Search results for: physiological motion
784 Vibration Frequency Analysis of Sandwich Nano-Plate on Visco Pasternak Foundation by Using Modified Couple Stress Theory
Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian
Abstract:
In this research, the free vibration of a rectangular sandwich nano-plate (SNP) made of three smart layers in the visco Pasternak foundation is studied. The core of the sandwich is a piezo magnetic nano-plate integrated with two layers of piezoelectric materials. First-order shear deformation plate theory is utilized to derive the motion equations by using Hamilton’s principle, piezoelectricity, and modified couple stress theory. Elastic medium is modeled by visco Pasternak foundation, where the damping coefficient effect is investigated on the stability of sandwich nano-plate. These equations are solved by the differential quadrature method (DQM), considering different boundary conditions. Results indicate the effect of various parameters such as aspect ratio, thickness ratio, shear correction factor, damping coefficient, and boundary conditions on the dimensionless frequency of sandwich nano-plate. The results are also compared by those available in the literature, and these findings can be used for automotive industry, communications equipment, active noise, stability, and vibration cancellation systems and utilized for designing the magnetostrictive actuator, motor, transducer and sensors in nano and micro smart structures.Keywords: free vibration, modified couple stress theory, sandwich nano-plate, visco Pasternak foundation
Procedia PDF Downloads 137783 Dynamic Analysis of a Moderately Thick Plate on Pasternak Type Foundation under Impact and Moving Loads
Authors: Neslihan Genckal, Reha Gursoy, Vedat Z. Dogan
Abstract:
In this study, dynamic responses of composite plates on elastic foundations subjected to impact and moving loads are investigated. The first order shear deformation (FSDT) theory is used for moderately thick plates. Pasternak-type (two-parameter) elastic foundation is assumed. Elastic foundation effects are integrated into the governing equations. It is assumed that plate is first hit by a mass as an impact type loading then the mass continues to move on the composite plate as a distributed moving loading, which resembles the aircraft landing on airport pavements. Impact and moving loadings are modeled by a mass-spring-damper system with a wheel. The wheel is assumed to be continuously in contact with the plate after impact. The governing partial differential equations of motion for displacements are converted into the ordinary differential equations in the time domain by using Galerkin’s method. Then, these sets of equations are solved by using the Runge-Kutta method. Several parameters such as vertical and horizontal velocities of the aircraft, volume fractions of the steel rebar in the reinforced concrete layer, and the different touchdown locations of the aircraft tire on the runway are considered in the numerical simulation. The results are compared with those of the ABAQUS, which is a commercial finite element code.Keywords: elastic foundation, impact, moving load, thick plate
Procedia PDF Downloads 312782 Technological Characterization of Lactic Acid Bacteria Isolated from Algerian's Goat's Milk
Authors: A. Cheriguene, F. Chougrani
Abstract:
A total of 153 wild lactic acid bacteria were isolated from goat’s milk collected from different areas in Western Algeria. The strains were identified using phenotypical, biochemical and physiological properties. API system and SDS-PAGE technique was also used in identification of the strains. Six genera were found Enterococcus (41.83%), Lactobacillus (29.40%), Lactococcus (19.60%), Leuconostoc (4.57%), Streptococcus thermophilus (3.26%) and Pediococcus (1.30%). The most abundant species were Enterococcus faecium (24 isolates), Enterococcus durans (22 isolates), Lactococcus lactis subsp. lactis (25 isolates), Lactobacillus rhamnosus (09 isolates) and Lactobacillus delbrueckii subsp. bulgaricus (07 isolates). The strains were screened for production and technological properties such as acid production, aminopeptidase activity, autolytic properties, antimicrobial activity and exopolysaccharide production. In general most tested isolates showed a good biomass separation when collected by centrifugation; as for the production of the lactic acid, results revealed that our strains are weakly acidifying; nevertheless, lactococci showed a best acidifying activity compared to lactobacilli. Aminopeptidase activity was also weak in most strains; but, it was generally higher for lactobacilli compared to lactococci, where we recorded 30 units for Lactobacillus delbrueckii subsp. bulgaricus M14. Autolytic activity was generally higher for most strains, more particularly lactobacilli where we recorded values of 71.13% and 70% of autolysis rate respectively in Lactobacillus rhamnosus strains 9S10 and 9S7. Antimicrobial activity was detected in 50% of the isolates, particularly in lactobacilli where 80% of strains tested were able to inhibit the growth of other strains. Two strains could produce exopolysaccharides, E. faecium 8M6 and E. durans 7S8. Some strains were able to maintain two or three technological characteristics together.Keywords: lactic acid bacteria, technological properties, acidification, aminopeptidase acivity (AP), autolysis
Procedia PDF Downloads 428781 Perfectly Matched Layer Boundary Stabilized Using Multiaxial Stretching Functions
Authors: Adriano Trono, Federico Pinto, Diego Turello, Marcelo A. Ceballos
Abstract:
Numerical modeling of dynamic soil-structure interaction problems requires an adequate representation of the unbounded characteristics of the ground, material non-linearity of soils, and geometrical non-linearities such as large displacements due to rocking of the structure. In order to account for these effects simultaneously, it is often required that the equations of motion are solved in the time domain. However, boundary conditions in conventional finite element codes generally present shortcomings in fully absorbing the energy of outgoing waves. In this sense, the Perfectly Matched Layers (PML) technique allows a satisfactory absorption of inclined body waves, as well as surface waves. However, the PML domain is inherently unstable, meaning that it its instability does not depend upon the discretization considered. One way to stabilize the PML domain is to use multiaxial stretching functions. This development is questionable because some Jacobian terms of the coordinate transformation are not accounted for. For this reason, the resulting absorbing layer element is often referred to as "uncorrected M-PML” in the literature. In this work, the strong formulation of the "corrected M-PML” absorbing layer is proposed using multiaxial stretching functions that incorporate all terms of the coordinate transformation. The results of the stable model are compared with reference solutions obtained from extended domain models.Keywords: mixed finite elements, multiaxial stretching functions, perfectly matched layer, soil-structure interaction
