worse cardiometabolic profile; while both groups were comparable for age. Fifty-five patients out of seventy-three displayed no change in MetS status after the intervention. Twelve participants out of twenty (or 60.0%) in the MetS group had no more MetS after weight loss (P= NS); while six participants out of fifty three (or 11.3%) in the other group developed the MetS after the intervention (P= NS). Overall, indices of body composition and body fat distribution improved significantly and similarly in both groups (P between 0.03 and 0.0001). Furthermore, with the exception of triglyceride levels and triglycerides/HDL-C ratio, which decrease significantly more in the MetS group (P ≤ 0.05), no difference was observed between groups for the other variables of the cardiometabolic profile. Conclusion: Despite no overall significant effects on MetS, heterogeneous results were obtained in response to weight loss in the present study; with some improving the MetS while other displaying deteriorations. Further studies are needed in order to identify factors and phenotypes associated with positive and negative cardiometabolic responses to CR intervention.

Keywords: menopause, obesity, physical inactivity, metabolic syndrome, caloric restriction, weight loss

Procedia PDF Downloads 329