Procedia PDF Downloads 66780 Modeling of Drug Distribution in the Human Vitreous
Authors: Judith Stein, Elfriede Friedmann
Abstract:
The injection of a drug into the vitreous body for the treatment of retinal diseases like wet aged-related macular degeneration (AMD) is the most common medical intervention worldwide. We develop mathematical models for drug transport in the vitreous body of a human eye to analyse the impact of different rheological models of the vitreous on drug distribution. In addition to the convection diffusion equation characterizing the drug spreading, we use porous media modeling for the healthy vitreous with a dense collagen network and include the steady permeating flow of the aqueous humor described by Darcy's law driven by a pressure drop. Additionally, the vitreous body in a healthy human eye behaves like a viscoelastic gel through the collagen fibers suspended in the network of hyaluronic acid and acts as a drug depot for the treatment of retinal diseases. In a completely liquefied vitreous, we couple the drug diffusion with the classical Navier-Stokes flow equations. We prove the global existence and uniqueness of the weak solution of the developed initial-boundary value problem describing the drug distribution in the healthy vitreous considering the permeating aqueous humor flow in the realistic three-dimensional setting. In particular, for the drug diffusion equation, results from the literature are extended from homogeneous Dirichlet boundary conditions to our mixed boundary conditions that describe the eye with the Galerkin's method using Cauchy-Schwarz inequality and trace theorem. Because there is only a small effective drug concentration range and higher concentrations may be toxic, the ability to model the drug transport could improve the therapy by considering patient individual differences and give a better understanding of the physiological and pathological processes in the vitreous.Keywords: coupled PDE systems, drug diffusion, mixed boundary conditions, vitreous body
Procedia PDF Downloads 136779 Predictors of Pelvic Vascular Injuries in Patients with Pelvic Fractures from Major Blunt Trauma
Authors: Osama Zayed
Abstract:
Aim of the work: The aim of this study is to assess the predictors of pelvic vascular injuries in patients with pelvic fractures from major blunt trauma. Methods: This study was conducted as a tool-assessment study. Forty six patients with pelvic fractures from major blunt trauma will be recruited to the study arriving to department of emergency, Suez Canal University Hospital. Data were collected from questionnaire including; personal data of the studied patients and full medical history, clinical examinations, outcome measures (The Physiological and Operative Severity Score for enumeration of Mortality and morbidity (POSSUM), laboratory and imaging studies. Patients underwent surgical interventions or further investigations based on the conventional standards for interventions. All patients were followed up during conservative, operative and post-operative periods in the hospital for interpretation the predictive scores of vascular injuries. Results: Significant predictors of vascular injuries according to computed tomography (CT) scan include age, male gender, lower Glasgow coma (GCS) scores, occurrence of hypotension, mortality rate, higher physical POSSUM scores, presence of ultrasound collection, type of management, higher systolic blood pressure (SBP) and diastolic blood pressure (DBP) POSSUM scores, presence of abdominal injuries, and poor outcome. Conclusions: There was higher frequency of males than females in the studied patients. There were high probability of morbidity and low probability of mortality among patients. Our study demonstrates that POSSUM score can be used as a predictor of vascular injury in pelvis fracture patients.Keywords: predictors, pelvic vascular injuries, pelvic fractures, major blunt trauma, POSSUM
Procedia PDF Downloads 339778 MRI Quality Control Using Texture Analysis and Spatial Metrics
Authors: Kumar Kanudkuri, A. Sandhya
Abstract:
Typically, in a MRI clinical setting, there are several protocols run, each indicated for a specific anatomy and disease condition. However, these protocols or parameters within them can change over time due to changes to the recommendations by the physician groups or updates in the software or by the availability of new technologies. Most of the time, the changes are performed by the MRI technologist to account for either time, coverage, physiological, or Specific Absorbtion Rate (SAR ) reasons. However, giving properly guidelines to MRI technologist is important so that they do not change the parameters that negatively impact the image quality. Typically a standard American College of Radiology (ACR) MRI phantom is used for Quality Control (QC) in order to guarantee that the primary objectives of MRI are met. The visual evaluation of quality depends on the operator/reviewer and might change amongst operators as well as for the same operator at various times. Therefore, overcoming these constraints is essential for a more impartial evaluation of quality. This makes quantitative estimation of image quality (IQ) metrics for MRI quality control is very important. So in order to solve this problem, we proposed that there is a need for a robust, open-source, and automated MRI image control tool. The Designed and developed an automatic analysis tool for measuring MRI image quality (IQ) metrics like Signal to Noise Ratio (SNR), Signal to Noise Ratio Uniformity (SNRU), Visual Information Fidelity (VIF), Feature Similarity (FSIM), Gray level co-occurrence matrix (GLCM), slice thickness accuracy, slice position accuracy, High contrast spatial resolution) provided good accuracy assessment. A standardized quality report has generated that incorporates metrics that impact diagnostic quality.Keywords: ACR MRI phantom, MRI image quality metrics, SNRU, VIF, FSIM, GLCM, slice thickness accuracy, slice position accuracy
Procedia PDF Downloads 168777 The Effect of AMBs Number of a Dynamics Behavior of a Spur Gear Reducer in Non-Stationary Regime
Authors: Najib Belhadj Messaoud, Slim Souissi
Abstract:
The non-linear dynamic behavior of a single stage spur gear reducer is studied in this paper in transient regime. Driving and driver rotors are, respectively, powered by a motor torque Cm and loaded by a resistive torque Cr. They are supported by two identical Active Magnetic Bearings (AMBs). Gear excitation is induced by the motor torque and load variation in addition to the fluctuation of meshing stiff-ness due to the variation of input rotational speed. Three models of AMBs were used with four, six and eight magnets. They are operated by P.D controller and powered by control and bias currents. The dynamic parameters of the AMBs are modeled by stiffness and damping matrices computed by the derivation of the electromagnetic forces. The equations of motion are solved iteratively using Newmark time integration method. In the first part of the study, the model is powered by an electric motor and by a four strokes four cylinders diesel engine in the second part. The numerical results of the dynamic responses of the system come to confirm the significant effect of the transient regime on the dynamic behavior of a gear set, particularly in the case of engine acyclism condition. Results also confirm the influence of the magnet number by AMBs on the dynamic behavior of the system. Indeed, vibrations were more important in the case of gear reducer supported by AMBs with four magnets.Keywords: motor, stiffness, gear, acyclism, fluctuation, torque
Procedia PDF Downloads 458776 Prediction of Flow Around a NACA 0015 Profile
Authors: Boukhadia Karima
Abstract:
The fluid mechanics is the study of fluid motion laws and their interaction with solid bodies, this project leads to illustrate this interaction with depth studies and approved by experiments on the wind tunnel TE44, ensuring the efficiency, accuracy and reliability of these tests on a NACA0015 profile. A symmetric NACA0015 was placed in a subsonic wind tunnel, and measurements were made of the pressure on the upper and lower surface of the wing and of the velocity across the vortex trailing downstream from the tip of the wing. The aim of this work is to investigate experimentally the scattered pressure profile in a free airflow and the aerodynamic forces acting on this profile. The addition of around-lateral edge to the wing tip was found to eliminate the secondary vortex near the wing tip, but had little effect on the downstream characteristics of the trailing vortex. The increase in wing lift near the tip because of the presence of the trailing vortex was evident in the surface pressure, but was not captured by circulation-box measurements. The circumferential velocity within the vortex was found to reach free-stream values and produce core rotational speeds. Near the wing, the trailing vortex is asymmetric and contains definite zones where the stream wise velocity both exceeds and falls behind the free-stream value. When referenced to the free stream velocity, the maximum vertical velocity of the vortex is directly dependent on α and is independent of Re. A numerical study was conducted through a CFD code called FLUENT 6.0, and the results are compared with experimental.Keywords: CFD code, NACA Profile, detachment, angle of incidence, wind tunnel
Procedia PDF Downloads 409775 Digital Planet: Readying for the Rise of the E-Consumer
Authors: Bhaskar Chakravorti, Christopher Tunnard, Ravi Shankar Chaturvedi
Abstract:
This report introduces the Digital Evolution Index (DEI) as a way to gauge the transformation of economies in the advanced and developing world from traditional brick-and-mortar to digitally enabled. The DEI measures the digital trajectories of 50 countries to provide actionable, data-informed insights for businesses, investors and policymakers. Created by The Fletcher School, in collaboration with MasterCard Worldwide and DataCash, the DEI analyzes the key underlying drivers and barriers that govern a country’s evolution into a digital economy: Demand, Supply, Institutional Environment and Innovation. A longitudinal analysis of these four drivers during the years 2008 to 2013 reveals both the current state of a country’s digital economy, as well as changes over time. Combining these two measures allows us to assign each country to one of four Trajectory Zones: • Stand Out countries have shown high levels of digital development in the past and continue to remain on an upward trajectory. • Stall Out countries have achieved a high level of evolution in the past but are losing momentum and risk falling behind. • Break Out countries have the potential to develop strong digital economies. Though their overall score is still low, they are moving upward and are poised to become Stand Out countries in the future. • Watch Out countries face significant opportunities and challenges, with low scores on both current level and upward motion of their DEI. Some may be able to overcome limitations with clever innovations and stopgap measures, while others seem to be stuck.Keywords: e-commerce, digital evolution, digital commerce ecosystems, e-consumer
Procedia PDF Downloads 370774 Identifying Lead Poisoning Risk Factors among Non-Pregnant Adults in New York City through Motivational Interviewing Techniques
Authors: Nevila Bardhi, Joanna Magda, Kolapo Alex-Oni, Slavenka Sedlar, Paromita Hore
Abstract:
The New York City Department of Health and Mental Hygiene (NYC DOHMH) receives blood lead test results for NYC residents and conducts lead poisoning case investigations for individuals with elevated blood lead levels exposed to lead occupationally and non-occupationally. To (1) improve participant engagement, (2) aid the identification of potential lead sources, and (3) better tailor recommendations to reduce lead exposure, Motivational Interviewing (MI) techniques were incorporated during risk assessment interviews of non-pregnant adults by DOHMH’s Adult Lead Poisoning Prevention (ALP) Program. MI is an evidence-based counselling method used in clinical settings that have been effective in promoting behavior change by resolving ambivalence and enhancing motivation in treating both physiological and psychological health conditions. The incorporation of MI techniques in the ALP risk assessment interview was effective in improving the identification of lead sources for non-pregnant adult cases, thus, allowing for the opportunity to better tailor lead poisoning prevention recommendations. The embedding of MI cues in the ALP risk assessment interview also significantly increased engagement in the interview process, resulting in approximately 50 more interviews conducted per year and a decrease in interview refusals during case investigations. Additionally, the pre-MI interview completion rate was 57%, while the post-MI Interview completion rate was 68%. We recommend MI techniques to be used by other lead poisoning prevention programs during lead poisoning investigations in similar diverse populations.Keywords: lead poisoning prevention, motivational interviewing, behavior change, lead poisoning risk factors, self-efficacy
Procedia PDF Downloads 88773 Effect of Magnetic Field in Treatment of Lower Back Myofascial Pain Syndrome: A Randomized Controlled Trial
Authors: Ahmed M. F. El Shiwi
Abstract:
Background: Low back pain affects about 60% to 90% of the working-age population in modern industrial society. Myofascial pain syndrome is a condition characterized by muscles shortening with increased tone and associated with trigger points that aggravated with the activity of daily living. Purpose: To examine the effects of magnetic field therapy in patients with lower back myofascial pain syndrome. Methods: Thirty patients were assigned randomly into two groups. Subjects in the experimental group (n=15) with main age of 36.73 (2.52) received traditional physical therapy program (Infrared radiation, ultrasonic, stretching and strengthening exercises for back muscles) as well as magnetic field, and control group (n=15) with main age of 37.27 (2.52) received traditional physical therapy only. The following parameters including pain severity, functional disability and lumbar range of motion (flexion, extension, right side bending, and left side bending) were measured before and after four weeks of treatment. Results: The results showed significant improvement in all parameters in the experimental group compared with those in the control group. Interpretation/Conclusion: By the present date, it is possible to conclude that a magnetic field is effective as a method of treatment for lower back myofascial pain syndrome patients with the parameters used in the present study.Keywords: magnetic field, lower back pain, myofascial pain syndrome, biological systems engineering
Procedia PDF Downloads 440772 Analysis of Nonlinear Dynamic Systems Excited by Combined Colored and White Noise Excitations
Authors: Siu-Siu Guo, Qingxuan Shi
Abstract:
In this paper, single-degree-of-freedom (SDOF) systems to white noise and colored noise excitations are investigated. By expressing colored noise excitation as a second-order filtered white noise process and introducing colored noise as an additional state variable, the equation of motion for SDOF system under colored noise is then transferred artificially to multi-degree-of-freedom (MDOF) system under white noise excitations. As a consequence, corresponding Fokker-Planck-Kolmogorov (FPK) equation governing the joint probabilistic density function (PDF) of state variables increases to 4-dimension (4-D). Solution procedure and computer programme become much more sophisticated. The exponential-polynomial closure (EPC) method, widely applied for cases of SDOF systems under white noise excitations, is developed and improved for cases of systems under colored noise excitations and for solving the complex 4-D FPK equation. On the other hand, Monte Carlo simulation (MCS) method is performed to test the approximate EPC solutions. Two examples associated with Gaussian and non-Gaussian colored noise excitations are considered. Corresponding band-limited power spectral densities (PSDs) for colored noise excitations are separately given. Numerical studies show that the developed EPC method provides relatively accurate estimates of the stationary probabilistic solutions. Moreover, statistical parameter of mean-up crossing rate (MCR) is taken into account, which is important for reliability and failure analysis.Keywords: filtered noise, narrow-banded noise, nonlinear dynamic, random vibration
Procedia PDF Downloads 224771 The Effect of Ice in Pain Control before Digital Nerve Block
Authors: Fatemeh Rasooli, Behzad Simiari, Pooya Payandemehr, Amir Nejati, Maryam Bahreini, Atefeh Abdollahi
Abstract:
Introduction: Pain is a complex physiological reaction to tissue injury. In the course of painful procedures such as nerve block, ice has been shown to be a feasible and inexpensive material to control pain. It delays nerve conduction, actives other senses and reduces inflammatory and painful responses. This study assessed the effect of ice in reducing pain caused by needling and infiltration during digital block. Patient satisfaction recorded as a secondary outcome. Methods: This study was designed as a non-blinded randomized clinical trial approved by Tehran University of Medical Sciences Ethical Committee. Informed consent was taken from all the participants who were then randomly divided into two groups. Digital block performed by standard approach in selected patients. Tubes of ice were prepared in gloves and were fragmented at a time of application for circling around the finger. Tubes were applied for 6 minutes before digital nerve block in the site of needling in the case group. Patients in the control group underwent digital nerve block with the conventional method without ice administration. Numeric Rating Scale (NRS) used for grading pain. 0 used for no pain and 10 for the worst pain that patient had experienced until now. Scores were analyzed by Wilcoxon Rank Sum test and compared in case and control groups. Results: 100 patients aged 16-50 years were enrolled. Mean NRS scores with and without ice were 1.5 mm (S.D ± 1.44) and 6.8 mm (S.D ± 1.40) for needling pain and for infiltration pain were 2.7mm ( S.D ±1.65) and 8.5mm ( S.D ± 1.47), respectively (p<0.001). Besides, patients’ satisfactions were significantly higher in the ice group (p<0.001). Conclusion: Application of ice for 6 minutes significantly reduced pain of needling and infiltration in digital nerve block; thus, it seems to be a feasible and inexpensive material which acts effectively to decrease pain and stress before the procedure.Keywords: digital block, ice, needle, pain
Procedia PDF Downloads 234770 Effect of Irregularities on Seismic Performance of Building
Authors: Snehal Mevada, Darshana Bhatt, Aryan Kalthiya, Neel Parmar, Vishal Baraiya, Dhruvit Bhanderi, Tisha Patel
Abstract:
In multi-storeyed framed buildings, damage occurring from earthquake ground motion generally initiates at locations of structural weaknesses present in the lateral load-resisting frame. In some cases, these weaknesses may be created by discontinuities in stiffness, mass, plan, and torsion. Such discontinuity between storeys is often associated with sudden variations in the vertical geometric irregularities and plan irregularities. Vertical irregularities are structures with a soft storey that can further be broken down into the different types of irregularities as well as their severity for a more refined assessment tool pushover analysis which is one of the methods available for evaluating building against earthquake loads. So, it is very necessary to analyse and understand the seismic performance of the irregular structure in order to reduce the damage which occurs during an earthquake. In this project, a multi-storey (G+4) RCC building with four irregularities (stiffness, mass, plan, torsion) is studied for earthquake loads using the response spectrum method (dynamic analysis) and STADD PRO. All analyses have been done for seismic zone IV and for Medium Soil. In this study effects of different irregularities are analysed based on storey displacement, storey drift, and storey shear.Keywords: comparison of regular and irregular structure, dynamic analysis, mass irregularity, plan irregularity, response spectrum method, stiffness irregularity, seismic performance, torsional irregularity, STAAD PRO
Procedia PDF Downloads 73769 Study on the Stability of Large Space Expandable Parabolic Cylindrical Antenna
Authors: Chuanzhi Chen, Wenjing Yu
Abstract:
Parabolic cylindrical deployable antenna has the characteristics of wide cutting width, strong directivity, high gain, and easy automatic beam scanning. While, due to its large size, high flexibility, and strong coupling, the deployment process of parabolic cylindrical deployable antenna presents such problems as unsynchronized deployment speed, large local deformation and discontinuous switching of deployment state. A large deployable parabolic cylindrical antenna is taken as the research object, and the problem of unfolding process instability of cylindrical antenna is studied in the paper, which is caused by multiple factors such as multiple closed loops, elastic deformation, motion friction, and gap collision. Firstly, the multi-flexible system dynamics model of large-scale parabolic cylindrical antenna is established to study the influence of friction and elastic deformation on the stability of large multi-closed loop antenna. Secondly, the evaluation method of antenna expansion stability is studied, and the quantitative index of antenna configuration design is proposed to provide a theoretical basis for improving the overall performance of the antenna. Finally, through simulation analysis and experiment, the development dynamics and stability of large-scale parabolic cylindrical antennas are verified by in-depth analysis, and the principles for improving the stability of antenna deployment are summarized.Keywords: multibody dynamics, expandable parabolic cylindrical antenna, stability, flexible deformation
Procedia PDF Downloads 144768 Application of the Best Technique for Estimating the Rest-Activity Rhythm Period in Shift Workers
Authors: Rakesh Kumar Soni
Abstract:
Under free living conditions, human biological clocks show a periodicity of 24 hour for numerous physiological, behavioral and biochemical variables. However, this period is not the original period; rather it merely exhibits synchronization with the solar clock. It is, therefore, most important to investigate characteristics of human circadian clock, essentially in shift workers, who normally confront with contrasting social clocks. Aim of the present study was to investigate rest-activity rhythm and to vouch for the best technique for the computation of periods in this rhythm in subjects randomly selected from different groups of shift workers. The rest-activity rhythm was studied in forty-eight shift workers from three different organizations, namely Newspaper Printing Press (NPP), Chhattisgarh State Electricity Board (CSEB) and Raipur Alloys (RA). Shift workers of NPP (N = 20) were working on a permanent night shift schedule (NS; 20:00-04:00). However, in CSEB (N = 14) and RA (N = 14), shift workers were working in a 3-shift system comprising of rotations from night (NS; 22:00-06:00) to afternoon (AS; 14:00-22:00) and to morning shift (MS; 06:00-14:00). Each subject wore an Actiwatch (AW64, Mini Mitter Co. Inc., USA) for 7 and/or 21 consecutive days, only after furnishing a certificate of consent. One-minute epoch length was chosen for the collection of wrist activity data. Period was determined by using Actiware sleep software (Periodogram), Lomb-Scargle Periodogram (LSP) and Spectral analysis software (Spectre). Other statistical techniques, such as ANOVA and Duncan’s multiple-range test were also used whenever required. A statistically significant circadian rhythm in rest-activity, gauged by cosinor, was documented in all shift workers, irrespective of shift work. Results indicate that the efficiency of the technique to determine the period (τ) depended upon the clipping limits of the τs. It appears that the technique of spectre is more reliable.Keywords: biological clock, rest activity rhythm, spectre, periodogram
Procedia PDF Downloads 162767 Integrative Transcriptomic Profiling of NK Cells and Monocytes: Advancing Diagnostic and Therapeutic Strategies for COVID-19
Authors: Salma Loukman, Reda Benmrid, Najat Bouchmaa, Hicham Hboub, Rachid El Fatimy, Rachid Benhida
Abstract:
In this study, it use integrated transcriptomic datasets from the GEO repository with the purpose of investigating immune dysregulation in COVID-19. Thus, in this context, we decided to be focused on NK cells and CD14+ monocytes gene expression, considering datasets GSE165461 and GSE198256, respectively. Other datasets with PBMCs, lung, olfactory, and sensory epithelium and lymph were used to provide robust validation for our results. This approach gave an integrated view of the immune responses in COVID-19, pointing out a set of potential biomarkers and therapeutic targets with special regard to standards of physiological conditions. IFI27, MKI67, CENPF, MBP, HBA2, TMEM158, THBD, HBA1, LHFPL2, SLA, and AC104564.3 were identified as key genes from our analysis that have critical biological processes related to inflammation, immune regulation, oxidative stress, and metabolic processes. Consequently, such processes are important in understanding the heterogeneous clinical manifestations of COVID-19—from acute to long-term effects now known as 'long COVID'. Subsequent validation with additional datasets consolidated these genes as robust biomarkers with an important role in the diagnosis of COVID-19 and the prediction of its severity. Moreover, their enrichment in key pathophysiological pathways presented them as potential targets for therapeutic intervention.The results provide insight into the molecular dynamics of COVID-19 caused by cells such as NK cells and other monocytes. Thus, this study constitutes a solid basis for targeted diagnostic and therapeutic development and makes relevant contributions to ongoing research efforts toward better management and mitigation of the pandemic.Keywords: SARS-COV-2, RNA-seq, biomarkers, severity, long COVID-19, bio analysis
Procedia PDF Downloads 11766 The Effects of Mirror Therapy on Clinical Improvement in Hemiplegic Lower Extremity Rehabilitation in Subjects with Chronic Stroke
Authors: Hassan Abo-Salem, Huang Xiaolin
Abstract:
Background and Purpose: The effectiveness of mirror therapy (MT) has been investigated in acute hemiplegia. The present study examines whether MT, given during chronic stroke, was more effective in promoting motor recovery of the lower extremity and walking speed than standard rehabilitation alone. Methods: The study enrolled 30 patients with chronic stroke. Fifteen patients each were assigned to the treatment group and the control group. All patients received a conventional rehabilitation program for a 4-week period. In addition to this rehabilitation program, patients in the treatment group received mirror therapy for 4 weeks, 5 days a week. Main measures: Passive ankle joint dorsiflexion range of motion, gait speed, Brunnstrom stages of motor recovery, plantarflexor muscle tone by Modified Ashworth Scale. Results: Results: No significant difference was found in the outcome measures among groups before treatment. When compared with standard rehabilitation, mirror therapy improved Ankle ROM, Brunnstrom stages and waking speed (p < 0.05). However, there were no significant differences between two groups on MAS (P > 0.05). Conclusions: Mirror therapy combined with a conventional stroke rehabilitation program enhances lower-extremity motor recovery and walking speed in chronic stroke patients.Keywords: mirror therapy, stroke, MAS, walking speed
Procedia PDF Downloads 506765 Patient-Specific Design Optimization of Cardiovascular Grafts
Authors: Pegah Ebrahimi, Farshad Oveissi, Iman Manavi-Tehrani, Sina Naficy, David F. Fletcher, Fariba Dehghani, David S. Winlaw
Abstract:
Despite advances in modern surgery, congenital heart disease remains a medical challenge and a major cause of infant mortality. Cardiovascular prostheses are routinely used in surgical procedures to address congenital malformations, for example establishing a pathway from the right ventricle to the pulmonary arteries in pulmonary valvar atresia. Current off-the-shelf options including human and adult products have limited biocompatibility and durability, and their fixed size necessitates multiple subsequent operations to upsize the conduit to match with patients’ growth over their lifetime. Non-physiological blood flow is another major problem, reducing the longevity of these prostheses. These limitations call for better designs that take into account the hemodynamical and anatomical characteristics of different patients. We have integrated tissue engineering techniques with modern medical imaging and image processing tools along with mathematical modeling to optimize the design of cardiovascular grafts in a patient-specific manner. Computational Fluid Dynamics (CFD) analysis is done according to models constructed from each individual patient’s data. This allows for improved geometrical design and achieving better hemodynamic performance. Tissue engineering strives to provide a material that grows with the patient and mimic the durability and elasticity of the native tissue. Simulations also give insight on the performance of the tissues produced in our lab and reduce the need for costly and time-consuming methods of evaluation of the grafts. We are also developing a methodology for the fabrication of the optimized designs.Keywords: computational fluid dynamics, cardiovascular grafts, design optimization, tissue engineering
Procedia PDF Downloads 240764 Site-Specific Delivery of Hybrid Upconversion Nanoparticles for Photo-Activated Multimodal Therapies of Glioblastoma
Authors: Yuan-Chung Tsai, Masao Kamimura, Kohei Soga, Hsin-Cheng Chiu
Abstract:
In order to enhance the photodynamic/photothermal therapeutic efficacy on glioblastoma, the functionized upconversion nanoparticles with the capability of converting the deep tissue penetrating near-infrared light into visible wavelength for activating photochemical reaction were developed. The drug-loaded nanoparticles (NPs) were obtained from the self-assembly of oleic acid-coated upconversion nanoparticles along with maleimide-conjugated poly(ethylene glycol)-cholesterol (Mal-PEG-Chol), as the NP stabilizer, and hydrophobic photosensitizers, IR-780 (for photothermal therapy, PTT) and mTHPC (for photodynamic therapy, PDT), in aqueous phase. Both the IR-780 and mTHPC were loaded into the hydrophobic domains within NPs via hydrophobic association. The peptide targeting ligand, angiopep-2, was further conjugated with the maleimide groups at the end of PEG adducts on the NP surfaces, enabling the affinity coupling with the low-density lipoprotein receptor-related protein-1 of tumor endothelial cells and malignant astrocytes. The drug-loaded NPs with the size of ca 80 nm in diameter exhibit a good colloidal stability in physiological conditions. The in vitro data demonstrate the successful targeting delivery of drug-loaded NPs toward the ALTS1C1 cells (murine astrocytoma cells) and the pronounced cytotoxicity elicited by combinational effect of PDT and PTT. The in vivo results show the promising brain orthotopic tumor targeting of drug-loaded NPs and sound efficacy for brain tumor dual-modality treatment. This work shows great potential for improving photodynamic/photothermal therapeutic efficacy of brain cancer.Keywords: drug delivery, orthotopic brain tumor, photodynamic/photothermal therapies, upconversion nanoparticles
Procedia PDF Downloads 192763 Sustainable Ionized Gas Thermoelectric Generator: Comparative Theoretical Evaluation and Efficiency Estimation
Authors: Mohammad Bqoor, Mohammad Hamdan, Isam Janajreh, Sufian Abedrabbo
Abstract:
This extensive theoretical study on a novel Ionized Gas Thermoelectric Generator (IG-TEG) system has shown the ability of continuous energy extracting from the thermal energy of ambient air around standard room temperature and even below. This system does not need a temperature gradient in order to work, unlike the other TEGs that use the Seebeck effect, and therefore this new system can be utilized in sustainable energy systems, as well as in green cooling solutions, by extracting energy instead of wasting energy in compressing the gas for cooling. This novel system was designed based on Static Ratchet Potential (SRP), which is known as a spatially asymmetric electric potential produced by an array of positive and negative electrodes. The ratchet potential produces an electrical current from the random Brownian Motion of charged particles that are driven by thermal energy. The key parameter of the system is particle transportation, and it was studied under the condition of flashing ratchet potentials utilizing several methods and examined experimentally, ensuring its functionality. In this study, a different approach is pursued to estimate particle transportation by evaluating the charged particle distribution and applying the other conditions of the SRP, and showing continued energy harvesting potency from the particles’ transportation. Ultimately, power levels of 10 Watt proved to be achievable from a 1 m long system tube of 10 cm radius.Keywords: thermoelectric generator, ratchet potential, Brownian ratchet, energy harvesting, sustainable energy, green technology
Procedia PDF Downloads 75762 Towards a Biologically Relevant Tumor-on-a-Chip: Multiplex Microfluidic Platform to Study Breast Cancer Drug Response
Authors: Soroosh Torabi, Brad Berron, Ren Xu, Christine Trinkle
Abstract:
Microfluidics integrated with 3D cell culture is a powerful technology to mimic cellular environment, and can be used to study cell activities such as proliferation, migration and response to drugs. This technology has gained more attention in cancer studies over the past years, and many organ-on-a-chip systems have been developed to study cancer cell behaviors in an ex-vivo tumor microenvironment. However, there are still some barriers to adoption which include low throughput, complexity in 3D cell culture integration and limitations on non-optical analysis of cells. In this study, a user-friendly microfluidic multi-well plate was developed to mimic the in vivo tumor microenvironment. The microfluidic platform feeds multiple 3D cell culture sites at the same time which enhances the throughput of the system. The platform uses hydrophobic Cassie-Baxter surfaces created by microchannels to enable convenient loading of hydrogel/cell suspensions into the device, while providing barrier free placement of the hydrogel and cells adjacent to the fluidic path. The microchannels support convective flow and diffusion of nutrients to the cells and a removable lid is used to enable further chemical and physiological analysis on the cells. Different breast cancer cell lines were cultured in the device and then monitored to characterize nutrient delivery to the cells as well as cell invasion and proliferation. In addition, the drug response of breast cancer cell lines cultured in the device was compared to the response in xenograft models to the same drugs to analyze relevance of this platform for use in future drug-response studies.Keywords: microfluidics, multi-well 3d cell culture, tumor microenvironment, tumor-on-a-chip
Procedia PDF Downloads 262761 Genomics Approach for Excavation of NAS Genes from Nutri Rich Minor Millet Crops: Transforming Perspective from Orphan Plants to Future Food Crops
Authors: Mahima Dubey, Girish Chandel
Abstract:
Minor millets are highly nutritious and climate resilient cereal crops. These features make them ideal candidates to excavate the physiology of the underlying mechanism. In an attempt to understand the basis of mineral nutrition in minor millets, a set of five Barnyard millet genotypes were analyzed for grain Fe and Zn content under contrasting Fe-Zn supply to identify genotypes proficient in tolerating mineral deficiency. This resulted in the identification of Melghat-1 genotype to be nutritionally superior with better ability to withstand deficiency. Expression analysis of several Nicotianamine synthase (NAS) genes showed that HvNAS1 and OsNAS2 genes were prominent in positively mediating mineral deficiency response in Barnyard millet. Further, strategic efforts were employed for fast-track identification of more effective orthologous NAS genes from Barnyard millet. This resulted in the identification of two genes namely EfNAS1 (orthologous to HvNAS1 of barley) and EfNAS2 (orthologous to OsNAS2 gene of rice). Sequencing and thorough characterization of these sequences revealed the presence of intact NAS domain and signature tyrosine and di-leucine motifs in their predicted proteins and thus established their candidature as functional NAS genes in Barnyard millet. Moreover, EfNAS1 showed structural superiority over previously known NAS genes and is anticipated to have role in more efficient metal transport. Findings of the study provide insight into Fe-Zn deficiency response and mineral nutrition in millets. This provides millets with a physiological edge over micronutrient deficient staple cereals such as rice in withstanding Fe-Zn deficiency and subsequently accumulating higher levels of Fe and Zn in millet grains.Keywords: gene expression, micronutrient, millet, ortholog
Procedia PDF Downloads 231760 An Evaluation Framework for Virtual Reality Learning Environments in Sports Education
Authors: Jonathan J. Foo, Keng Hao Chew
Abstract:
Interest in virtual reality (VR) technologies as virtual learning environments have been on the rise in recent years. With thanks to the aggressively competitive consumer electronics environment, VR technology has been made affordable and accessible to the average person with developments like Google Cardboard and Oculus Go. While the promise of virtual access to unique virtual learning environments with the benefits of experiential learning sounds extremely attractive, there are still concerns over user comfort in the psychomotor, cognitive, and affective domains. Reports of motion sickness and short durations create doubt and have stunted its growth. In this paper, a multidimensional framework is proposed for the evaluation of VR learning environments within the three dimensions: tactual quality, didactic quality, and autodidactic quality. This paper further proposes a mixed-methods experimental research plan that sets out to evaluate a virtual reality training simulator in the context of amateur sports fencing. The study will investigate if an immersive VR learning environment can effectively simulate an authentic learning environment suitable for instruction, practice, and assessment while providing the user comfort in the tactual, didactic, and autodidactic dimensions. The models and recommendations developed for this study are designed in the context of fencing, but the potential impact is a guide for the future design and evaluation of all VR developments across sports and technical classroom education.Keywords: autodidactic quality, didactic quality, tactual quality, virtual reality
Procedia PDF Downloads 134759 Time-Dependent Modulation on Depressive Responses and Circadian Rhythms of Corticosterone in Models of Melatonin Deficit
Authors: Jana Tchekalarova, Milena Atanasova, Katerina Georgieva
Abstract:
Melatonin deficit can cause a disturbance in emotional status and circadian rhythms of the endocrine system in the body. Both pharmacological and alternative approaches are applied for correction of dysfunctions driven by changes in circadian dynamics of many physiological indicators. In the present study, we tested and compare the beneficial effect of agomelatine (40 mg/kg, i.p. for 3 weeks) and endurance training on depressive behavior in two models of melatonin deficit in rat. The role of disturbed circadian rhythms of plasma melatonin and corticosterone secretion in the mechanism of these treatments was also explored. The continuous exercise program attenuated depressive responses associated with disrupted diurnal rhythm of home-cage motor activity, anhedonia in the sucrose preference test, and despair-like behavior in the forced swimming test were attenuated by agomelatine exposed to chronic constant light (CCL) and long-term exercise in pinealectomized rats. Parallel to the observed positive effect on the emotional status, agomelatine restored CCL-induced impairment of circadian patterns of plasma melatonin but not that of corticosterone. In opposite, exercise training diminished total plasma corticosterone levels and corrected its flattened pattern while it was unable to correct melatonin deficit in pinealectomy. These results suggest that the antidepressant-like effect of pharmacological and alternative approach might be mediated via two different mechanism, correction of the disturbed circadian rhythm of melatonin and corticosterone, respectively. Therefore, these treatment approaches might have a potential therapeutic application in different subpopulations of people characterized by a melatonin deficiency. This work was supported by the National Science Fund of Bulgaria (research grant # № DN 03/10; DN# 12/6).Keywords: agomelatine, exercise training, melatonin deficit, corticosterone
Procedia PDF Downloads 130758 Suggestion of Two-Step Traction Therapy for Safer and More Effective Conservative Treatment for Low Back Pain
Authors: Won Man Park, Dae Kyung Choi, Kyungsoo Kim, Yoon Hyuk Kim
Abstract:
Traction therapy has been used in the treatment of spinal pain for decades. However, a case study reported the occurrence of large disc protrusion during motorized traction therapy. In this study, we hypothesized that additional local decompression with a global axial traction could be helpful for risk reduction of intervertebral disc damage. A validated three dimensional finite element model of the lumbar spine was used. Two-step traction therapy using the axial global traction (the first step) with 1/3 body weight and the additional local decompression (the second step) with 7 mm translation of L4 spinal bone was determined for the traction therapy. During two-step traction therapy, the sacrum was constrained in all translational directions. Reduced lordosis angle by the global axial traction recovered with the additional local decompression. Stress on fibers of the annulus fibrosus by the axial global traction decreased with the local decompression by 17%~96% in the posterior region of intervertebral disc. Stresses on ligaments except anterior longitudinal ligaments in all motion segments decreased till 4.9 mm~5.6 mm translation of L4 spinal bone. The results of this study showed that the additional local decompression is very useful for reducing risk of damage in the intervertebral disc and ligaments caused by the global axial traction force. Moreover, the local decompression could be used to enhance reduction of intradiscal pressure.Keywords: lumbar spine, traction-therapy, biomechanics, finite element analysis
Procedia PDF Downloads 485757 Phytochemical Analysis of Some Solanaceous Plants of Chandigarh
Authors: Nishtha, Richa, Anju Rao
Abstract:
Plants are the source of herbal medicine and medicinal value of the plants lies in the bioactive phytochemical constituents that produce definite physiological effects on human body. Angiospermic families are known to produce such phytochemical constituents which are termed as secondary plant metabolites. These metabolites include alkaloids, saponins, phenolic compounds, flavonoids, tannins, terpenoids and so on. Solanaceae is one of the important families of Angiosperms known for medicinally important alkaloids such as hyoscyamine, scopolamine, solanine, nicotine, capsaicin etc. Medicinally important species of this family mostly belong to the genera of Datura,Atropa,Solanum,Withania and Nicotiana.Six species such as Datura metel, Solanum torvum, Physalis minima, Cestrum nocturnum, Cestrum diurnum and Nicotiana plumbaginifolia have been collected from different localities of Chandigarh and adjoining areas.Field and anatomical studies helped to identify the plants and their parts used for the study of secondary plant metabolites. Preliminary phytochemcial studies have been done on various parts of plants such as roots, stem and leaves by making aqueous and alcoholic extracts from their powdered forms which showed the presence of alkaloids in almost all the species followed by steroids, flavonoids, terpenoids, tannins etc. HPLC profiles of leaves of Datura metel showed the presence of active compounds such as scopalamine and hyoscyamine and Solanum torvum showed the presence of solanine and solasodine. These alkaloids are important source of drug based medicine used in pharmacognosy. The respective compounds help in treating vomiting, nausea, respiratory disorders, dizziness, asthma and many heart problems.Keywords: alkaloids, flavanoids, phytochemical constituents, pharmacognosy, secondary metabolites
Procedia PDF Downloads 447756 Effect of Geometry on the Aerodynamic Performance of Darrieus H Yype Vertical Axis Wind Turbine
Authors: Belkheir Noura, Rabah Kerfah, Boumehani Abdellah
Abstract:
The influence of solidity variations on the aerodynamic performance of H type vertical axis wind turbine is studied in this paper. The wind turbine model used in this paper is the three-blade wind turbine with the symmetrical airfoil, NACA0021. The length of the chord is 0.265m. Numerical investigations were implemented for the different solidity by changing the radius and blade number. A two-dimensional model of the wind turbine is employed. The approach a Reynolds-Averaged Navier–Stokes equations, completed by the K- ώ SST turbulence model, is used. Motion mesh model capability of a computational fluid dynamics (CFD) solver is used. For each value of the solidity, the aerodynamics performances and the characteristics of the flow field are studied at several values of the tip speed ratio, λ = 0.5 to λ = 3, with an incoming wind speed of 8 m/s. The results show that increasing the number of blades will reduce the maximum value of the power coefficient of the wind turbine. Also, for the VAWT with a lower solidity can obtain the maximum Cp at a high tip speed ratio. The effects of changing the radius and blade number on aerodynamic performance are almost the same. Finally, for the validation, experimental data from the literature and computational results were compared. In conclusion, to study the influence of the solidity in the performances of the wind turbine is to provide the reference for the design of H type vertical axis wind turbines.Keywords: wind energy, darrieus h type vertical axis wind turbine, computational fluid dynamic, solidity
Procedia PDF Downloads 91755 Micro- and Nanoparticle Transport and Deposition in Elliptic Obstructed Channels by Lattice Boltzmann Method
Authors: Salman Piri
Abstract:
In this study, a two-dimensional lattice Boltzmann method (LBM) was considered for the numerical simulation of fluid flow in a channel. Also, the Lagrangian method was used for particle tracking in one-way coupling. Three hundred spherical particles with specific diameters were released in the channel entry and an elliptical object was placed in the channel for flow obstruction. The effect of gravity, the drag force, the Saffman lift and the Brownian forces were evaluated in the particle motion trajectories. Also, the effect of the geometrical parameter, ellipse aspect ratio, and the flow characteristic or Reynolds number was surveyed for the transport and deposition of particles. Moreover, the influence of particle diameter between 0.01 and 10 µm was investigated. Results indicated that in small Reynolds, more inertial and gravitational trapping occurred on the obstacle surface for particles with larger diameters. Whereas, for nano-particles, influenced by Brownian diffusion and vortices behind the obstacle, the inertial and gravitational mechanisms were insignificant and diffusion was the dominant deposition mechanism. In addition, in Reynolds numbers larger than 400, there was no significant difference between the deposition of finer and larger particles. Also, in higher aspect ratios of the ellipse, more inertial trapping occurred for particles of larger diameter (10 micrometers), while in lower cases, interception and gravitational mechanisms were dominant.Keywords: ellipse aspect elito, particle tracking diffusion, lattice boltzman method, larangain particle tracking
Procedia PDF Downloads 78